
American Journal of Engineering Research (AJER) 2024

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

 Volume-13, Issue-8, pp-62-71

 www.ajer.org
Research Paper Open Access

w w w . a j e r . o r g Page 62

Research on Task Scheduling and Resource Allocation Algorithms

in a Single-User Multi-Edge Node Environment

Yuchao Zhu1 Jiang Wang2
1(China Mining Products Safety Approval and Certification Center, Beijing, China)

2(Tianjin University of Science and Technology, Tianjin, China)
Corresponding Author: Yuchao Zhu

ABSTRACT : Traditional centralized computing architectures typically send data to centralized data centers or

the cloud for processing and analysis. This process often encounters issues such as significant data transmission

latency, network congestion, low reliability, and data security concerns. Consequently, traditional centralized

cloud computing architectures struggle to meet the demands for low latency, high bandwidth, and low energy

consumption in certain scenarios. Edge computing is a distributed computing method that does not rely on

centralized cloud systems. By processing data closer to the user devices at the network edge, it significantly

reduces the system overhead required to complete tasks such as data analysis, decision-making, and real-time

responses. This reduces latency, enhances resource utilization, and enables networks to better handle

applications with strict delay or energy consumption requirements. To address these challenges, this paper

investigates a task offloading algorithm within a cloud-edge-terminal collaborative architecture tailored for

single users and multiple edge nodes. A single user device generates a set of tasks with dependency constraints.

The total system overhead serves as the optimization objective for an improved genetic algorithm (ACGA) to

determine the offloading strategy. First, this research presents a detailed parameterized modeling of the total

overhead system model for the edge scenario, using its reciprocal as a fitness function for the algorithm. Next, it

enhances the genetic algorithm's local search capability through improvements to the crossover operator based

on the pheromone evaporation operation of ant colony optimization. Finally, simulation experiments on this

edge network environmental model validate that, in a single user and multiple edge node network environment,

the ACGA algorithm demonstrates good convergence after multiple iterations and significantly reduces system

computation task latency, thereby decreasing user wait times.

KEYWORDS: edge computing,Genetic Algorithm,Uninstall task,Resource allocation.

Date of Submission: 03-08-2024 Date of acceptance: 14-08-2024

--- ----------

I. INTRODUCTION

By concentrating computing tasks in remote large-scale data centers, cloud computing has shown great

capabilities in processing large-scale data processing, featuring dynamic scalability, high reliability, on-demand

deployment and other characteristics [1]. However, in some specific scenarios, cloud computing has been

widely used in large-scale data processing. Such as driverless cars [2], smart home appliances, Virtual Reality

[3] and other fields, this centralized computing mode shows limitations in meeting real-time requirements and

processing large amounts of edge-generated data [4].

In view of these limitations, in the late 1990s and early 21st century, researchers began to explore the

possibility of data processing and computing at the edge of the network, and mobile edge computing came into

being as a complementary and expanded technology [5]. Mobile edge computing does not simply replace cloud

computing. Cloud computing centers require edge servers to do preliminary processing of massive original data,

while edge computing centers require powerful computing capabilities and massive storage as basic support [6].

The core idea of mobile edge computing is to transfer data processing tasks from the cloud to the edge of the

network. The application scenarios of mobile edge computing cover many fields such as smart transportation

[7], smart city [8], and Industry 4.0. Among these applications, mobile edge computing can provide faster

service response, more efficient data processing capabilities, and a more personalized user experience.

With the popularization and deepening of mobile edge computing applications, how to effectively

schedule tasks and allocate resources in edge environments has become an urgent problem to be solved. The

http://www.ajer.org/

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 63

characteristics of mobile edge computing environment include the heterogeneous computing resources of edge

nodes, the limited network bandwidth and the huge number of devices, which bring challenges to the scheduling

of computing tasks and the effective allocation of resources. In this context, computing task offloading strategy

is particularly important. It is related to how to efficiently allocate and execute computing tasks among edge

nodes and between edge nodes and the cloud, so as to realize the optimal utilization of resources and ensure the

efficiency and reliability of services.

In this context, this paper primarily investigates algorithms for solving computational task offloading

strategies in edge environments. It explores the challenges associated with task offloading in mobile edge

computing and proposes a series of optimization methods. Through a detailed examination of the key

technologies and challenges involved in the task offloading process, it leverages the features of mobile edge

computing, applying advanced algorithms and techniques to optimize task offloading, promote efficient

utilization of computational resources, reduce overall system energy consumption, and enhance service

responsiveness and reliability. Focusing on a single-user scenario with multiple edge nodes, an improved

genetic algorithm is proposed for the computational task offloading problem, aiming to minimize the total

system cost. A parameterized model of the network in this scenario is established, and simulation experiments

demonstrate that the improved genetic algorithm significantly reduces the total system cost.

II. RELATED CONCEPTS

This paper addresses the issues of latency and energy consumption in edge environments. A

cooperative offloading model is established, involving multiple edge nodes and a cloud node for a single user

device. An improved genetic algorithm is proposed to determine the offloading strategy. Initially, the latency

and energy consumption within the offloading environment are analytically derived, leading to the construction

of a parameter model that incorporates system total cost (the weighted sum of latency and local energy

consumption) under various constraints. Subsequently, the reciprocal of the optimized objective function is used

as the fitness function in the improved genetic algorithm. A coding scheme is presented to select superior

individuals based on the fitness function values. An enhanced crossover operator is then developed, relying on

the pheromone evaporation mechanism from ant colony optimization. After multiple iterations, the offloading

strategy with minimal system total cost is obtained. Finally, a comparison with traditional genetic algorithms is

performed. Experimental data indicates that the proposed algorithm significantly reduces the system's total cost,

demonstrates stronger local search capabilities, and rapidly achieves superior offloading strategies.

2.1 MOBILE EDGE COMPUTING

Mobile Edge Computing, as a highly promising computing paradigm, has been widely applied and

recognized across various fields for its distinct features and advantages. The edge computing architecture is

shown in Fig. 1.

1) Low Latency: Mobile Edge Computing deploys computational resources closer to the user at

network edge nodes. This configuration enables shorter data transmission paths and faster data processing,

thereby reducing latency. Such low latency is crucial for applications that require real-time responses.

2) High Reliability: By pushing computing tasks to the source of data generation, Mobile Edge

Computing facilitates data processing and decision-making near the user or device, reducing reliance on

centralized data centers. This distributed computing model enhances the robustness and reliability of the system,

ensuring that edge nodes continue to operate effectively even in cases of unstable network connections or

failures at centralized data centers.

3) Bandwidth Savings: Mobile Edge Computing processes and analyzes data at the point of generation,

transmitting only the results to centralized data centers or the cloud. This significantly reduces the volume of

data transmitted over the network, conserving bandwidth resources. This bandwidth-saving feature is

particularly important for large-scale Internet of Things (IoT) applications, as it helps lower data transmission

costs and mitigate network congestion risks.

4) Flexibility and Scalability: The Mobile Edge Computing framework can flexibly deploy and scale

computational resources based on actual needs. Edge nodes can be deployed in various geographical locations

and network environments to adapt to different application scenarios and requirements. This flexibility and

scalability enable Mobile Edge Computing to respond to evolving business demands and technological

challenges.

5) Privacy Protection: Mobile Edge Computing localizes data processing and decision-making,

allowing data to be processed and analyzed on-site, which reduces the risk of raw data leakage or loss during

transmission. This localized data processing feature aids in protecting user privacy and data security, in

compliance with privacy protection regulations and standards.

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 64

Fig. 1 Edge computing architecture

2.2 CALCULATING THE RELEVANT CONTENT OF OFFLOADING

Task offloading is a key concept in mobile edge computing, referring to the process of transferring

computational tasks that would typically be executed by mobile devices (such as smartphones and tablets) to

other devices that possess greater computational resources or are available to process these tasks. This practice

alleviates the computational burden on mobile devices, enhances operational efficiency, extends device usage

time, and ensures a better user experience when handling performance-intensive applications. Task offloading

comprises three critical components: determining offloading, the volume of tasks to offload, and the specific

tasks to be offloaded. The steps involved in computation offloading are illustrated in Fig. 2.

Fig. 2-2 Task offloading steps

During the task offloading process, there are several key optimization metrics that need to be

considered to ensure optimal offloading results:

1) Latency: Latency refers to the time taken from task submission to task completion. Reducing

processing latency during task offloading is crucial, particularly in scenarios like real-time video streaming or

online gaming, where decreased latency can significantly enhance user satisfaction.

2) Energy Consumption: Energy consumption indicates the amount of energy expended during the task

offloading process. Mobile devices often have limited battery capacity, making it essential to consider how to

reduce energy consumption during offloading to extend battery life. Effective offloading decisions and

optimized strategies can help minimize energy use, thereby increasing device uptime.

3) Bandwidth Consumption: Bandwidth consumption pertains to the network bandwidth used during

task offloading. Since mobile devices typically connect to the internet or edge environments, it is important to

minimize network bandwidth usage during offloading to avoid excessive resource utilization, ensuring a

satisfactory experience for other users.

4) Resource Utilization: Resource utilization measures the efficiency of computing resources, storage

resources, and others involved during the task offloading process. When selecting offloading targets, the

resource utilization of the target server or node must be considered to ensure that tasks are fully utilized without

wasting resources.

2.3 GENETIC ALGORITHM

Genetic Algorithm (GA) is a search algorithm that solves optimization problems by utilizing principles

of evolution found in nature. In the 1960s, American professor Jhon Holland first proposed a genetic algorithm

based on natural phenomena such as biological reproduction, hybridization, mutation, and selection. The

specific genetic terminology used in genetic algorithms is illustrated in Table 1.

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 65

Table 1 Specific terms in the genetic algorithm

a specific term for genetic algorithms implication

chromosome (individual) a feasible solution

gene chromosomal element

population the set of feasible solutions

crossover probability the probability of individuals crossing

variation probability the probability of individual variation

fitness assess the value of the individual

When using genetic algorithms to solve specific problems, it is necessary to map feasible solutions to

chromosomes, with each solution corresponding to one chromosome[16]. The population consists of a collection

of all chromosomes. The encoding of chromosomes can be determined based on specific circumstances, such as

binary encoding or real-valued encoding. The genetic algorithm first randomly generates a population and then

evaluates the fitness of individuals within this population using a fitness function. Ultimately, the next

generation is selected based on these fitness values. Individuals with higher fitness values have a higher chance

of being retained, while those with lower fitness values also have opportunities for retention. Following this,

individuals are chosen for crossover and mutation. After several iterations, the overall fitness value is expected

to improve until the algorithm converges.

III. ALGORITHM FOR TASK SCHEDULING AND RESOURCE ALLOCATION IN A SINGLE-USER

MULTI-EDGE NODE ENVIRONMENT

3.1 MODELING PROCESS

Assume the set of servers is
},...,,,{ 1210 mm,sssssS

, where 0s
 represents the local endpoint, 1s

denotes the edge node attached to the local endpoint, 1ms
indicates the cloud endpoint, and mss ,...,2 represent

other edge nodes. The set of computing capabilities for the servers is
},...,,,{ 1210 mm,fffffF

with

subscripts corresponding one-to-one to the server set.

Local user devices Ugenerate computing tasks subject to constraints, which are represented as a

directed acyclic graph
),(EVG

[17], where
},...,,{ 21 mvvvV

indicates the task set, with each task iv

having a pair
}{ ii,cd

,where id
represents the size of the task iv

in kilobytes (kb), and ic
represents the number

of CPU cycles required for task iv
. The set Erepresents the dependencies among the tasks; a directed edge

Evv ij),(
indicates that task iv

 can only commence after completing task jv
. Task jv

 is termed the

predecessor of task iv
, denoted as

)pre(iv
, while task iv

 is called the successor of task jv
, denoted as

)suc(jv
. When task iv

has no predecessors, it is an entry node;conversely, if task jv
 has no successors, it is an

exit node. The dependency relationship model is illustrated in Fig. 3.

Fig. 3 Task set with task dependencies

Introducing decision variable i,jx
, if i,jx

=1, it indicates that task iv
 is allocated to server js

 for

execution. However, it is important to note that if a task is offloaded to the cloud, it must first be offloaded to

the edge before being transferred to the cloud. For instance, 31,x
=1means that task 1v

 is assigned to server 3s

for execution, requiring it to first be transmitted to 1s , and then from 1s to 3s
.

1）Latency Optimization Objectives

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 66

a. The execution time of task iv
 on server js

 is given by:

SsV，v
f

c
t ji

j

iC

i,j ,

 Equation（1）

Where ic
denotes the computational size of the task, and jf

represents the computational capacity of

server js
.

b. The transmission time for offloading task iv
 to server js

 is as follows:

1

1110

2

10

1

10

0

}{

0

mj

,m

i

,

i

mj

edge

i

,

i

j

,

i

j

trans

i,j

ss
r

d

r

d

,...,sss
r

d

r

d

ss
r

d

ss

t

 Equation（2）

In this context, r represents the transmission rate. To simplify the model, r depends solely on the

network bandwidth B between the user’ device and the target node, specifically the network bandwidth from

local 0s
 to js

. Additionally, this paper does not consider the transmission time required to return the computed

results to the local device after computation is completed.

c. The waiting time for task iv
 before it begins execution:

Ssvtttt

v

t
hi

last

j

C

k,h

trans

k,h

wait

k
vv

i
wait

i,j

ik

，，)pre()(maxmax

)pre(0

)pre(
 Equation（3）

Before task iv
begins execution, it must first wait for all its preceding tasks to be completely unloaded,

transmitted, and executed. Additionally, each server can only handle one task at any given time; therefore, the

start time of task iv
 must also be greater than the time spent waiting in queue to reach the designated unloading

server.

Here,

last

jit , represents the queuing time for task iv
 upon arrival at server js

 , which can be calculated

based on the queue model. For simplicity, we assume the use of the basic M/M/1 queue model for these

calculations.

)(-λμμ

λ
Wt

jj

j

last

i,j

 Equation（4）

In this context, jW
 represents the average waiting time, λ indicates the average arrival rate, and jμ

denotes the average service rate for js
 assuming that all values are known in a static scenario.

Thus, the completion time for task iv
 is:

Sstttt j

trans

i,j

C

i,j

wait

i,j

fin

i ，
 Equation（5）

In summary, the goal of delay optimization is:

fin

i
Vv

total tT
i

 maxmin
 Equation（6）

 S.t.

n

i i,jx
1

1
 Equation（7）

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 67

}10{ ,xi,j

 Equation（8）

S,sv,v,ttt jik

last

i,j

fin

k

wait

i,j)(pre）（max
 Equation（9）

Equation (7) ensures that each task iv
 can only be executed on one device; Equation (8) is a binary

variable constraint, meaning that a task can either be offloaded or not offloaded, guaranteeing that each task iv

can be processed; Equation (9) addresses the dependency constraints between tasks.

2）Energy Consumption Optimization Objective

The energy consumption model only considers the energy costs borne by the local user, namely the

energy consumed for local computation and the energy required for offloading transmission, without accounting

for the energy costs incurred during computation and transmission at the edge and cloud layers.

a. Energy consumption of task iv
 during local computation:

VvTPxE i

CC

i
local ，)(0, Equation（10）

Among them, PC represents the average computational power consumption of the CPU, while TC

indicates the time required for task execution, calculated according to equation (1).

b. When considering only the transmission consumption for offloading tasks to s1, the following

applies:

}{ 121

1

1

1

 mk

n

i

m

k

ii,k

trans ,...,s,ss，sdxPE
trans

 Equation（11）

Among them, Ptrans represents the average transmission power consumption of the local device. In

summary, the total energy consumption is:

trans

total EEE local
 Equation（12）

3）The overall system overhead target is

 totaltotal α)E(αTZ 1min
 Equation（13）

Ttotal represents the total delay incurred by the task, and denotes the weight factor for delay. When
 =1, it indicates that the system is delay-sensitive and only considers delay costs. When =0 , it signifies that

the system is energy-sensitive and focuses solely on energy consumption costs.

3.2 RESEARCH ON OFFLOADING ALGORITHM BASED ON IMPROVED GENETIC ALGORITHM

3.2.1 POPULATION INITIALIZATION

This section assumes a population size of s, a number of user tasks equal to n, and m+1 edge nodes

(including the cloud).

A chromosome is initialized with a length of n, where gene values are randomly generated within the

range of 0 to m+1, using integer encoding. The chromosome is represented as
}{ 21 ni ,...,c,ccC

.

For example, if Ci={0,1,2,3,4,1,0}, it indicates that task v1is executed by server s0 (x1,0=1), task v2

by server s1(x2,1=1), task v3by server s3 (x3,2=1), task v4 by server s3 (x4,3=1), and task v6 by server s1

(x6,1=1), and so forth. The remaining unmentioned values are xi,j=0.

3.2.2 SELECTION

To select suitable individuals for genetic processing from the population, this section combines elitism

and roulette wheel selection methods. Based on the fitness function, individuals with higher fitness from the

parent population are preferentially selected to advance to the next generation, followed by using the roulette

wheel method to select the remaining individuals, thereby forming a new generation. Chromosomes with higher

fitness have a greater probability of being selected, while individuals with lower fitness still maintain a chance

to pass on their genes.

The fitness of each individual is calculated using the fitness function, as detailed in Table 2, followed

by the calculation of the selection probability for each individual.

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 68

Table 2 The calculation process of the fitness

Input: chromosome Ci

1

For jtask,s
in chromosome Ci

2

Calculate

wait

task,sj
t

by（3-3）
3

Calculate

fin

taskt
by jstaskx ,

with（3-5）
4 If tmax < ttask：tmax = ttask

5

Calculate Etotal by jstaskx ,
with（3-12）

6 Calculate Z by（3-13）

7 Output ZCi

1）Calculate the fitness function value based on the fitness assessment:

 Ci

C
Z

Fitness
i

1

 Equation（14）

Here, Ci represents a chromosome, and ZCidenotes the total system overhead corresponding to the

unloading scheme associated with that chromosome, as calculated according to Equation (13).

2）Calculate the probability of Ci being selected, q(Ci)

s

ki

C

C

i

k

i

Fitness

Fitness
Cq)(

 Equation（15）

3.3 IMPROVEMENT STRATEGY FOR CROSSOVER OPERATION BASED ON ANT COLONY

PHEROMONE CONCENTRATION

Crossover operation is a primary search operator in genetic algorithms, and an effective crossover

approach allows offspring to inherit superior genes from the previous generation. However, traditional genetic

algorithm crossover involves randomly selecting two individuals to exchange a portion of their genes. This

method often converges quickly in the early stages, making it susceptible to "premature convergence", and

exhibits poor local optimization capabilities, leading to suboptimal iterative results[18]. In this section, we focus

on improving the crossover operation by introducing a pheromone concentration-based crossover mechanism,

which can effectively prevent the generation of duplicate or low-quality offspring and enhance the algorithm's

search efficiency and solution quality. The specific steps are as follows:

1）Randomly select a chromosome Ci from the population, initializing Cbest=Ci. Assume the initial

pheromone concentration is R0, the current concentration begins at RX=R0, and the termination concentration is

Rf. The pheromone will evaporate by RΔ for N cycles.

2）Randomly select two points for exchange, forming a new individual Cx and calculate the fitness

difference ix CC fitnessfitnessfitness Δ
；

3）If
0Δ fitness

, then Cbest=Cx；

4）If
0Δ fitness

, check if

xR

fitness

e , where
)1,0rand(

. If true, retain Ci=Ci; otherwise,

update it to Ci=Cx；

5）Check if the number of cycles has reached N. If not, return to step 2; if it has, proceed to step 6.

6）Calculate the updated pheromone concentration RRR XX . If fX RR
, output Cbest;

otherwise, return to step 2.

3.4 MUTATION

Mutation in genetic algorithms is a method for introducing new genetic diversity into the population by

randomly altering the values of certain genes in individuals. The mutation operation aids the algorithm in

exploring regions of the solution space that are not covered by the current population, thereby avoiding

premature convergence to local optimal solutions. In the context of network task allocation and resource

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 69

optimization problems, the mutation operation may involve randomly selecting a task and changing the server it

is assigned to, thereby exploring various potential task allocation schemes.

IV. EXPERIMENTAL SIMULATION RESULTS AND ANALYSIS

4.1 EXPERIMENTAL ENVIRONMENT

The parameters of the simulation environment and algorithm hyper parameters used in this chapter are

shown in Tables 3 and 4
Table 3 Simulation parameters in the experiment

simulation parameter value

task data size 500kb~1500kb

period required for task processing 50~150

average server queuing time 1s

local computing power 1.2GHz

edge computing capability 16GHz

cloud computing capability 64GHz

local - edge bandwidth 10M

edge - edge bandwidth 30M

edge - cloud bandwidth 50M

locally calculated power PC 1W

local transmission power Ptrans 0.5W

Table 4 Parameters used by the algorithm

Hyper parameter value

number of servers 7

number of tasks 20

population size 20

number of iterations 100

delay weight 0.5

crossover probability 0.8

variation probability 0.1

4.2 COMPARATIVE EXPERIMENTS

This section designs two sets of experiments to simulate task offloading under the marginal scenarios

discussed in this chapter, verifying the superiority of the improved genetic algorithm ACGA for offloading

optimization. By comparing it with the traditional genetic algorithm GA, the ACGA algorithm demonstrates

significant advantages in reducing task execution time and conserving energy.

1）The first set of simulation experiments proposed in this chapter compares the latency overhead

under different numbers of tasks, specifically between local execution and offloading execution using the

ACGA algorithm, with a weight coefficient α =1:

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 70

Fig. 4 Local execution and uninstall execution system delay overhead comparison

In Figure 4, it can be observed that under varying numbers of tasks, the utilization of the ACGA

algorithm for offloading execution significantly reduces system latency compared to executing tasks entirely

locally. This reduction decreases user waiting time and can enhance service quality.

2）In this chapter, a comparison is made between the total overhead of the ACGA algorithm and

traditional GA under different task quantities:

 (a)

 (b)

 (c)

American Journal of Engineering Research (AJER) 2024

w w w . a j e r . o r g Page 71

 (d)

 Fig. 5 The relationship between the ACGA algorithm and GA and the total overhead under different

task sets

Figures 5 (a), (b), (c), and (d) depict the process of the algorithm iterating 100 times with task

quantities of 20, 30, 50, and 80, respectively. It is evident that the Ant Colony Genetic Algorithm (ACGA)

consistently outperforms the Genetic Algorithm (GA) as the complexity of the task set increases, particularly in

terms of search capability in later stages. This superiority arises from the pheromone evaporation operation in

the ant colony algorithm, which allows it to escape local optima, while the global search capability of the

genetic algorithm ensures a greater number of high-quality starting points, ultimately leading to improved

solutions in global optimization problems.

V. CONCLUSION

This paper presents research on offloading strategies in a scenario with a single user and multiple edge

nodes. The task set generated by the single user exhibits certain dependencies, and the total cost of the system

model is defined as the weighted sum of local energy consumption and latency. A parametric modeling

derivation process is specifically conducted, and an improved genetic algorithm, ACGA, is introduced as a

solution method. Finally, simulation experiments are conducted, and the experimental results indicate that the

ACGA algorithm introduced in this chapter significantly reduces system latency costs. Moreover, in terms of

total cost, its convergence performance is superior to that of traditional genetic algorithms (GA), particularly

demonstrated by its enhanced search capability in the later stages, enabling it to find better solutions for global

optimization problems, resulting in lower system costs.

REFERENCES
[1]. Kim W J J O T. Cloud computing: Today and tomorrow [J]. 2009, 8(1): 65-72.
[2]. Dai P, Hu K, Wu X, et al. A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks [J].

2020, 23(2): 899-911.

[3]. Shin D-H J T, Informatics. The role of affordance in the experience of virtual reality learning: Technological and affective
affordances in virtual reality [J]. 2017, 34(8): 1826-36.

[4]. Hu Y C, Patel M, Sabella D, et al. Mobile edge computing—A key technology towards 5G [J]. 2015, 11(11): 1-16.

[5]. Jaisimha A, Khan S, Anisha B, et al. Smart transportation: an edge-cloud hybrid computing perspective; proceedings of the

Inventive Communication and Computational Technologies: Proceedings of ICICCT 2019, F, 2020 [C]. Springer.

[6]. Khan L U, Yaqoob I, Tran N H, et al. Edge-computing-enabled smart cities: A comprehensive survey [J]. 2020, 7(10): 10200-32.
[7]. Xie R, Tang Q, Qiao S, et al. When serverless computing meets edge computing: Architecture, challenges, and open issues [J].

2021, 28(5): 126-33.

[8]. Zhang J, Chen B, Zhao Y, et al. Data security and privacy-preserving in edge computing paradigm: Survey and open issues [J].
2018, 6: 18209-37.

[9]. Zhang P, Zhou M, Fortino G J F G C S. Security and trust issues in fog computing: A survey [J]. 2018, 88: 16-27.

[10]. Zhang Y, Liu H, Jiao L, et al. To offload or not to offload: An efficient code partition algorithm for mobile cloud computing;
proceedings of the 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), F, 2012 [C]. IEEE.

[11]. Shan X, Zhi H, Li P, et al. A survey on computation offloading for mobile edge computing information; proceedings of the 2018

IEEE 4th international conference on big data security on cloud (BigDataSecurity), IEEE international conference on high
performance and smart computing,(HPSC) and IEEE international conference on intelligent data and security (IDS), F, 2018 [C].

IEEE.

[12]. Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and
artificial intelligence [M]. MIT press, 1992.

[13]. Li K, Tang X, Veeravalli B, et al. Scheduling precedence constrained stochastic tasks on heterogeneous cluster systems [J]. 2013,

64(1): 191-204.

