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ABSTRACT :Recently, there has been increasing demand and interest in 3D food printing for manufacturing 

alternative foods and nanofoods, predicting the printability of food-grade materials as alternative foods based 

on their biopolymer composition and rheological properties is an important task. This study developed two 

imagery-based printability assessment metrics: printed filaments’ width and roughness and used these metrics 

to evaluate the printability of Aloe gel-based food inks using response surface methodology (RSM) with 

regression analysis and machine learning. Aloe gel polysaccharide-based 3D food printing ink is formulated to 

successfully dispense with Print2taste Mycusini inkjet printers. The polymer ink was then sprayed onto 

amorphous cellulose powder to observe the powder-binder interaction. Material combinations and parameters 

were optimized to create a cohesive geometry. Here, the rheological and compositional properties of alternative 

food-grade inks prepared using Aloe gel pectin (AGP) and Aloe gel cellulose nanoparticle (AGCN) with 

different ionic cross-linking densities were used as predictors of printability. RSM and linear regression showed 

good predictability for rheological properties based on formulation parameters, but were unable to predict 

printability indices. For the machine learning-based prediction model, printability metrics were binarized to 

pre-specified thresholds and a random forest classifier was trained to predict the overall printability of the ink 

as well as the filament width and roughness labels using equations and rheological parameters. Models trained 

solely with rheological measurements without including formal parameters were able to achieve high prediction 

accuracy. The printability of the developed Aloe gel polysaccharide ink was found to be predictable at 82% for 

width and roughness labels and 88% for overall printability labels. This study allows the model to be 

generalized to 3D food printing inks of various compositions and is promising when exploring the use of these 

materials in 3D food printing binder spray additive manufacturing technologies such as alternative foods and 

nanofoods. 

KEYWORDS 3D Food Printing,Alternative Foods, Nanofoods, Aloe Gel-based Food Inks, Aloe Gel 

Polysaccharide, Aloe Gel Pectin (AGP), Aloe Gel Cellulose Nanoparticle (AGCN),AILearning; Printability, 

Rheological Measurements. 
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I. INTRODUCTION 

3D food printing is an emerging concept for precision modular food manufacturing to address the need 

to customize food according to individual preferences and nutritional requirements [1]. Among the various 3D 

food printing technologies studied for food applications, extrusion-based 3D food printing is the most widely 

used technology [2, 3, 18]. This technique has the versatility to 3D print different types of food materials, such 

as bottom-up process of nanofoods and nutrient delivery systems [19, 20], hot-melt extrusion of chocolate [4], 

room-temperature extrusion of dough, frosting, and Nutella etc. [5, 6], as well as extrusion of food hydrocolloids 

[7, 8]. Food-grade hydrocolloid agents, such as various polysaccharides, can either be crosslinked to form gels 

via chemical modification [9] or ionic complexation [10], or added as thickening agents to modify food 
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properties [11].Previous studies have demonstrated the potential of developing 3D food printed structures using 

hydrogels composed of starch [13], agar [8], alginate [12], pectin [13] or other polysaccharide-based 3D food 

printing inks [14, 21]. However, achieving optimal compositions for a reproducible and high-resolution printing 

remains a significant challenge. The challenges result from the lack of comprehensive understanding of a 

relationship between formulation parameters, rheological properties, and printability features.As a result, 

previous studies have used empirical approaches to explore 3D food printing ink formulations and their 

application to print diverse structures [16, 18-21, 22]. The trial-and-error procedure for formulation optimization 

of food inks is time consuming and often only applicable to a specific ink composition, limiting the applications 

of 3D printing in food systems. 

Hydrogels qualified as good3D food printing inks should have two basic characteristics: extrudability 

and post-printing stackability [23]. Rheology is a common characterization for hydrogel-based 3D printing inks 

and has been reported in most of the ink development studies. A few studies have evaluated the relationship 

between formulation parameters and rheological measurements of 3D food printing inks [10, 17, 24]. The 

results of these studies illustrate that the rheological properties of hydrogels largely depend on the chemical 

nature and concentration of the polymers, gelling mechanisms, and the extent of crosslinking within the polymer 

networks. However, most of the studies used subjective evaluation to assess the printability of 3D food printing 

inks through experimental observations [5, 6, 24, 25, 26].The lack of quantitative criteria for printability 

assessment prevents the development of predictive relationships between 3D food printing inks’ properties and 

printability. Conventionally, printability of inks is assessed by shape fidelity, i.e. the extent of spreading and 

fusion of the printed filaments, measured either manually [26]or through image analysis [23, 27, 28]. However, 

not many studies have focused on assessing the smoothness of 3D food printing ink deposition except visual 

inspection during printing. 

This study developed two printability assessment metrics: printed filaments’ width and roughness and 

used these metrices to evaluate the printability of polysaccharide-based 3D food printing inks using machine 

learning and response surface methodology (RSM) with regression. Aloe gel pectin (AGP) and Aloe gel 

cellulose nanoparticle (AGCN) were selected to formulate the polysaccharide-based 3D food printing inks with 

ionic crosslinking. Pectin and cellulose are the major constituents of plant cell wall [29] and the developed 3D 

food printing inks could be used to print plant-based food simulants. Pectin is a family of heterogeneous 

polysaccharides rich in galacturonic acid, a proportion of which could be methyl esterified. AGP has a low 

degree of methoxylation and AGP gels are generally formed through electrostatic complexation with cations 

such as Ca
2+

. The polymeric network generated by crosslinking of AGP with calcium ions is responsible for 

maintaining the 3D structure of the 3D food printing ink hydrogels formulated in the current study. AGCN was 

incorporated into the gels as a minor component to modify the mechanical properties of the 3D food printing 

inks [19-21, 30, 31]. 3D food printing inks with different concentrations of AGP, AGCN and CaCl2 were 

formulated and characterized for their rheological properties.The formulated inks were printed using an 

extrusion-based 3D printer and quantitative metrics were established to assess the inks’ printability. Response 

surface methodology (RSM) was used to investigate the relationship between the ink compositions and 

rheological properties and printability metrics. A few studies in tissue engineering utilized RSM [25, 32]or AI 

machine learning techniques [33] to model the relationship between 3D printing parameters and printability, but 

were limited to a single ink composition variable and did not incorporate rheological measurements in the 

models. Complementary to RSM and regression analysis, AI machine learning approach using random forest 

models were trained to predict the printability from inks’ compositions and rheological measurements. 

In our previous research, we designed the 3D printing process for NDS(Nutritional Delivery System) 

and nanofoods as shown in Fig. 1 and manufactured alternative foods through sequential layering and spraying 

processes[15, 18-21].Therefore, in this study we built a predictive model that 3D food printing links the 

composition and rheological properties of the ink to carefully defined printability metrics. This allows 3D food 

printing ink formulation optimization to be performed more efficiently compared to heuristic approaches. The 

development of these predictive relationships could help evaluate both the quality of 3D food printing structures 

and the transformation of these 3D food printing inks to produce alternative and functional foods, such as NDS 

and nanofoods, with tailored sensory and nutritional profiles. 

 

II. RESEARCH METHODS 

A. Materials and 3D Printing Food Ink Preparation  

Super Green Vera Aloe Gel Powder
TM

, provided by KimJungMoon Aloe (Jeju, Korea), was used as the 

source of Aloe gel pectin (AGP). As specified by the supplier, the product contains 86.3 wt% of AGP-KJM 

(degree of esterification 7%) and 13.7 wt% added dextrose. Aloe gel cellulose nanoparticle (AGCN) was 

purchased from KJMbio Lab (Seoul, Korea), with width: 5–20 nm and length: 100–250 nm. Calcium chloride 

and sodium tetraborate decahydrate were purchased from Sigma-Aldrich (St. Louis, USA). Sulfamic acid was 

purchased from EMD Millipore Corporation (Billerica, USA). Sulfuric acid and sodium hydroxide were 
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purchased from Fisher Scientific (Pittsburg, USA). 3-phenylphenol (m-hydroxydiphenyl) was purchased from 

Spectrum Chemical Mfg. Corp. (New Brunswick, USA). Ultrapure water (18 MΩ cm) was obtained using the in 

lab Milli-Q RG water ultra-purification system from EMD Millipore (Billerica, USA).  

The 3D food printing inks were formulated as hydrogels composed of different concentrations of AGP, 

AGCN, and CaCl2. Total polysaccharide (Uni-pectine
TM

(g) / Uni-pectine
TM

(g) in regression models), and 

calcium crosslinking density (R) were the three formulation parameters used in the experimental design, as 

summarized in Table 1.The crosslink density was defined as the stoichiometric ratio between the molarity of 

Ca
2+

 and that of COO
–
 (R = 2[Ca

2+
]/[COO

–
]). The molarity of COO

–
was calculated as [COO

−
]= [uronic acid]

*
(1 

-degreeofmethoxylation). The Uni-pectin
TM

contained 1.92 mmol galacturonic acid equivalence per gram, 

measured using a colorimetric assay, as described in previous studies [34, 35]. For each 3D food printing ink 

formula, CaCl2 solution with different concentrations were prepared based on the specified Uni-pectine
TM

 

concentration, crosslinking density (R), and the measured total uronic acid content. 

 

Table 1. 3D food printing ink formulation parameters used in the Box-Behnken design 

Formulation parameters Low Medium High 

Total polysaccharide 3 % 4.5 % 6 % 

Uni-pectin : AGCN 6 : 4 8 : 2 10 : 0 

R = 2*[Ca
2+

]/[COO
–
] 0.35 0.45 0.55 

The Uni-pectine
TM

 solution (referred to as pectin solution hereafter) with concentrations levels of 4.29, 

6.43, 8.57 wt% were prepared by dissolving the pectin powder in 80 
◦
C water and heated for 10 min, then 

continuous stirring for 2 h while cooling to ensure fully hydration. AGCN was adjusted to 3, 4.5, and 6 wt% 

respectively. The prepared pectin solution and CaCl2 solution were separately loaded into two syringes, 

connected with a Luer-lock connector, and mixed at a volumetric ratio of 7 to 3 to form gels with different 

strength as determined by the pectin concentration and crosslinking density. The resulting pectin gel was then 

mixed thoroughly with AGCN of the corresponding concentration at different ratios as specified in the 

experiment design. Bubble generation was avoided at best during mixing. The final food inks were stored at 4 
◦
 

C and used for 3D printing and rheological measurements between 12 and 48 h after preparation. 

B. Rheological Measurements  

The developed 3D printing food inks are non-Newtonian hydrogels whose rheological properties 

largely affected their behavior before, during and after 3D printing. To investigate the effect of the three 

formulation parameters on the food inks, three rheological tests were performed: (1) steadystate flow test; (2) 

dynamic viscoelastic properties test; and (3) recovery test. The rheological measurements were conducted using 

an MCR 302 stress-controlled rheometer (Anton-Paar, Austria) equipped with a 25 mm parallel plate and a 0.55 

mm measurement gap, at 25 ± 0.1 
◦
C. 

B-1. Steady-State Flow Test 

The shear thinning property of food inks was evaluated using a steady-state flow test. Shear stress was 

recorded while changing the shear rate in the range of 0.1 s
−1

 to 100 s
−1

. The results were then fitted using the 

Herschel-Bulkley equation: 

 

τ = τ0 + kγ
˙n

 

 
where τ is the shear stress, γ˙ the shear rate, k the consistency index, and n the flow index. Fluids with 

n< 1 are shear-thinning, with n greater than 1 are shear-thickening, and n = 1 indicating Newtonian flow 

behavior. 

B-2. Dynamic Viscoelastic Properties Test 

Storage modulus (G’) and loss modulus (G”) as a function of increasing strain (γ0) and angular 

frequency (ω) was measured for all 3D food printing inks. Amplitude sweeps were performed in the range of 

0.01 to 100% strain atω = 1 rads/s (0.16 Hz) to determine the linear viscoelastic region. The upper limit of the 

linear viscoelastic region, referred to as the linearity limit, was the strain above which the hydrogel collapsed 
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and the storage modulus dropped to 95% of the plateau value at low strain amplitudes. The shear stress at the 

linearity limit was the yield stress (τy). The shear stress at the crossover between G’ and G” curves was defined 

as the flow stress (τf). The region between τy and τf could be considered as the transition region of the hydrogel 

from an elastic solid to a viscous liquid. A flow transition index (τf / τy) was defined to indicate the width of this 

range. Frequency sweeps were performed from 0.06 to 100 rad/s at 1% strain (within the linear viscoelastic 

region for all 3D food printing inks) to determine the frequency dependency of G’ and G”, and the phase angle 

δ. Loss factor tan(δ) = G”/G’ was calculated at 0.1 rad/s, as an indicator of the gelation state of a hydrogel, 

where lower valuesand more elastic gels suggested highly crosslinked [32]. 

B-3. Recovery Test 

The thixotropic properties and recoverability of the 3D food printing inks were evaluated in a threestep 

recovery test. The viscosity of hydrogels was measured as the shear rate underwent a threestep change: 0.1 s
−
 1 

for 60 s (step 1), 600 s
−1

 for 10 s (step 2), and again 0.1 s
−
 1 for 60 s (step 3). The three steps simulated a low-

high-low shear rate change similar to the shear rate experience by the 3D food printing ink before, during, and 

after the extrusion step during 3D printing. A recovery index was calculated as the ratio between the mean 

viscosity during step 3 to that during step 1. 

 

C. 3D Food Printing and Printability Assessment 

In this study, the 3D food printing inks were printed using a Print2taste Mycusini inkjet printer 

(Mycusini Inc., Germany). 25-gauge nozzles (i.d. 0.26 mm) were used for printing. Extrusion pressure, layer 

height, nozzle moving velocity, and the printing pattern were manipulated using the Allevi online software. The 

printer settings were tuned for each 3D foodprinting ink. The optimal pressure was the minimum pressure 

needed to extrude a continuous filament with relatively uniform diameter. The layer height and nozzle moving 

velocity were adjusted so that the printed filament could be continuously deposited on a glass slide. 

To assess the printability of the 3D food printing inks, the printed filaments were imaged using an 

optical microscope (Olympus IX71) with a 4x magnification objective lens. Two measurements were used as 

the criteria for printability assessment: filament width and roughness.Fig. 1 showed a schematic diagram of how 

these two measurements were extracted from the bright field images of printed filaments. The images were first 

rotated so that all the filaments in the images aligned along the X direction (horizontally), then thresholder and 

binarized to detect the edges of the filaments. The centerline of a filament was generated by connecting the 

midpoints of the vertical segments between the upper and lower edges. Then linear trendlines were fitted to the 

upper edge, the center line, and the lower edge, respectively. At 10 equally spaced points along the center 

trendline, perpendicular segments were drawn until they intersected with the upper and lower edges. Filament 

width was calculated as the average length of these 10 segments. A relative width was calculated as: 
 

Fig.1. Schematic diagram of measuring the printed filament width and roughness through image analysis 

 

Relativewidth = measuredwidth – targetwidth / targetwidth(2) 

 

The where the target width was the inner diameter of the nozzle: 260μ m. Roughness of printed 

filaments was calculated according to Equation (3). Filament roughness was defined as the mean squared error 

between the y coordinates of detected edges and those of their corresponding fitted trendlines, then averaged for 

upper and lower edges: 
 

Roughness =1/2 ∑
(2/l=1)

 - 1/n ∑
(n/i=1)

 (yi
edgel

– yi
 trendline1

)
2
(3) 

(xi
edgel

 – yi
edgel

)
2
are coordinates of points on the upper edge of the filament when l = 1 and the lower 

edge when l = 2.(xi
 trendline1

– yi
 trendline1

)
2
are coordinates on trend lines defined in the same way. n is the total 

number of pixels along the × direction. 5 images were taken at different locations on one printed filament, and 

both filament width and roughness measurements were averaged over the 5 images. The image analysis was 
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conducted in Python. Based on the relative width and roughness measurements, binary labels were generated for 

each of these two metrics with pre-specified thresholds. Moreover, as a final printability assessment combining 

both metrics, a binary ink quality label was generated:a good ink should be printed with high resolution (close to 

the target width) and smoothness (low roughness). The criteria for classification of the ink formulations and 

their corresponding labels for the three printability assessment metrics are presented in Table S1.5 mm
*
5 mm

*
5 

mm grid cubes and 8 mm
*
8 mm 3-layer grids, both with 1 mm line spacing were printed using different food 

inks for visual inspection. The optimized printing setting for each ink was used. The printed structures were 

inspected for defects such as line fusion, interrupted extrusion, shape deformation, etc. After printing, the 

printed objects were submerged in 90 mM CaCl2 solution for 10 min for post-printing crosslinking. 

D. Experimental Design and Model Construction 

A Box-Behnken experimental design was adopted using the 3 formulation parameters given in Table 1. 

This resulted in 15 inks with 13 different compositions (Table S2). Triplicates of the food inks were prepared 

independently for the rheological measurements, printability assessment, and 3D printing inspection. 

Pairwise Pearson’s correlation and principal component analysis (PCA) was conducted on all the 

rheological measurements: the flow index (n) from the fitted Herschel-Bulkley equation, storage and loss 

modulus (G’, G”), loss factor (tan(δ)), yield stress (τY), flow transition index, and recovery index. Four response 

variables (Y): the first two principal components of the rheology PCA model, together with the printability 

assessment measurements: filament width and roughness, were separately regressed on to the three formulation 

parameters (total polysaccharides: X1, pectin fraction: X2, crosslinking density: X3) and their two-way 

interaction terms: 

 

Y = β0 + β1 X1 + β2 X2 + β3 X3 + [β4 X1X2 + β5 X1X3 + β6 X2X3] + ∊(4) 

 

Given the normality assumption behind the p-value calculation of the regression coefficients, filament 

width and roughness were log transformed before fitting the regression models. Ordinary least square regression 

(OLS) with Akaike information criterion (AIC)-based stepwise model selection was used to determine which 

interaction terms to include in the regression model. 

To better predict the ink printability and explore the possibility of generalizing the model beyond 

current formulation parameters, random forest classification models were built to predict the width label and 

roughness label. Different feature sets composed of the 3D food printing inks’ rheological properties and/or the 

formulation parameters were constructed to train the classification model. Given the small sample size, stratified 

repeated 5-fold cross validation was used to train and test the models. Stratification based on the response labels 

guaranteed that the ratio between label classes was the same in the train and test set for every train-test split 

during cross validation. The cross-validation classification accuracy for each feature set and response variable 

were reported. To predict the binary 3D food printing ink quality label, both a direct and an indirect approach 

were taken. For a direct prediction, the binary quality label was predicted as the response variable in the same 

way using cross validation. The indirect approach combined the prediction results from the previously trained 

models on width label and roughness label to obtain a predicted binary quality label in the same way as the true 

binary quality label was generated. The regression analysis was conducted in R (version 4.1.3) and the random 

forest models were constructed using the scikit-learn library in Python (version 3.7.10). 

 

III. RESULTS 

A. Rheological Properties of LMP-CNC-CaCl23D Food PrintingInks 

Based on a Box-Behnken design, 13 different food ink formulations (Table S2) with three components: 

AGP, AGCN, and CaCl2 were developed. The ranges of total polysaccharides concentration and cross-linking 

density were chosen based on alginate or pectin-based bioink formulations reported in previous studies and 

preliminary experiments [32, 36]. These formulations were evaluated for rheological characteristics, including 

the shear-thinning, viscoelastic, and thixotropic properties of the hydrogel-based inks. 
A-1. Shear-Thinning Properties of 3D Food Printing Inks 

In the steady-state flow test, the viscosity of all the 3D food printing inks decreased with the increasing 

shear rate in the range from 0.1 s
−1

 to 100 s
−1

, indicating a shear thinning behavior. Fig. 2 demonstrates such a 

shear thinning behavior of three representative formulations. After fitting the shear stress (τ) vs. shear rate (γ˙) 

data to the Herschel-Bulkley equation (Equation (1) the flow index (n) of all samples were smaller than one 

(Table S3), confirming their pseudoplastic nature. 
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Fig. 2. Shear thinning property of three representative bioinks: 3% total polysaccharides/6-4 pectin-to-

AGCN ratio/R = 0.45 crosslinking density (4.5%/6-4/R = 0.35); 4.5%/8-2/R = 0.45; 6%/10-0/R = 0.45 

 
A-2. Viscoelastic Properties of 3D Food PrintingInks 

The evolution of storage (G’) and loss (G”) moduli of 3D food printing inks during the strain amplitude 

sweep are shown in Fig. 3. Storage and loss modulus indicate the elastic and viscous components of a material 

respectively. The linear viscoelastic region of the 3D food printing ink compositions was found below 10% 

strain amplitude, above which the gels collapsed and large reduction in G’ was observed. Above the linearity 

limit, G’ decreased monotonically, while G” increased first before it started to decrease. This phenomenon is 

described as the weak strain overshoot under large amplitude oscillatory shear (LAOS) (Hyunetal.,2002). Such a 

phenomenon was observed for all food inks except 3%_8-2_R = 0.35, which contained 3% total 

polysaccharides, 8-2 AGP-to-AGCNNC ratio, and crosslinking density of 0.35. Table S3 summarizes the yield 

stress and flow transition index of the 3D food printing inks developed in this study. Yield stress can be 

correlated with the amount of pressure needed to initiate the flow of gels during extrusion. The flow transition 

index reflects the brittleness of the hydrogels: the closer is the index to 1, the higher is the tendency of the 

hydrogel to brittle fracturing [37]. Higher total polysaccharides content, higher pectin fraction, and higher 

crosslinking density all led to a larger yield stress and a narrower flow transition region. 
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Fig. 3. Storage modulus G’ (solid line) and loss modulus G” (dashed line) vs. strain amplitude at ω = 1 

rad/s for 3D food printing inks composed of 3% (A1, B1) and 6% (A2, B2) total polysaccharides. Subplots 

A1 and A2 showed the effect of different pectin-to-AGCN ratio; subplots B1 and B2 showed the effect of 

different crosslinking density 

 

Fig. 4 shows the dependency of G’ and G” on the oscillation frequency for the same set of 3D food 

printing inks, in the range of 0.06 ~ 100 rad/s. In this range, G’ dominated G” and was relatively frequency-

independent for almost all the 3D food printing inks, indicating that the gels behaved like an elastic solid, which 

is common for a covalently cross-linked interwoven polymer network [38].As shown in Table S3, all the 3D 

food printing inks with crosslinking density R = 0.55 had loss factor smaller than 0.1, and all the ones with R = 

0.35 had loss factor greater than 0.1 or 0.2. Loss factor reflects the gelation state of hydrogels and small loss 

factor suggests the predominance of the elastic behavior in the material, due to a stronger and a more 

crosslinked gel [39]. 

 
A-3. Thixotropy of Food PrintingInks 

Thixotropy of 3D food printing inks was tested in a three-step recovery test. When experience a high 

shear rate, all 3D food printing inks showed a rapid decrease in viscosity as expected given their shear thinning 

nature. The ability of the material to recover and regain its initial viscosity after removal of the large shear rate 

suggested how likely the printed filaments would spread after printing, thus was regarded as an indicator of 

shape fidelity of the printed objects. Fig. 5 shows the viscosity change of the three representative 3D food 

printing inks during the three-step recovery test: 4.55/6-4/R = 0.35, 4.5%/8-2/0.45, and 6%/10-0/0.45. It could 

be observed that 3D food printing ink 4.5%/6-4/0.35 required a longer time to recover to an equilibrium 

viscosity after entering step 3, compared with the other two 3D food printing inks. Also, as shown in Table S3, 

among the three 3D food printing inks, 6%/10-0/0.45 had the highest recovery index, defined as the ratio 

between the mean viscosity during step 3 to that during step 1, followed by 4.5%/8-2/0.45, while 4.5%/6-4/0.35 

was the lowest. Inks with low recovery index and longer recovery time were more susceptible to spreading post 

printing, resulting in poor shape fidelity. 
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Fig. 4. Storage modulus G’ (solid line) and loss modulus G” (dashed line) vs. angular frequency at 1% 

strain amplitude for 3D food printing inks composed of 3% (A1, B1) and 6% (A2, B2) total 

polysaccharides. Subplots A1 and A2 showed the effect of different pectin-to-AGCN ratio; subplots B1 

and B2 showed the effect of different crosslinking density 

 

 
Fig. 5. Viscosity recovery of bioinks: 3% total polysaccharides/6–4 pectin-to-AGCN ratio/R = 0.45 

crosslinking density (4.5%/6–4/R = 0.35); 4.5%/8–2/R = 0.45; 6%/10–0/R = 0.45. The three-step recovery 

test measured viscosity of bioinks at 0.1, 600, and 0.1 s− 1 shear rate respectively to mimic the before, 

during, and after printing status 
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B. 3D Printing and Printability Characterization  

The 13 3D food printing ink formulations were printed into filaments using the printing parameters 

optimized for each ink, as specified in Table S4. All the 3D food printing inks were printed with the same 

nozzle moving speed (6 mm/s) but with different extrusion pressure and layer height (the distance in z direction 

that the nozzle moved up after printing each layer). The extrusion pressure was tuned to address variations in the 

rheological characteristics of the 3D food printing inks and the layer height was adjusted to account for the 

different degrees of expansion of the printed filaments upon extrusion. The printing parameters used for these 

inks generally were in range of 15 ~ 25 psi of pressure and 0.31 ~ 0.35 mm layer height (Table S4). During 

printing, it was observed that most of the inks were deposited with some lag time after the pressure was applied, 

due to their viscoelastic nature. Three ink formulations appeared to be very thin and experienced extensive 

spreading after deposition: 3%/6-4/R = 0.45, 3%/8-2/0.35, and .5%/6-4/0.35. The 3D food printing ink 

formulations with the following compositions 4.5%/10-0/0.55, 6%/10-0/0.45, 6%/8-2/0.55 formed strong gels 

that required very high pressure to overcome the initial yield stress to flow (Table S4). The deposition of these 

3D food printing inks was unsmooth and inconsistent, often resulting in broken filaments. Two of the 3D food 

printing inks with 3% total polysaccharides: 3%/10–0/0.45, 3%/8–2/0.55, although did not require high 

extrusion pressure, exhibited un-smoothness during printing. The rest of the 3D food printing inks could be 

successfully printed with a continuous deposition and good shape fidelity based on visual observation. Besides 

the visual inspection, the printed filaments were imaged under optical microscope and measured for filament 

width and roughness, as summarized in Table S3. Fig. 6 shows a scatterplot of filament roughness vs. relative 

width together with the thresholds selected to binarize these two metrics. The threshold levels were determined 

based on preliminary experiments (Table S1). Samples falling into each of the four width-roughness label 

combinations were color-coded and kernel density estimation plots were used to visualize the distribution of 

inks in each group based on the selected 3D food printing ink printability metrics. 

 

 

Fig. 6. Scatterplot of filament roughness vs. relative width, color-coded by the width-roughness 

combination label. The dashed lines indicated the thresholds used to binarize the two metrics. The kernel 

density estimation plots were used to visualize the distribution of 3D food printing inks in each group 

regarding the two metrics 
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To demonstrate the ability of the developed 3D food printing inks for high-resolution printing, three 3D 

food printing ink formulations with width-roughness label of 1-0, 0-0, and 0-1 respectively were selected for test 

printing of a 3D structure: 4.5% /6-4/R = 0.35, 4.5%/8-2/0.45, and 6%/10-0/0.45. With each 3D food printing 

ink, a 5
*
5

*
5 mm

3
 3D grid structure with 1 mm line space (Fig. 7 A-C) and an 8 mm

*
 8 mm 3-layer grid with 1 

mm spacing (Fig. 7 D-F) was printed. Both the 3D grid cubes and the 3-layer grid structures were submerged in 

90 mM CaCl2 solution after printing. The dimensions of the objects shown in Fig. 7 were smaller than the 

designed values due to shrinkage after crosslinking. Although the deposition of 3D food printing ink 4.5%/6-

4/0.35 was smooth and uniform, the 3D grid cube printed with this 3D food printing ink showed round edges 

and as more layers were deposited, the base of the cube partially collapsed under the influence of gravity, 

indicating low shape fidelity. Fig. 7 D-F are top views of the 3-layer grids printed with the three 3D food 

printing ink formulations, illustrating whether the filaments within a grid fused together when printed at a 1 mm 

line spacing. Based on the observations, we concluded that formulation 4.5%/6-4/0.35 was too thin to be 

suitable 3D food printing inks. On the contrary, formulation 6%/10-0/0.45 could not be deposited smoothly and 

intermittent breaking of filaments were observed during printing. As a result, the printed objects (Fig. 7 C, F) 

showed apparent defects. Formulation 4.5%/8-2/0.45 could be deposited regularly and uniformly, and the 

printed structures showed clean and sharp edges, the 1 mm line spacing was well-maintained as designed as 

well. Smooth deposition and high shape fidelity make this formulation a good candidate for 3D printing. 

 

 

Fig. 7. Representative samples of printed grid cubes (5
*
5

*
5 mm3 with 1 mm gap) (A, B, C) and 3-layer 

grids (8
*
8 mm

2
 with 1 mm gap) (D, E, F) using three food ink formulas: (A, D). 4.5% total 

polysaccharides/6-4 pectin-to-AGCN ratio/R = 0.35 crosslinking density (width-roughness label 1–0); (B, 

E) 4.5%/8–2/R = 0.45 (width-roughness label 0–0); (C, F) 6%/10–0/R = 0.45 (width-roughness label 0–1) 

C. Regression models of rheological properties and printability measurements on 3D food printing ink 

formulation parameters 

As shown in Fig. 8A, many of the rheological characteristics were significantly correlated. For 

example, the strong positive correlation among storage modulus, loss modulus, yield stress, and recovery index 

confirmed that these measurements were all positively associated with stronger gels. Additionally, stronger gels 

would have lower loss factor and shorter flow transition region, which are negatively correlated with the other 

rheological measurements. Flow index did not have significant correlation with any of the other rheological 

characterizations. Due to the high collinearity, PCA was implemented to reduce dimension of the variable space 

and determine the principal components of rheological measurements. The PCA biplot (Fig. 8B) showed that 

most of the rheological measurements had high loadings in the space of the first principal component (PC), 

except the fitted flow index (n), which was more associated with the second PC. This was consistent with the 

insignificant correlation between flow index and other variables. The first two PCs accounted for 57.9% and 

16.6% of the total variance and the first four PCs accounted for more than 90% of the total variance (Fig. 8C). 
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RSM was used to investigate the effect of the formulation parameters on the rheological and 

printability measurements. The response surfaces for log(filament width), log(filament roughness), and the first 

2 PCs from the PCA of rheological measurements were constructed based on the least square regression models 

as specified in Equation (4).The regression coefficients (β1 β6 in Equation (4), their p-values and R2 of the 

models are summarized in Table 2. Fig. 9 displays the response surface plots of the four response variables as a 

function of the total polysaccharides and the crosslinking density at different pectin fraction levels. It could be 

observed from the response surface plots for log (filament width) (Fig. 9A) that it decreased with increasing 

total polysaccharides, pectin fraction, and crosslinking density.The response surfaces had some curvature: a 

steeper reduction in filament width was observed with increasing total polysaccharides at lower crosslinking 

density; the effect of increasing crosslinking density on reducing filament width was more obvious at lower total 

polysaccharides concentration and lower pectin fraction. The observations were consistent with the regression 

coefficients from the least square regression model in Table 2.The main effects of the three formulation 

parameters on filament width were all significant. Two interaction terms: total polysaccharides - crosslinking 

density, pectin fraction - crosslinking density included in the final model, although not significant, did improve 

the overall model quality. 

 

 

Fig.8. Correlation matrix (A), PCA biplot (B), and PCA scree plot (C) of the rheological characterizations 

of 3D food printing inks. The correlation indices were crossed out if the correlation was not significant (p 

greater than 0.05) for the pair of variables 
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Fig. 9. Response surface plots of (A) printed filament width, (B) filament roughness, (C) rheo_PC1, and 

(D) rheo_PC2 as a function of formula parameters. The orientation of the axis of the 3D plots was 

adjusted to better visualize the response surfaces 

The response surface plot for log(filament roughness) (Fig. 9B) shows that it was positively associated 

with increasing pectin fraction and crosslinking density but not significantly influenced by the total 

polysaccharides, and the surfaces were flat and parallel, indicating little interaction effects. The 1st principal 

component of rheological measurements, PCA (rheo_PC1) was positively associated with total polysaccharides, 

pectin fraction, and crosslinking density (Fig. 9C). Table 2 shows that the regression coefficient for total 

polysaccharides is positive and significant, consistent with the response surface plots. However, the regression 

coefficients of crosslinking density and pectin fraction on rheo_PC1 were both negative, opposite to what was 

observed in Fig. 9C. This could be attributed to the significant interaction term between crosslinking density 

and pectin fraction, which has a large effect size. As a result, after accounting for the interaction terms (X2
*
X3 

in Equation (4), the effect size of each individual variable (X2, X3) would diminish or even have a reversed 

sign. Rheo_PC2 response surfaces (Fig. 9D) show strong interactions among formulation parameters and one 

relatively clear trend was that at the lowest total polysaccharides level, rheo_PC2 decreased with increasing 

crosslinking density and increasing pectin fraction. Among the four response variables, rheo_PC1 was the most 

well-explained by the linear regression model, with the highest adjusted R
2
 score of 0.93. All the other response 

variables were not very well-explained since their adjusted R
2
 was only around 0.5. The unexplained variance 

could be attributed to nonlinear relationships between the formulation parameters and the response variables and 

high-order terms that were not included in the current model Equation (4). 

D. Machine learning enabled prediction of 3D food printing inks’ printability 

As shown in Fig. 8A, many of the rheological characteristics were significantly correlated. For 

example, the strong positive correlation among storage modulus, loss modulus, yield stress, and recovery index 

confirmed that these measurements were all positively associated with stronger gels. Additionally, stronger gels 

would haveThe RSM results reflected that the formulation parameters had a linear relationship with Rheo_PC1 

(adj. R2 = 0.93), but not with the printability metrics, indicating the need for nonlinear models. Therefore, we 

constructed random forest classification models to predict the ink’s width and roughness labels, as well as the 

binary quality label, classified using criteria described in Table S1. Three feature sets were used to predict the 
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labels: rheological measurements + formulation parameters, formulation parameters alone, or rheological 

measurements alone. Table 3 summarizes the cross-validation prediction accuracy for the random forest 

classifiers on each label using the three feature sets. The prediction accuracy did not show a sizable difference 

between classifiers trained with the rheological measurements alone or with formulation + rheology. However, 

training with formulation parameters alone resulted in 5 ~ 10% lower accuracy compared to the other two 

feature sets. 

 

Table 2. Regression coefficients, p-values and adjusted R
2
 of the ordinary least-square regression models 

of filament width, roughness, rheo_pc1, and rheo_pc2 as response variables, and formula parameters as 

covariates 

 
 

Table 3. Cross validation classification accuracy (mean ± sd) for the width and roughness label, and the 

binary quality label using different feature sets 

 
 

This comparison suggested that the rheological measurements formed a better feature set than the 

formulation parameters for ink printability prediction and adding formulation parameters to the model did not 

further improve the prediction accuracy. Such results were expected since the linear regression model showed 

that the formulation parameters were highly associated with the Rheo_PC1. Using the rheology only feature set, 

0.97 and 0.82 mean accuracy was achieved for the prediction of the width label in the train and test sets 

respectively, and 0.88 and 0.82 for the roughness label. After a closer inspection on the misclassified samples, it 

was found that the most frequently misclassified samples were those predicted to print thinner and smoother 

filaments based on their rheological profile, but the actual prints had filaments width and roughness larger than 

the pre-specified thresholds (Table S1) used to binarize these two metrics. There was some degree of overfitting 

in the models for both labels. It is common for the training set to have a higher prediction accuracy than the test 

set. Given the small size of the test set (n = 15) in this study, even one noisy sample could reduce the accuracy 

of the prediction (1/15≈7%). Such variability in the test set prediction accuracy is reflected by the higher 

standard deviation in the repeated 5-fold cross-validation accuracy score compared to the training set (Table 3). 
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Table 4 summarized the rheological measurements of 3D food printing inks in each label class and 

Figure S1 visualized their distributions stratified by the labels. Inspecting these results provided insight into the 

feature importance of each rheological measurement in classifying the 3D food printing ink samples with 

different width and roughness labels. 3D food printing inks that printed thinner filaments (width label 0) had 

significantly lower flow transition index, loss factor, and larger G’, G”, yield stress, all of which correspond to 

stronger gels with higher brittleness and more initial resistance to flow. On the other hand, smoother filaments 

(roughness label 0) often resulted from 3D food printing inks with significantly larger flow transition index, loss 

factor, and lower yield stress.Formulations classified as good 3D food printing inks (class 0 in the binary quality 

label) were the ones that achieved a balance between the two desirables but, to some extent, conflicting printing 

properties: thin filament width and low roughness, which made differentiating them from other formulations a 

challenging task. As described in Section 2.4, a direct and an indirect approach was taken to predict the binary 

quality label. In direct prediction, the binary quality label was directly predicted as the response using the three 

feature sets with cross-validation. The indirect approach combined the prediction results from the previously 

trained models on the width label and roughness label to obtain a predicted binary quality label in the same way 

as the true binary quality label was generated. As shown in Table 3, when using the rheological measurements 

as the feature set, the direct prediction approach achieved higher mean accuracy during training (0.92) compared 

to the indirect approach (0.88). However, it also had a higher degree of overfitting, reflected by a lower mean 

accuracy during testing (0.75) than the indirect approach (0.87). On the other hand, the indirect method had the 

same level of accuracy during training and testing, indicating limited overfitting. It could also be noticed that the 

mean accuracy of predicting the binary quality label with the indirect approach was higher than both the width 

and roughness models. The binary quality label combined the width and roughness criteria, but it sufficed to 

only differentiate samples with the 0-0 width-roughness combination from all other combinations. Such a 

scheme allowed it to absorb some prediction errors in the separate models based on width and roughness 

measurements and improve the prediction accuracy of the binary quality label. 

 

Table 4. Summary of rheological measurements for 3D food printing inks (mean ± SD) stratified by width 

labels, roughness labels, and the width-roughness combinations 

 
 

IV. DISCUSSION 

A. 3D food printing inks’ rheological properties are affected by AGP and AGCN concentrations, and Ca
2+

 

crosslinking density 

All the 3D food printing inks in the current study were formulated using different combinations of 

three ingredients: AGP, CaCl2, and AGCN. Rheological characterization of the 3D food printing inks generated 

a fingerprint for each formulation. Linking the fingerprints to the formulation parameters helped unveil the 

structure-function relationship of the polysaccharides and ionic crosslinking in the hydrogels. Our results show 

that the gel strength is positively associated with AGP concentration and crosslinking density. While keeping 

the AGP-to-AGCN ratio constant, increasing total polysaccharides concentration from 3% to 6% resulted in a 

more than 10-fold increase in G’ and G” at an angular frequency of 0.1 rad/s. Even with a lower crosslinking 

density, 6% gels were stronger than 3% gels (Fig. 4 and Table S3). This result is in agreement with results 

reported in previous studies about AGP gelation behaviors[15, 18-21, 40, 41]. The gelation mechanism of AGP 

has been described using a modified “egg-box” model. Three types of AGP- Ca
2+

 complexation contribute to the 

gelation of AGP: rod-like junction zones between two antiparallel polyuronates chains, monocomplexes within 

a single polyuronates chain, and point-like crosslinking [42, 43]. In the low crosslinking density regime (R < 1) 

where all the 3D food printing inks formulated in the current study belong, the formation of rod-like bundles 

prevails and dominates over monocomplexes or point-like crosslinks [43], showing the characteristics of 

semiflexible polymer networks[44]. A slight increase in R in this regime allows for more extensive bundle 

formation among the polymer chains, resulting in a denser polymer network and a more elastic gel[41, 43, 45, 

46]. Moreover, our results show that the increase in G’ with R was more significant in gels with lower total 

polysaccharide concentration: increasing R from 0.35 to 0.55 in 3% gels led to a 10-fold increase in G’, while in 

6% gels, a 3-fold increase was observed (Fig. 4). This overall trend is attributed to the suppression of bundle 
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formation at higher pectin concentrations [47] in the case of AGP- Ca
2+

gels with R < 1. Also, since only pectin 

can be crosslinked by calcium, not AGCN, the higher was the mass fraction of pectin in the gel, the more 

dominant was the crosslinking density effect on the rheological properties. Besides the linear viscoelastic 

characteristics, the LAOS behavior has also been used to classify complex fluids [48]. The food ink 

formulations in the current study all exhibited Type III LAOS behavior: at large strain amplitude, G’ decreases 

monotonically and G” increases first then decreases (Fig. 3). The overshoot of G” observed in Type III fluids 

arises as a result of the balance between the formation and destruction of the polymer junctions under 

deformation [49, 50]. In the AGP- Ca
2+

system, the structural cause of the G” overshoot is believed to be the 

unzipping and reformation of the egg-box bundles [47]. Eventually, at sufficiently high strain amplitude, the 

microstructural alignments become dominant, and both G’ and G” decrease and G” exceeds G’, indicating that 

the gel has collapsed and started to flow [49]. 

Another polysaccharide component in 3D food printing ink formulations was AGCN. Although 

previous studies have illustrated that AGCN, due to its high aspect ratio, can have outstanding mechanical 

properties akin to the function of cellulose in plant cell walls [15, 18-21, 31], the results of this study suggested 

that increasing AGCN mass fraction reduced the gel strength. This effect could be attributed to a reduction of 

AGP mass fraction as the total polysaccharide content was maintained constant. Figure S2 illustrates the 

influence of adding AGCN to the gel while keeping the AGP concentration constant, thus increasing the total 

polysaccharide content. These results validate that increasing AGCN concentration significantly increases G’ 

and G” of the gels, confirming the reinforcing effect of AGCN. However, the mass fraction of AGCN in our 3D 

food printing ink formulations was relatively low (at most 2.4%), and increasing AGCN concentration was 

always coupled with the dilution of AGP, which overshadowed the reinforcing effect of AGCN. In conclusion, 

the rheological characteristics of the bioinks were dominated by the AGP-calcium network, with minor 

contributions from the addition of AGCN. 

 

B. Prediction of 3D food printing inks’ printability from rheological characterizations 

One of the key challenges in constructing a predictive model for 3D food printing inks’ printability is 

to develop a comprehensive set of metrics for printability assessment. The two measures of printability in the 

current study are: smoothness of deposition and width of printed filaments. Many of the previous studies have 

focused on shape fidelity measurements using different methods, including measuring the width and height of 

the filaments [33, 51], size and circularity [23, 25] of the holes in a printed grid pattern, ‘sharpness’ of the angle 

at a corner of a printed structure [27], etc., while limited efforts have been made for quantitative characterization 

of smoothness of 3D food printing ink deposition. In this study, a quantitative assessment of both metrics was 

achieved by measuring the width and roughness of the printed filament with image analysis. In addition, 3-layer 

grids and 5
*
5

*
5 mm

3
 grid cubes were printed with three representative 3D food printing ink formulations to 

demonstrate the stickability of the inks (Fig. 7). Besides establishing the quantitative metrics to assess 

printability, this study also constructed predictive relationships between the rheological measurements and the 

printability of the inks. To the best of our knowledge, among the few studies trying to relate 3D food printing 

inks’ rheological properties to printing behaviors, only simple correlations or linear regressions have been 

established [6, 22]. However, both the current study and the previous studies [26, 6] have demonstrated that 

linear regressions are not sufficient to explain the relationship between different rheological measurements and 

printability metrics. Therefore, in the current study, random forest models were trained on the rheological 

characteristics and formulation parameters of the 3D food printing inks to predict the filament width and 

roughness labels and, ultimately, the binary ink quality label, combining the two metrics. However, as with 

many machine learning models, interpretability of the model is limited. To increase interpretability, this study 

analyzed the difference between 3D food printing inks from different width and roughness groups. And the 

results showed that none of the rheological measurements were significantly different between the two binary 

quality classes (Table 4). This was expected since the “non-optimal” 3D food printing inks group (class 1 in the 

binary quality label) included the ones that were either too weak or too strong to be printed, resulting in a wide 

range of rheological properties within this group. Therefore, direct prediction of ink quality could be 

challenging. An alternative indirect approach trained two separate models on the width and roughness labels and 

combined the classification results from both models to generate the predicted binary quality label. Comparing 

the prediction results using the direct and indirect approaches, it could be concluded that the indirect method 

achieved higher mean accuracy and less overfitting. Given the relatively small sample size, especially with a 

nonlinear relationship, the direct prediction models were more susceptible to outliers and overfitting. With an 

increase in the sample size, the model performance was expected to improve further. Another advantage of 

using the indirect prediction approach was that the width and roughness model provided guidance on 

downstream improvement of the 3D food printing ink based on the predicted limitation of the printability 

metrics. Different feature sets were also compared for their prediction capacity: formulation parameters, 

rheological measurements, and combined. Models trained with rheological measurements alone showed the best 
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prediction accuracy among the three feature sets, implicating that it is possible to generalize the model beyond 

the current formulation parameters to other polysaccharide-based compositions. The evidence from this and 

other studies[17, 24, 32] supported that rheological fingerprints of hydrogel-based 3D food printinginks are 

often well correlated with the formulation parameters, but their relationship with printability is complicated and 

nonlinear. Rheological characterization is versatile for hydrogels formulated with different compositions. For 

future 3D food printing ink development with potentially different ingredients, models trained using formulation 

parameters would not be applicable, but those trained with rheological measurements could still be valid. A 

more robust dataset including rheological measurements of inks with other compositions should be constructed 

to achieve better generalizability of the model. 

 

V. CONCLUSION 
All the 3DHydrogel-based food inks formulated with low methoxy pectin, cellulose nanocrystals and 

calcium chloride were developed, characterized, and successfully 3D printed. Calcium-crosslinked AGP 

hydrogel maintained the 3D network of the food inks, and AGCN exhibited a micro enforcing effect akin to 

their functionality in plant cell walls. The rheological properties of the hydrogels were found to be linearly 

associated with the formulation parameters. Printability of the 3D food printing inks was assessed and quantified 

with two metrics: printed filaments’ width and roughness. The ink printability could be predicted with high 

accuracy with random forest classifiers trained on the rheological measurements without specifying formulation 

parameters, demonstrating the possibility to generalize the model to 3D food printing inks with different 

compositionsin food manufacturing processes such as alternative foods and nanofoods. 
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