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Abstract  

The Nigeria 330kV integrated power system currently consists of the existing network, national independent 

power projects (NIPP), and independent power producer (IPP). This network consists of generating stations, 

transmission lines and buses. Consequently, the Nigeria power system is gradually transforming into complex 

interconnected network of different components. This complexity is because of the deregulation of the electricity 

industry and expansion of the network by National Independent Power Project (NIPP) and Independent Power 

Producers (IPP) to meet the increasing energy demand. That is due to varying load demand patterns and 

inability to meet both active and reactive power demand during operations coupled with number of abnormal 

disturbances that can result into system violation of bus-voltage, frequency-limit, and poor-power quality. Since 

balance between active and reactive power will ensure reliable electric power system to the consumer at 

receiving end. For low power factor of the system essentially indicates inefficient delivery of active power to the 

load due to reactive power losses. However, voltage collapse incidence may be the resultant effect of voltage 

instability in the power system network (PSN). This research considered the application of predictive optimizers 

with consideration of previous work in order to assess various voltage stability indices (VSI), particularly fast 

voltage stability index (FVSI), line stability index (LMN), line stability factor (LQP), voltage stability index (LD) 

and novel line stability index (NLSI), are presented to predict the proximity of the line close to voltage collapse. 

The line voltage stability indices are based on active and reactive power injections into network configuration 

for system analysis. Five (5) predictive indices were examined and evaluated for the predictions of voltage 

collapse profile for 330kv transmission network under investigation. Essentially three (3) and five (5) yearly 

moving average technique were also applied to analyse twenty-one (21) historical data set from (2000-2021) as 

actual voltage collapse information, the arithmetic moving average technique was used to determine number of 

voltage collapse from (2021-2032) using 5-years moving average technique with predictive look-ahead on 

numbers of voltage collapse as; 2021(12), 2022 (12), 2023 (12) 2024 (11), 2025 (11), 2026 (11), 2027 (11), 

2028 (11), 2029 (10), 2030 (10), 2031 (10) and 2032 (10) respectively. Similarly, 3-yearly moving average also 

provided as; 2021(11.1), 2022 (11.4), 2023 (11.2), 2024 (11) 2025 (10.8), 2026 (10.6), 2027(10.4), 2028 (10.2), 

2029(10), 2030 (10), 2031 (10), 2032 (10) respectively. The results show that the highest number of expected 

voltage collapse was 12 in the case of three (3) – yearly moving average which evidently fall within the year 

2021, 2022, and 2023 respectively,followed by subsequent year 2024, 2025, 2026, 2027, 2028 with 11 expected 

number of voltage collapse and gradually becomes lowest in the year 2029-2032 with total expected number of 

voltage collapses to be 10. While five (5) yearly moving average techniques captured 11 numbers of voltage 

collapse for the year 2021-2024, and 10 numbers of voltage collapse for the year 2025-2029. The research 

study also introduced the application of artificial neural network (ANN), in order to measure system parameters 

performance, correlation, validation with input data (FVSI, LMN, LQP, LD, NLSI). The obtained quantitative 

value of R = 0.9993, while the validity value was 0.9993 which agrees with the data of the predictive 

parameters relationship.Essentially, the activity of voltage collapse can be predicted using odd-moving average 

in order to enable system planners/operators to put their network components structure to adapt for maximum 

power transfer capability. 

Keywords: Loadability, Arithmetic Moving Average, Voltage Collapse, Predictive Indices, System Violation, 

330kv network. 
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1.1 Background of the study 

The contemporary Power System Network (PSN) represents a vast and intricate engineering 

infrastructure, the vitality of which is paramount for the sustainable progress of industrial and socio-economic 

facets within any nation. In many developing economies, such as Nigeria, the continuous expansion and 

interconnection of bulk power systems have catalyzed economic growth, albeit resulting in a sophisticated 

network that operates within acceptable stability margins (Bhawana & Prabodh, 2015). The significance of 

stability studies for system limits cannot be overstated, given that the capability to forecast and alleviate the 

ramifications of power system breakdowns stemming from instability hinges upon the stability of system 

dynamics. 

One type of system instability that results from heavily loaded system is voltage collapse. Voltage 

collapse is manifested in the form of slow variation in the system operating point because of continuous increase 

in load which eventually leads to corresponding decrease in magnitude of the voltage. This continuous decrease 

eventually results in sharp acceleration of the process until it is zero voltage in the system (Simpson-Porco et. 

al., 2016). 

Voltage collapse is a situation that leads to low drops in voltage and eventually power system blackout, 

these phenomena has been identified as primary power system fault that must be avoided at all costs. This is due 

to the magnitude of its negative impact on power system infrastructures and in turn it is highly detrimental in 

terms of economic impact to the society (Yahia et al., 2015). 

Some causes of voltage collapse are spread out across many nations which are attributed to failure of 

high voltage protection equipment due to lightning strikes, generator overloading, forest fires burning down 

generator etc. in certain instances, the collapsing (blackout) region may span large area resulting in catastrophic 

damages. Thus, measurement have to be in place to forestall the occurrence of voltage collapse in power system 

network, one of many measures is predicted on the computation on the ground of voltage stability (collapse) 

indices. 

In this regard, the voltage collapse or stability indices (VCSI) has been a widely researched topic that 

has led to the development of methods/frameworks for the identification/estimation of voltage collapse points, 

voltage collapse, state predictions and methods for screening out contingencies within a given power system 

network. 

 

Figure 1.1a: 28 – Bus, 330kv Nigeria Network 

 

Figure 1: Single line Diagram of 28-Bus, 330kV Nigeria Network. 
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Particularly in Nigeria the need for more power-delivery devices in combination with exponential 

urban growth has resulted in alow voltage, leading to unwarranted blackouts experience by the citizenry. 

Power system experts have described the prevailing outages as Voltage Collapse this phenomenon has 

been widely studied by many power system researchers around the world.Voltages collapse can hamper power 

system operations by denying the consumers constant and reliable source of electricity. Voltages collapse 

studies relate to the more general field of power systems stability for which the critical stability limits are 

important which major role for failure mitigation (Donna, 2018). While research is indeed very active in this 

field, there has been a renewed interest by power system researchers and system operators to improve existing 

methods or frameworks with respect to developing optimal voltage collapse index plans and preventative 

solutions. Thus, optimal or near optimal solution may be developed using conventional or unconventional 

technique. 

Various research scholars study seeks to investigate the potential of different technique (eigen value) 

which are used essentially as a formidable analytical tool to investigate both proximity and mechanism of 

voltage instability. The process of voltage collapses of a dynamic occurrence but static power network solution 

methods which can still be utilized to generate criteria condition which are good markers of voltage stability 

margin and can ascertain weak buses of the system (Verayiah, 2016).Modal analysis method can calculate 

voltage collapse or instability in power system networks. The major aspect of this technique involves the 

estimation of the smallest eigen values and related eigen vectors of the reduced Jacobian matrix acquired from 

performing load flow analysis. 

Eigenvalues have a great deal of the relationship with mode of voltage and reactive power variation and 

are employed to estimate voltage instability in a power network system. After execution of modal analysis, the 

participation factors are usually utilized to easily identify the weakest connections or buses in the system (Goh 

et al., 2014). The participation factor values can adequately be used to determine the weakest bus in the system.  

The participation factor values are usually obtained from the eigen-vectors analysis or eigenvalues. 

A typical modern Power System Network (PSN) is a large and complex Engineering system whose 

healthy existence is crucial for sustainable industrial and socio-economic development of any nation. In most 

developing economy like Nigeria, the continuous interconnection of bulk power system brought about by the 

growth in the economywhich has resulted in a complex system that operates within or ever so close to the 

margin of stability. The importance of the study of the stability limit of the PSN cannot be overemphasized 

considering that the ability to predict and mitigate the consequences of power system breakdown due to 

instability depends on stability studies (Chayapathi et al., 2017). 

One type of system instability that results from a heavily loaded system is “Voltage Collapse”. Voltage 

collapse is manifested in the form of slow variation in the system operating point because of continuous increase 

in load which eventually leads to a corresponding decrease in the magnitude of the voltage. This continuous 

decrease eventually results in a sharp acceleration of the decrease process until there is zero voltage in the 

system. Voltage collapse is a situation that leads to abysmally low drops in voltage and eventual power system 

blackout, this phenomenon has been identified as a primary power system fault that must be avoided at all costs. 

This is due to the magnitude of its negative impact on power system infrastructure and in turn, its highly 

detrimental to economic impact in the society (Onohaebi, 2019). 

Thus, measures have to be put in place to forestall the occurrence of voltage collapse in a power system 

network. One of such measures is predicted on the computation on the ground of voltage stability (collapse) 

indices. 

In this regard, the voltage collapse or stability indices (VCSI) has been widely researched area that has led to the 

development of methods/frameworks for the identification/estimation of voltage collapse points, voltage 

collapse state predictions and methods for screening out contingencies within a given power system network 

(Sarat et al., 2019). 

In Nigeria, the evolution of more power-hungry devices in combination with exponential urban growth has 

resulted in abysmally low voltages leading in turn to unwarranted blackouts experienced by the citizenry. 

Power system experts have described the prevailing outages as Voltage Collapse”, a phenomenon that has been 

widely studied by many power system researchers around the world. 

Voltage collapse can hamper power system operations by denying the consumers constant and reliable source of 

electricity. Voltage collapse studies relate to the more general field of power systems stability for which the 

critical stability limits are important and play a main role failure mitigation. While research is indeed very active 

in this field, there has been a renewed interest by power system researchers and system operators to improve 
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existing methods or frameworks with respect to developing optimal voltage collapse index plans and 

preventative solutions. Thus, optimal or near optimal solutions may be developed using conventional or 

unconventional but effective methods.  

Optimal voltage collapse detection strategies may include a prediction layer to estimate in advance which par5 

voltage collapse since it is highly catastrophic anytime it occurs.  

Review of Previous Work 

Quite a number of research works abound in the field of voltage stability which defines several Voltage 

Stability Margins (VSMs) for use with standalized power system networks. This study on VSMs is related to the 

concept of voltage collapse which is typically described by a voltage stability or collapse index at a point of 

possible line outage or blackout; thus, a Voltage Collapse Index (VCI) typically describes the state of security of 

power system in the presence of a possible severe contingency.  

According to Goh et al. (2019) voltage collapse studies are made to gain an insight into mechanisms 

that drive a system into collapse. To understand the dynamics of voltage collapse, the inter-play between 

generator controls and the connected load must be explored. Simulations must be carried out on a medium sized 

network by a transient dynamic simulation program.  

Simulation results help to better understand remediation strategies. The time dependent characteristics 

of correction controls can also be investigated using the results obtained. 

 

What is Voltage Collapse 

The term voltage collapse is often used interchangeably with system collapse. It is the process by which series 

of events accompanying voltage instability leads to a blackout or abnormally low voltages in a significant part 

of the power system. In plain terms it is a situation where the load demand outweighs the generated power 

which leads to pulling the generators into a state of instability, the discrepancy between power generated and 

power available for distribution is mainly due to either fall in water level at the hydro generating station or non-

availability of gas at the thermal stations (Hasani & Parniani, 2015). 

The cause of voltage collapse can be categorized into two: technical and non-technical. The technical causes 

may be due to tripling of lines on account of faulty equipment or increase in load than the available supply. The 

non-technical causes of voltage collapse include adverse weather conditions.  

 

Voltage Stability Studies  

Voltage stability is defined as the ability of the system to maintain voltage at all nodes within the acceptable 

limit when subjected to a disturbance. (Musa, 2015)  

A system that has the ability to develop adequate restoring forces sufficient to overcome disturbing forces and 

restore equilibrium is said to be stable. A system is termed insecure when the capability does not exist. Power 

system stability problems are commonly classified into two categories. 

(i). Steady state 

(ii). Transient 

Steady state frequency controls, take care of minor disturbances (variations) in generation demand equilibrium. 

A system is in a steady state when all required parameters impacting on System Operations exist like adequate 

generation operating reserves and healthy transmission network. 

Transient stability problems focus on the effect of sudden large system disturbances such as:     

(i). Line faults, 

(ii). Sudden switching off of lines, 

(iii). Sudden application of removal of large loads 

(iv). Loss of a major generating unit at a power station 

The outcome of voltage instability is a progressive rise or fall of voltage at some buses. The uncontrollable of 

voltage magnitude at some buses on the power network is referred to as voltage instability. A typical power 

system operation is a combination of power generation, load demand and adequate supply of power to loads at 

all times. The component of a power system network that drives the system into instability is Load. (Chayapathi 

et al., 2017). 

Spinning reserve is one key tool for managing system frequency and keeping the system stable. Experience from 

the operation of the Nigerian Grid between 15th January 2011 and February 2012 when there was reasonably 

sufficient Spinning Reserve clearly showed that Spinning Reserve should be taken seriously as a tool in 

managing system frequency for the attainment of a more stable grid. 
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Materials Used 

The materials used in this research include the following: 

(i) Line input data 

(ii) Bus input data 

(iii) Conductor cross sectional area. 

(iv) Transformer input data 

(v) MATLAB/ANN 

(vi) Electrical Transient Analyzer Program (ETAP) software 

(vii) Annual Voltage Collapse data on the 330kV system network 

Method Used  

Power flow studies provide systemic mathematical approach in determining the various buses voltages 

(V), phase angles (), active power (P) and reactive power (Q) that flows through various branches, generators 

and loads under steady state on a given set of loading and operating conditions. The determination of these 

parameters constitutes the solution to load flow problems. Load flow equations are essentially non-linear 

algebraic equations, which must be solved through iterative numerical techniques - by starting with assumed 

values of known variables and obtaining successive better values of the same variable by repeated cycles of 

solution.These iterative methods of solutions for load flow problems will consider the embedded Newton 

Raphson method / fast decoupled load flow technique (FDLF) and modal analysis techniques.  

In this analysis of the Nigerian 330kV power system network, the arithmetic moving average and 

predictive optimization techniques are employed. The utilization of arithmetic moving average facilitates a 

straightforward analysis of historical data trends, thereby assisting in the identification of potential patterns or 

anomalies in voltage behaviour. Furthermore, the implementation of the five predictive optimizers enables a 

more sophisticated analysis, leveraging advanced algorithms to forecast potential voltage collapse scenarios 

based on current and projected operating conditions. Through the integration of these methods, the aim is to 

obtain critical parameters that can inform effective mitigation strategies against voltage collapse, ultimately 

enhancing the overall stability and reliability of the network. 

The mathematical method proposed by Ramet al. (2018),state that under normal conditions, the electrical 

system is assumed to be operating at its stable pre-fault equilibrium point. The behaviour of such system is 

given as: 

𝑀
𝑑2𝛿

𝑑𝑡2 = 𝑃𝑚 − 𝑃𝑒    (1) 

From the analysis M is the Inertia Constant, 𝑃𝑚is the input mechanical Power and 𝑃𝑒 is the Output Electrical 

Power. Thus, for small disturbance of the rotor angle ∆𝛿 (1) becomes. 

𝑀
𝑑2∆𝛿

𝑑𝑡2 = ∆𝑃𝑚 − ∆𝑃𝑒   (2) 

Where the mechanical power of the generator is assumed to be constant then ∆𝑃𝑚 = 0 

therefore (2) becomes: 

𝑀
𝑑2∆𝛿

𝑑𝑡2 = ∆𝑃𝑒    (3) 

This can be rewritten as; 

𝑀
𝑑2∆𝛿

𝑑𝑡2 =
1

𝑀
𝜕𝑃𝑒∆𝜕 =

𝐾𝑠

𝑀
∆𝜕  (4) 

Where 𝑘𝑠 = Synchronizing power coefficient  

Thus, 
𝑑2∆𝛿

𝑑𝑡2 =
𝐾𝑠

𝑀
: ∆𝜕 = 0   (5) 

Further solution to the differential equation provided two roots: 

𝜆1𝜆2 = ±√
𝐾𝑠

𝑀
    (6) 

the synchronizing torque given as 𝐾𝑠 

If it is positive, then the system will oscillate with imaginary roots. 

𝜆1𝜆2 = ±𝑗𝑤    (7) 
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Where 𝐾𝑠 is the synchronizing angular acceleration and attain stability at a different rotor angle. On the other 

hand, if the synchronizing torque𝐾𝑠 is negative, then the roots are real which characterizes the system to be 

unstable. 

Per-Kilometre Active Resistance (R) 

  (8) 

  = Where is the design resistivity of the conductor (Q,m)  

A = A is the cross-sectional area of conductor (m2)  

Per-Kilometre Inductive Reactance (Non-stranded conductor) 

 (9) 

Where r is the conductor radius 

DGMDis the geometric mean distance between phase conductors. 

Per-Kilometre Capacitive Susceptance bo 

 (10) 

 

 

Geometric Mean Distance 

For a single Circuit 

        (11) 

Where D is the spacing between the conductors. 

For overhead conductors arranged horizontally 

      

         (12) 

         = 1.26D 

Percentage Load analysis on Feeder 

% Loading of feeder =  (13) 

It can also be given as 

% Loading of Feeder = (14) 

Where Active Power (PD) on feeder =  (15) 

Complex Load on Distribution Transformers 

Complex load demand =Transformer Capacity × Percentage Loading on transformer  
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Where percentage loading on transformer =     (16) 

Voltage Drop (VD)given as: 

    (17) 

Where = Sending end Voltage 

Vr = Receiving end Voltage 

And     (18) 

Thus,   (19) 

Where   I = Average Current on Feeder  = Impedance of feeder 

Therefore, percentage voltage drop =     (20) 

Transformer Tap Changing 

The principle of regulating the secondary voltage is based on changing, the number of turns on the primary or 

secondary in changing the transformation ratio are presented as, 

    (21) 

   (22) 

Where  K : transformation ratio 

: primary voltage  

: secondary voltage 

Decrease in primary turns causes increase in emf per turn, and so in secondary output voltage. Secondary output 

voltage can also be increased by increasing secondary turns and keeping primary turns fixed. 

Shunt Capacitors for Compensation 

Shunt capacitors are installed near load terminals to provide leading Volt-Ampere-Reactive (VAR) and thus to 

reduce the line current. Hence, by using shunt capacitors, line drop is reduced, and voltage profile is improved. 

Shunt capacitors are switched in when capacity demand on the distribution system rises and voltage of the buses 

drop. 

Assume a load is supplied with a real power P, lagging reactive Power, Qi and apparent power, Si at a lagging 

power factor. 

Thus, 

        (23)  
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When a Shunt Capacitor of Qc KVar is installed at the load, the apparent power can be reduced from S
1
 to S

2
. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pythagoras theorem for capacitor compensation (capacitor bank) 

  (24) 

Similarly, 

 (25) 

Since current is directly proportional to power, (i.e. ), automatically, reduction in the apparent power 

leads to reduced current flow. In turn line drop is reduced and voltage profile improved. 

Power Factor Correction 

If P is the real power supplied, Q is the lagging reactive power and S is the apparent power at alagging power 

factor. Then     (26) 

and  

   (27) 

When a shunt capacitor supplying reactive power of Qcis applied, the new reactive power Q2of the system will 

be 

Q
2
, = Q

1
 - Qc.    (28) 

Hence, power factor becomes. 

    (29) 

and 

  (30) 
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Objective Function of Optimal Capacitor Placement (OCP) 

The objective of OCP is to minimize the cost of the system. This cost is measured in four ways: 

(i)  Fixed capacitor installation cost 

(ii) Capacitor purchase cost 

(iii) Capacitor bank operating cost (maintenance and depreciation) 

(iv) Cost of real power losses. 

Mathematically, cost can be represented as: 

Min objective function  

(31) 

Where   :Number of bus candidates 

:0/1, 0 means no capacitor installed at bus i 

: Installation cost 

: Per Kvar cost of capacitor banks. 

: Capacitor bank size in Kvar 

Bi: Number of capacitor banks 

: Operating cost per bank, per year 

T: Planning period (years) 

: Cost of each KWh loss, in $/KWh 

l: Load levels, maximum, average and minimum 

: Time duration, in hours, of load level  

; Total system loss at load level  

 

Arithmetic Moving Average Technique 

Arithmetic moving average (also known as a simple moving average, SMA) commonly used as statistical 

calculation in time series analysis and forecasting). It is computed by taking the average of a series of data 

points within a specific period. The formula for calculation of SMA are defined, the parameter definition is 

stated as. 

𝑆𝑀𝐴 =  
𝑋1+ 𝑋2+⋯+ 𝑋𝑛

𝑛
   (32) 

Where, 

SMA: the simple moving average. 

X
1
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, ….X

n
 are the data points within the chosen period. 

n: the number of data points in the period  
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ARIMA (Auto Regressive Integrated Moving Average): 

ARIMA is a complex time series forecasting model that combines autoregressive (AR) and moving average 

(MA) components with differencing to make the data stationary. The ARIMA model is represented as: ARIMA 

(p, d, q) where: 

P: the order of the autoregressive components. 

d: the degree of differencing (the number of times differencing is applied to make the data stationary) 

q the order of the moving average components. 

The governing equations for ARIMA involves the following steps: 

(i). Differencing: make the time series data stationary by differencing it times until it becomes stationary.  

The difference series is denoted as Yt. 

(ii). Auto-regression (AR) components: Fit an autoregressive model of order p to the differences data Yt. 

This involves estimating coefficients for lagging values of Yt and expressing Yt as a function of its past values. 

 (33) 

Where; 

 ,  ….. are the autoregressive coefficient, and ,  is the noise or error term. 

Moving Average (MA) Components  

In computing moving average model of order q to account for the lagged forecast errors ( ).  

That is, 

 (34) 

Where; 

 ,  ….., are the moving average coefficient.  

Forecasting: The ARIMA model is fitted using the forecasting future values of the time series.  

ARIMA – model is widely used in time series analysis and forecasting, especially for data with trends and 

seasonally. The choice of p, d, and q values depends on the specific characteristics of the data and requires 

model selection technique. 

The governing equation for the simple –moving average (SMA) are provided,that is SMA is calculated by 

summing up a set of data points and divide by the number of data points in the period thereby providing a 

moving average value that smooths out fluctuations in the data over that period.  

Moving average method, consists of measurement of trend by “smoothing out’ fluctuations of data by means of 

moving average. Moving average technique can consider the extent (or periods) when m is a series of successive 

average (arithmetic means) of m terms at a timewhile starting from 1st, 2nd, 3rd term etc. The first average is the 

mean of the 1st, m terms, and grid is the mean of the m term from 2ndto (m+1)th terms, the third is the mean of 

the m terms from 3rd to (m+2)th term, and so on. 

 

Choice of Simple Moving Average for Forecasting 

Simple Moving Average (SMA) as a method for statistical prediction is simple and easy to understand and made 

use of just as the name implies, providing smoothing effect, reducing noise, and highlighting trends. It is less 

sensitive to outliers compared to other methods as well as its flexibility that allows the choosing of the window 

size for the analysis (Vaidya, 2020). 
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Exponential Smoothing 

Exponential Smoothing though provides more weight to recent observations, capturing changes more quickly, it 

has the disadvantages of not performing well with data containing long-term trends and requires tuning of 

smoothing parameters which can be subjective. 

Auto Regressive Integrated Moving Average (ARIMA) 

In the case of ARIMA which captures complex patterns and long-term trends in data, it requires stationarity of 

the data under investigation which may not necessitate differencing. Parameter estimation and model selection 

can be challenging (Hayes & Munichiello, 2021). 

Based on the comparison of the different forecasting methods as stated above, Simple Moving Average (SMA) 

is preferred to the other methods for the prediction of the expected voltage collapse on the 330kV network. 

Although ARIMA offer a greater flexibility and predictive power, SMA stands out for its simplicity, robustness, 

and ease of interpretation. SMA provides a basic yet effective approach for smoothing out noise in the data and 

capturing underlying trends, making it particularly suitable for applications where a quick and straightforward 

forecasting method is needed. Additionally, SMA can serve as a useful baseline for comparison with more 

complex methods, allowing for a better understanding of the data and the performance of alternative forecasting 

approaches. Therefore, for forecasting the number of collapses over the next 10 years, thereby justifying its 

balance of simplicity, interpretability, and reliability. 

 

Application Approach to Simple Moving Average, SMA Technique 

Many types of data smoothing method are normally applied or in use, but the commonest type is the simple 

moving average, SMA and is computed as; 

    (35) 

Where; 

  

i: point location of the estimated moving average value usually placed with respect to j 

j: point location of the observed time series data, and  

m: length of the smoothing interval or number of points over which the average is computed.  

Alternatively, a simple moving average of order m is given by the sequence of arithmetic means as; 

(36) 

The sum in the numerators of (3.169) are called totals of order m. while (3.168 and 3.169) defines an interval 

centered around the point to be estimated. If m is an odd number, then the “estimated” must corresponds 

with the central point. If m is even, a set of value y will be estimated that will be mid-way between adjacent 

observations. However, the smoothing interval extends  observations on either side of the estimated 

point, observations near the beginning and the end of the sequence cannot be estimated if m is three (3), that is 

the sequence (smoothed data) by two (one at both ends of data) are noted strongly. 

Essentially, when data are given annually, monthly, or hourly, a moving average of order m is considered for 

analysis which is called an m-year moving average or m-hours moving average.  

For example, data collected due to lightening surges on transmission voltage collapse history are generated as; 

8, 24, 4, 20, 12, 28, 8 requested to determine the sequence of moving average. 

Applying the simple moving average technique (SMA), following the sets of data as; 8, 24, 4, 20,12, 28, 8 for a 

3- yearly moving average 
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giving the arithmetic value as 12, 16, 12, 20, 16 respectively (that is taking m = 

3 moving average order). 

 

 

The point location for the 1st computed moving average will take a 2nd position with respect to those of the 

observed data set when m = 3, i isassumed value from 2 to 6. 

For  

 

 

 

 

Composite Line Graph for Voltage Collapse Prediction 

The composite bar chart presented in this analysis illustrates the annual voltage collapse within the 

330kV network, alongside the 3 and 5 yearly moving average trends. These visual representations serves as vital 

tools in assessing the stability and performance of the network, offering insights into voltage fluctuations over 

time. By examining these trends, stakeholders can gain valuable insights into the network’s resilience and 

identify potential areas for improvement. 

 

Figure 3: Composite Bar Chart of Actual Annual Voltage Collapse, 3 and 5 yearly Moving Average 

Trend for 330kv Network Assessment 

 

Figure 3 presents a visual representation in the form of a composite bar chart. This chart serves as a 

valuable tool for conducting an annual analysis of voltage collapse occurrences. Within this analysis, two 

distinct moving average techniques are employed: a three-year moving average and a five-year moving average. 

The primary objective is to assess the performance of the 330kV networks for accurately predicting the annual 

number of voltage collapses. 
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The dataset utilized in this analysis comprises twenty-one historical records, meticulously documenting 

actual instances of voltage collapses. These records span a comprehensive period from 2000 to 2021, provided a 

substantial overview of voltage stability within the studied network. The recorded number of voltage collapses 

for each year, arranged chronologically, is as follows: 5, 14, 9, 14, 22, 21, 20, 18, 26, 19, 22, 13, 16, 22, 9, 6, 22, 

9, 6, 22, 12, 12, 13, and 3. 

Through a thorough examination of this dataset and the application of arithmetic moving average 

techniques, our objective is to delve deeper into the underlying trends and variability of voltage collapse 

occurrences across the analyzed time frame. This analytical endeavour serves as an indispensable tool in 

evaluating the reliability and performance of the 330kV networks concerning voltage stability and system 

resilience, offering valuable insights into the dynamics of power system operation and management. 

Table1: Analysis Data for Actual/Annual Voltage Collapse for 3 and 5 Yearly Moving Average 

Assessment for Data Plots 

Year 3-Yearly Moving 

Average 

5-Yearly Moving 

Average 

2000 0 0 

2001 0 0 

2002 9.3 12.8 

2003 12.3 16 

2004 15 17.2 

2005 19 19 

2006 21 21.4 

2007 19.7 20.8 

2008 21.3 21 

2009 21 19.6 

2010 22.3 19.2 

2011 18 18.4 

2012 17 16.4 

2013 15.7 12 

2014 12.3 15 

2015 12.3 14.2 

2016 13.3 12.2 

2017 15.3 13 

2018 12.3 12.4 

2019 9.3 0 

2020 0 0 

 

Voltage collapse is a critical phenomenon in power system operation, representing a significant risk to 

grid stability and reliability. In this analysis, we delve into the assessment of actual annual voltage collapse 

occurrences, alongside the examination of 3 and 5 yearly moving average trends, specifically within the context 

of a 330kV network. 

Understanding the dynamics of voltage collapse is paramount for ensuring the robustness and resilience 

of electrical grids, especially in high-voltage networks where the stakes are particularly high. By analyzing 

historical data on actual voltage collapse events and observing longer-term trends through moving averages, we 

aim to provide insights into the stability performance of the 330kV network.This analysis will not only serves to 

quantify the frequency and severity of voltage collapse incidents but also seeks to identify underlying patterns 

and trends that may indicate vulnerabilities or areas for improvement within the network infrastructure. By 

examining both short-term variations and longer-term trends, we gain a comprehensive understanding of voltage 

stability dynamics, enabling us to make informed decisions to enhance grid resilience and reliability.Through 

this assessment, we aim to provide stakeholders with valuable insights and recommendations for optimizing 
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voltage stability within the 330kV network, ultimately contributing to the continuous improvement of grid 

performance and the mitigation of potential risks associated with voltage collapse. 

 

Figure 4: Composite Line Graph of Actual Annual Voltage Collapse, 3 and 5 Yearly Moving Average 

Trend for 330kv Network Assessment 

In Figure 4 a composite line graph is depicted, offering a comprehensive illustration of annual voltage 

collapse occurrences. The graph also showcases the trends discerned through the application of both three-year 

and five-year moving averages. This analytical approach is instrumental in evaluating the performance of the 

330kV network over time. By scrutinizing data from 2000 to 2021, this analysis aims to track the expected 

number of voltage collapses, enabling a thorough examination of historical trends. Moreover, it serves as a 

pivotal resource for informing future planning considerations related to voltage stability within the network, 

ensuring proactive measures are taken to enhance system resilience and reliability. 

"Figure 5 presents a graphical representation of a composite bar chart utilized in the annual voltage 

collapse analysis of 330kV networks.  

 

Figure 5:  Composite Bar Chart of Actual Annual Voltage Collapse, 3 and 5 yearly Moving Average 

Trend for Collapse Prediction on the 330kv Network. 

 

The technique employs both three-year and five-year arithmetic moving averages to assess the 

prediction of voltage collapses over the course of each year. By examining the number of voltage collapses 

annually, this analysis offers valuable insights into the stability and reliability of the network infrastructure. 

Through the visual representation provided in Figure 5, trends and patterns in voltage collapses can be 

effectively observed, aiding in the development of proactive measures to enhance network performance and 

mitigate potential disruptions." 

 

Figure 6: Composite line Graph for Actual Annual Voltage Collapse, 3 and 5 yearly Moving Average 

Trend for 330kv Network Assessment 
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Figure 6 shows graphical representation of composite chart for annual voltage collapse analysis using 

three (3) and five (5) yearly arithmetic moving average for the assessment of 330kv networks prediction for 

number of voltages collapses annually. Twenty-one (21) historically data set were obtained as actual voltage 

collapse record which are: (5, 14, 9, 14, 22, 21, 20, 18, 26, 19, 22, 13, 16, 22, 9, 6, 22, 9, 6, 22, 12, 12, 13 and 3) 

from the year (2000-2021). The arithmetic moving average technique was used to determine number of voltage 

collapse while historical prediction of voltage collapse for previous occurrence are determined for future 

projection to secure system planning, system security for reliable power supply. Prediction of the expected 

number of voltage collapse using three (3) and five (5) yearly moving average are used to predicts the voltage 

collapse given as; (12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, and 10) for three (3) and (11.1, 11.4, 11.2, 11, 10.8, 

10.6, 10.4, 10.2 and 10) for five (5) respectively from (2021-2032) projection. The results evidently shows that 

the highest number of expected numbers of voltage collapse was 12 using three (3) yearly moving average 

which evidently fall within the year 2021, 2022 and 2023 respectively. Then followed by subsequent year 2024, 

2025, 2026, 2027, 2028 with 11 expected number of voltage collapses, and gradually becomes lowest in the year 

2029-2032 with total expectation number of voltage collapse to be 10 while five years moving average 

techniques captured 11 number of voltage collapse for the year 2021-2024, 10 number of voltage collapse for 

the year 2025-2029. 

Table 2:  Projection for Actual/Annual Voltage Collapse using 3 and 5 Yearly Moving Average 

Assessment for Data 2021 - 2032 

Year 
Actual, Ann 

voltage collapse 

3-Moving 

average 

5-Moving 

average 

2021 12 12 11.6 

2022 12 11.6 11.4 

2023 12 11.3 11.2 

2024 11 11 11 

2025 11 11 10.8 

2026 11 11 10.6 

2027 11 10.66 10.4 

2028 11 10.3 10.2 

2029 10 10 10 

2030 10 10 

 2031 10 10 

 2032 10     

 

Conclusion 

The Nigerian power network comprises of limited number of generating stations, predominantly 

situated in remote areas near raw fuel sources. These stations are often linked to the load centers by extensive 

transmission lines. Generation, transmission, distribution, and marketing of electricity in Nigeria are statutory 

functions handled by the electricity utilities, notably the Power Holding Company of Nigeria, among others. 

Currently, the installed generating capacity stands at approximately 12,522MW, with a maximum 

dispatch capacity of about 4000MW, serving a population exceeding more than 200 million people, this 

represents gross inadequacy in meeting the demand for electric power supply to the consumers at receiving end. 

Therefore, there is, an urgent needs to augment current projected capacity of electricity supply to alleviate 

system overloads and prevent network collapses from occurring regularly. 

Voltage stability is imperative for optimal system performance. Variations in load demand can also 

trigger system overloads or disturbances that may lead to total outages or blackouts. Therefore, reliable power 

supply is crucial to enhance daily utility from the system buses. 

In this regard, historical data on voltage collapse incidents have been gathered to assess network 

behavior. The study adopted the three-year and five-year moving average techniques to analyze the annual 

number of voltage collapses between 2000-2021 to 2021-2032. The predictive models actually shows the 
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highest number of expected voltage collapses to be 12, occurring in the years 2021, 2022, and 2023, followed by 

11 collapses expected between 2024-2028, and 10 collapses predicted between 2029-2032. 

Recommendation   

From the results obtained in this study under investigation, the following research recommendation are 

considered in order to further improve sustainability and reliability operation of the Nigeria network as: 

(i) Integration of grid decentralization strategy into geopolitical zones to alleviate system overload.  

(ii) Incorporation of artificial neutral network Algorith Architecture (ANN) into grid network to measure 

and evaluate system parameters correlation, performance, validation to avoid system mismatches. 

(iii) Advanced predictive optimizer indices (NLSI, LMN, FVSI) software to be included in order to assess 

system loadability limits for maximum power transfer capability. 

(iv) Penetration of high-profile power electronic controller static var placement to enhance production of 

active power needed for active power delivery to the load.  

(v) The formulated mathematical framework of active and reactive power injection should be included as a 

“Test-bench” to evaluate and assess maximum loadability limit exhaustion to avoid system collapse.  

(vi) Consideration of power controller for system improvement particularly for: 

 Installing Flexible Alternating Currents Devices (FACTS)\ 

 Integration of Distributed Generation (DG) 

 Provision of transformer tap changing techniques. 
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