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ABSTRACT :Teaching quality evaluation serves as a valuable tool for assessing both teachers' instructional 

methods and students' learning outcomes, making it instrumental in enhancing teaching quality and fostering 

the growth of students. In this paper, the YOLOv5 detection technology is utilized to detect the classroom field, 

which introduces a fresh perspective to teaching quality evaluation. Firstly, to address the issue of incomplete 

capturing of the entire classroom image by the rear camera, panoramic image stitching was used to restore the 

overall appearance of the classroom. Then, we utilized the YOLOv5 algorithm to accurately detect the 

classroom field from behind. Furthermore, we made modifications to the YOLOv5 network structure to enhance 

the accuracy of detection. Finally, we utilized the HSV color space and perspective transformation techniques to 

address the size variation problem in classroom images. This allowed us to effectively divide the classroom field 

into distinct areas. Subsequently, we developed an appropriate teaching quality evaluation algorithm based on 

these divisions. According to the experimental results, the average AP accuracy of the improved model is 3.2% 

higher than that of the YOLOv5s model. The proposed evaluation algorithm aligns with the classroom field 

theory and the resulting error falls within an acceptable range. 

KEYWORDS ： teaching quality evaluation; classroom field; YOLO target detection; panoramic image 

stitching; perspective transformation 
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I. INTRODUCTION 

National development is inherently tied to the nurturing of talent, with colleges serving as pivotal 

cradles for cultivating such talent. In recent years, college education has garnered widespread attention across 

various sectors of society. The enhancement of teaching quality plays a crucial role in propelling the 

development of colleges and elevating the standard of talent cultivation. Teaching quality assessment forms the 

bedrock for continuous improvement in educational standards. Traditional methods of evaluating teaching 

quality primarily encompass the coursework achievement evaluation system and student final evaluation system, 

among others. While assessing teachers' performance based on students' coursework grades constitutes a 

significant aspect of teaching quality control in basic education, this approach may inadvertently foster a test-

oriented atmosphere. To address the challenges associated with evaluating teachers' teaching quality through 

students' coursework grades, some colleges and universities have introduced a teachers' final evaluation system. 

However, it's important to note that this method tends to be more subjective and time-consuming
[1]

. 

With the development of various information technologies, numerous new forms of teaching quality 

evaluation have emerged. Principal component analysis stands out as a commonly employed statistical method 

in teaching evaluation. Ming-Ya Zhang
 [2]

 innovatively combined principal component analysis with machine 

learning algorithms. The researcher initially used principal component analysis to select appropriate evaluation 

indices and then utilized SVM to obtain the teaching quality evaluation results. This approach presents an 

effective framework for teaching quality evaluation. However, it's worth noting that different parameters exert a 

certain influence on the results, and the determination of optimal parameters remains an area requiring further 

exploration. Feng-Qing Li
 [3]

, on the other hand, devised a hybrid teaching quality evaluation model that 

integrates process evaluation and summative evaluation. The evaluation results were obtained through an 

analysis of students' comprehensive learning experiences before class, during class, after class, and at the end of 

the term. The classroom serves as the primary setting for teaching, with the classroom situation being a focal 



American Journal of Engineering Research (AJER) 2024 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 65 

point of the teaching evaluation system
[4]

. Scholars often gauge the quality of teaching directly through the 

classroom environment. Classroom videos, capable of capturing a plethora of details, offer diverse data for 

teaching analysis
[5]

. The observation of classroom videos facilitates the analysis of teaching situations, providing 

abundant and objective evidence for research on classroom teaching
[6]

. In addressing the challenges associated 

with manual classroom observation, which is time-consuming and prone to oversight, Cong-Hua Xie
 [7]

 

conducted an analysis and processing of classroom videos based on visual and textual features. This approach 

effectively overcomes the limitations of manual observation, meeting the demands of teaching evaluation more 

efficiently. There is a significant correlation between students' facial expressions and their mastery of 

knowledge points during classroom learning
[8]

. Han Li
[9]

 utilized facial expression recognition technology to 

document students' states in the classroom, enabling a more accurate analysis of teaching and learning 

effectiveness. However, this approach carries a certain risk of compromising students' privacy. Research by 

Rainer
[10]

 demonstrated that head posture serves as an excellent indicator of attentional focus. Meanwhile, 

Zaletelj and Kosir
[11]

 employed a Kinect camera to determine students' head posture, gaze direction, facial 

expression, and body posture. Features were extracted through computer vision techniques, and five observers 

assessed students' attention levels for each second in the image. The data were incorporated into a training set 

for model training, resulting in a 75.3% accuracy in automatically detecting student concentration. While this 

method aids in determining student attention levels during teaching, there is a potential for misjudgment of body 

posture in real classroom settings. 

To address the challenges associated with privacy concerns in evaluating teaching quality through 

facial expressions and other methods, as well as the time-consuming and labor-intensive nature of traditional 

evaluation methods, this paper introduces a teaching quality evaluation approach grounded in the classroom 

environment. This method involves the utilization of a rear camera to capture classroom images, enabling real-

time detection of the evaluation effect while safeguarding students' privacy. 

Bourdieu highlighted that "a field can be defined as a network of objective relations between various 

positions"
[12]

. Similarly, the classroom constitutes a field, representing a relatively independent space 

characterized by distinct positional relationships. The selection of seating positions by students in the classroom 

is intricately linked to their motivation to learn
[13]

, prompting extensive analysis and study by scholars. Vander 

Schee
[14]

 categorized seating into four groups: front, middle-front, middle-back, and back rows, discovering a 

gradual decrease in students' scores in the course with increasing distance from the podium. Naz Kaya's study
[15]

 

revealed that students positioned in the front and center rows exhibited the best classroom performance.Ya-Li 

Yao et al.'s research
[16]

 demonstrated a high positive correlation between teacher evaluation scores and the 

number of students choosing front-row seats, as well as a high negative correlation with the number of students 

opting for back-row seats. Koneya
[17]

 found that students displayed greater creativity, motivation, and 

attentiveness within the triangular area formed by the middle seats from the front to the middle rows. In 

summary, students' positioning within the classroom field serves as an indicative factor for teaching quality 

evaluation. 

The main contributions presented in this paper are as follows: 

• This paper presents an extensive study of teaching quality evaluation. 

• This paper constructs a classroom dataset based on classroom rear camera shots and uses image 

stitching techniques to restore the overall appearance of the classroom, solving the problem that a single camera 

angle cannot capture the complete image of the classroom. 

• In this paper, the network structure is improved based on YOLO to enhance the classroom field 

detection accuracy. 

• This paper proposes a teaching quality evaluation algorithm based on classroom field, which provides 

a new perspective for teaching quality evaluation. 

The next sections of this paper are organized as follows: Chapter 2 describes the dataset acquisition 

sources and the classroom image panorama stitching process. Chapter 3 details the YOLO algorithm which is 

used to detect classroom fields, and improves the network structure. Chapter 4 proposes a specific algorithm for 

teaching quality evaluation and analyzes the evaluation results. A conclusion of our work is shown in Chapter 5. 

 

II. CLASSROOM IMAGE PANORAMA STITCHING 

2.1 Image Stitching Process 

The installation of front and rear surveillance cameras is becoming increasingly common in university 

classrooms for the purposes of maintaining school security and facilitating examination supervision. 

Considering the potential privacy concerns that may arise with the use of front-facing cameras, this paper 

chooses rear cameras to capture classroom photos for experiments. Due to camera scaling limitations in some 
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schools, it may be difficult to capture the entire classroom with just one camera angle. To address this issue, 

classroom photos are taken from multiple angles before conducting field detection. These photos are then 

stitched together using panoramic image stitching techniques to restore the overall appearance of the classroom, 

which serves as the foundation for subsequent field detection and teaching quality evaluation. 

Image stitching technology is a technique that stitches together several images with overlapping parts 

in the same scene to form a panoramic view image
[18]

. Generally speaking, the image stitching process is shown 

in Fig.1. 

Image 

preprocessing
Image fusion

Panoramic 

image

Image 

registration
Input image

 
Fig.1. Image stitching process 

 

Among them, image registration mainly refers to the process of determining the overlapping areas of 

images, which includes feature point detection, feature matching and image transformation. Image fusion 

mainly refers to the process of stitching the aligned images together to form a panoramic image. Since there may 

be differences in resolution and lighting between the aligned images, a certain fusion process is needed to make 

the stitched panoramic image appear more natural and visually appealing. This enhances the overall visual effect 

of the image. 

2.2 Image Registration 

Due to the difference in shooting angles, the angles of the images to be matched are often different. 

Therefore, these images need to be standardized under one standard before stitching. Image registration is a 

crucial aspect of panoramic image stitching, and the key is to find out the common features of the images to be 

matched, calculate the appropriate transformation model through the correspondence between images, and unify 

multiple images to be matched into a common image plane. The image registration steps in this paper are as 

follows: 

1. The Scale Invariant Feature Transform (SIFT) algorithm is utilized for feature matching of images. 

SIFT was proposed by David G. Lowe
[19]

 and is based on the local appearance of objects, which 

remain invariant to scaling, rotation, and luminance transformation. This algorithm has strong 

stability and is widely used in image feature extraction. 

2. The Random Sample Consensus (RANSAC) algorithm is used to eliminate mismatched points and 

find the optimal homography matrix, which is then applied to transform all the images to be 

matched onto the common image plane. After obtaining the correspondence between the feature 

points through feature matching, the homography matrix can be computed. The homography 

matrix reflects the coordinate transformation relationship of points in space between different 

projection planes, which can align the images to be matched into a common reference frame. 

However, incorrect matches may occur during feature matching, and the homography matrix 

obtained from these mismatches can cause large errors in image registration. To address this issue, 

this paper employs the RANSAC algorithm to iteratively find the optimal homography matrix and 

eliminate the mismatched points, thus completing the image registration process. 

2.3 Image Registration 

This paper has chosen to use the left, middle, and right images for image stitching. The captured 

images are shown in Fig.2, where there are overlapping areas between the left and middle images, as well as 

between the middle and right images. By stitching these three images together, the complete classroom seating 

area can be captured, which meets the requirements for image stitching and subsequent experiments. 

 

 
Fig.2. Pending stitching image 
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The collected classroom images are stitched together to create a composite image, which is presented 

in Fig.3. The stitching effect is satisfactory, as the stitched image effectively restores the overall appearance of 

the classroom and the stitching traces are not noticeable. 

 

 
Fig.3. Panoramic image of the classroom after stitching 

 

III. YOLO CLASSROOM FIELD DETECTION 

3.1 Overall Algorithm Structure 

To evaluate the classroom, the first step is to detect the location of students within the classroom field. 

This paper uses YOLOv5 object detection to identify the backs of students' heads and determine their locations, 

laying the foundation for subsequent teaching quality evaluation. The YOLOv5 target detection algorithm was 

proposed by Ultralytics in 2021 which belongs to the single-stage detection algorithm category
[20]

. Compared to 

two-stage algorithms, it is faster and performs well in real-time data processing. Compared to other versions of 

YOLO, YOLOv5 exhibits the highest stability on this dataset, making it the chosen model for experimentation. 

The YOLOv5 algorithm consists of four main components. The first is the Input, which handles data 

enhancement and some preprocessing operations. The second component is the Backbone, which extracts 

features from the input data. The third component is the Neck, which is responsible for fusing the features 

extracted by the Backbone. The last component is the Head, which performs category and location regression 

detection. Together, these components allow YOLOv5 to efficiently detect and classify objects in real-time data 

processing. 

In this paper, we propose an algorithm based on an improved YOLOv5 classroom field detection 

method to address the characteristics of having more small target objects in the experimental dataset. We 

achieved this by adding the Convolutional Block Attention Module (CBAM) to enhance the key features and 

improve the model's attention to small target objects. The overall structure of the improved algorithm is shown 

in Fig.4. 
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Fig.4. The structure of the improved YOLOv5 network 
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3.2 Adding CBAM 

As the depth of the network increases, it is possible that some of the details of small targets may be 

lost, leading to a decrease in detection accuracy. To overcome this issue, one approach is to introduce an 

attention mechanism in the shallow layers of the network. This can help improve the model's focus on important 

details and prevent the loss of relevant features required for detecting small target objects in the deeper layers of 

the network. In this paper, there are many small target objects in the dataset, so we consider adding the CBAM 

to the convolution operation after the Focus layer in Backbone to improve the attention of the shallow network 

to small targets. 

The attention mechanism simulates how the human brain processes information, making further feature 

extraction for specific feature maps, boosting the weights of focused regions and suppressing the weights of 

useless regions. CBAM is a type of attention mechanism that consists of two parts: Channel Attention and 

Spatial Attention. The Channel Attention module calculates the importance of each channel, and rescales the 

feature map accordingly, while the Spatial Attention module selectively focuses on important regions and 

suppresses unimportant regions. By combining both types of attention, CBAM performs better on the classroom 

dataset compared to focusing on only Spatial Attention or Channel Attention. 

The schematic diagram of the CBAM module, as shown in Fig.5, first passes through the Channel 

Attention Module (CAM), obtaining two 1 * 1 * C feature maps by global max pooling (GMP) and global 

average pooling (GAP). These features are then fed into a Multi-Layer Perceptron (MLP) to reduce the number 

of parameters, and the resulting features are summed and passed through a sigmoid function to generate the 

channel attention Mc. Mc is then multiplied with the initial input feature map F to generate the input feature map 

F' for the Spatial Attention Module (SAM). In the SAM, channel-based GMP and GAP are performed on F', 

and the resulting feature maps are spliced in the channel direction. These feature maps undergo convolution 

operations and sigmoid functions to generate the Spatial Attention Ms. Finally, Ms is multiplied with F' to 

obtain the output feature map F''. The combination of CAM and SAM helps improve the model's attention to 

small target objects, enhancing the detection performance. 

 

GMP

GAP

MLP

CAM SAM

Add by elements

Sigmoid operation

Multiply by elements

F F' F''

 
Fig.5. CBAM structure 

 

3.3 Ablation Experiments 

To assess the efficacy of the proposed enhanced strategy, an ablation experiment was conducted. 

YOLOv5 was partitioned into four versions, namely YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, based 

on distinct network depth and width configurations. YOLOv5s, characterized by its streamlined design in terms 

of network depth and feature graph width, stands out for its computational efficiency and swift detection speed. 

It particularly excels when deployed on devices with limited computing resources. Given the experiment's 

emphasis on real-time performance and the aspiration for streamlined deployment in future applications, the 

YOLOv5s version was selected as the benchmark algorithm. This version demonstrates commendable real-time 

reasoning capabilities, and its lightweight design streamlines subsequent deployment, facilitating seamless 

integration into real-world applications and adaptability to diverse environments. 

In the realm of target detection, the primary metric for assessing model performance is AP (Average 

Precision). AP takes into account Precision and Recall across various confidence thresholds, computing the area 

under the precision-recall curve. This comprehensive evaluation considers both the accuracy and recall aspects 

of the model in the detection task, providing a nuanced understanding of its effectiveness. Their calculation 

methods are shown in Eq. 1, Eq. 2 and Eq. 3. 

                                                                      Recall
TP

TP FN



                                                                  (1) 

                                                                     Precision
TP

TP FP



                                                                (2) 
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1

0
AP ( )dP R R                                                                       (3) 

Where TP is which the predicted result of the classifier is positive samples, and the actual samples are 

positive samples, that is, the number of positive samples correctly identified; FP is which the predicted result of 

the classifier is positive samples, but the actual sample is negative samples, that is, the number of negative 

samples that are falsely positive; FN is which the predicted result of the classifier is negative samples, but the 

actual sample is positive samples, that is, the number of positive samples missed; TP+FN is the number of all 

positive samples; TP+FP is the number of all positive samples divided into positive samples; P and R represent 

Recall and Precision, respectively, which are calculated in the first two formulas. 

In this experiment, the model performance was evaluated using AP@.5 and AP@.5:.95 metrics. AP@.5 

was computed with an IoU threshold of 0.5, while AP@.5:.95 extended the assessment across multiple IoU 

thresholds. The AP values under different thresholds were calculated and averaged, providing a more 

comprehensive evaluation of the model's performance by considering variations in IoU thresholds. 

The results of the ablation experiments are presented in Table 1, indicating that the inclusion of CBAM 

resulted in an increase of 3.2% in AP@.5, and a 2.2% increase in AP@.5:.95. In addition, the P and R scores 

also increased by 2.7% and 0.4%, respectively. These results indicate that adding CBAM to the shallow network 

enhances the model's attention to small targets, which leads to improvements in all model metrics, and thus 

confirms the effectiveness of the proposed improvement strategy. 

Table 1. Ablation experiments 

Model P(%) R(%) AP@.5(%) AP@.5:.95(%) 

YOLOv5s 0.649 0.831 0.757 0.459 

YOLOv5s+CBAM 0.662 0.835 0.789 0.481 

 

IV. TEACHING QUALITY EVALUATION 

4.1 Classroom View Transformation 

As illustrated in the stitched classroom images in Fig.3, the photos captured by the rear camera suffer 

from the issue of small pixels in the front row and large pixels in the back row. Consequently, they cannot be 

directly used to evaluate and partition the classroom area. To overcome this challenge, the classroom must first 

be transformed into a top-view image with uniform pixel density in each row. This process involves the 

following steps: 

1. The HSV color space is employed to identify the seating area in the classroom. Typically, school desks are 

uniformly colored and have a significant color difference from other objects present in the classroom. 

Hence, this characteristic can be leveraged to isolate the classroom area in the image. The HSV color space 

comprises three components: Hue, Saturation, and Value. In comparison to the RGB color space, it is more 

in line with human visual perception and allows for easier adjustments to color saturation and brightness. 

Therefore, this paper employs the HSV color space to filter the seating areas in the classroom successfully. 

Table 2 displays the parameter intervals in the HSV color space that were identified for the seating section 

of the classroom photos used in the experiment. It has been confirmed that these intervals are suitable for 

filtering out the classroom seating area. Fig.6 depicts the outcome of applying the color filtering using the 

parameters outlined in Table 2, where the white area represents the filtered seating area. However, due to 

occlusion caused by students, certain seat areas could not be filtered out. Nevertheless, the edges of the seat 

areas remain distinct, allowing the subsequent operation of identifying the boundary points to be executed 

accurately. 

Table 2. Seating area parameters 

Parameter Value 

Hue Minimum 0 

Hue Maximum 32 

Saturation Minimum 135 

Saturation Maximum 48 

Value Minimum 239 

Value Maximum 255 
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Fig.6. HSV seating area 

 

2. Find the four boundary points of the seating area. Determine the minimum external matrix of the region 

after performing HSV color space detection. As shown in Fig.7, the blue part represents the minimum 

external matrix of the seating area, while the green part denotes the rotatable minimum external matrix of 

the seating area. Due to significant deviations between the four corner points of the blue part and the actual 

boundary points, the paper adopts a loop approach to gradually approximate the seating area by iteratively 

adjusting the step size for each corner point. The upper step size is set to 10 pixels and the lower step size is 

set to 20 pixels. The red part in Fig.7 depicts the seat area obtained after the loop, with the four corner 

points representing the desired boundary points. 

 

 
Fig.7. Seating boundary area 

 

3. Use perspective transformation to adjust the image to the top view. Using the obtained four boundary points 

and their corresponding points on the target image, calculate the perspective transformation matrix by Eq. 4 

and Eq. 5, and then apply this matrix to the whole seating area to realize the effect of adjusting the image to 

the top view. 

                                                          

'

11 12 13

'

21 22 23

31 32 33

x

1

a a a x

y a a a y

w a a a
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'

'
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w
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w
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

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                                                                   (5) 

 

Where, 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
 
 

is the perspective transformation matrix, (x, y) is the coordinate of the 

boundary point, (x ', y ') is the coordinate of the transformed point, w is an auxiliary variable used for 

normalization, and (X, Y) is the corresponding point on the target image. 

4.2 Teaching quality Evaluation Criteria 

In the classroom field, the area shaped like a "T" that forms between the front and center rows is where 

teacher-student interaction and student performance are the highest, followed by the other areas in the middle 

row, with the back row having the worst performance. Under the same classroom size, a higher number of 

students in the "T"-shaped area leads to a better overall evaluation of classroom teaching, while a higher number 

of students in the back row area results in a worse overall evaluation of classroom teaching. In this paper, the 

classroom field is divided into nine parts: left front, middle front, right front, left middle, middle, right middle, 
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left back, middle back, and right back. The left front, middle front, right front and middle form the "T" 

advantaged area A, the left middle and right middle form the general area B, while the left back, middle and 

right back form the disadvantaged area C. 

The study counted the number of students in each of the divided zones and calculated the proportion of 

students in each zone. Classroom scores were then calculated for students in the advantaged, average, and 

disadvantaged areas using a ratio of 10:5:1, as illustrated in the following Eq. 6: 

                                                                                                                         

(6)  
In this formula, E represents the overall teaching quality evaluation, a represents the percentage of 

students in the advantaged area, b represents the percentage of students in the average area, and c represents the 

percentage of students in the disadvantaged area. The variables n and t represent the count of students attending 

classes and the total number of students selecting courses, respectively. 

According to this formula, the spectrum of classroom evaluation spans from 0 to 10, encompassing the 

desired range. In this context, the lowest possible evaluation occurs when all students who have chosen the 

course fail to attend, resulting in an evaluation score of 0. Conversely, the highest possible evaluation is 

achieved in the scenario where all students attend the class and opt to sit in the front row, yielding a class 

evaluation score of 10. 

4.3 Evaluation Results 

The above evaluation algorithm was applied to assess the classroom teaching of each of the three 

classrooms depicted in Fig.8, Fig.9, and Fig.10, which were captured using the classroom rear camera. These 

classrooms vary in seating layout, classroom size, and student distribution, among other factors. 

 

 
Fig.8. Classroom 1 

 

 
Fig.9. Classroom 2 

 

 
Fig.10. Classroom 3 

 
The evaluation results of the three classrooms are shown in Table 3 , where A, B and C represent the 

number of students in area A, B and C respectively. 
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Table 3. Evaluation results 

 A B C Algorithm evaluation results 

Classroom 1 8 5 3 6.75 

Classroom 2 9 3 3 7.2 

Classroom 3 0 0 9 1 

 

The results in Table 3 reveal that Classroom 3 had a low evaluation score, likely due to the fact that 

students were mainly seated in the back row. On the other hand, Classrooms 1 and 2, where students were 

concentrated in the middle and front rows, received evaluation scores in the upper-middle range, which is 

consistent with the classroom field theory. 

4.4 Comparative Experiments 

To assess the validity of the algorithm, a comprehensive comparison was conducted with the National 

Survey of Student Engagement (NSSE) questionnaire. Serving as an industry benchmark for evaluating learning 

engagement, NSSE questionnaires have significantly contributed to enhancing the learning quality of American 

undergraduate students
[21]

. This study specifically delves into various dimensions of the NSSE questionnaire, 

including Academic Challenge, Quality of Interaction, among others. Surveys were conducted among students 

in 50 classes, and the questionnaire options, along with their corresponding results, were quantified into a scale 

of 10 points. The experimental results, depicted in Fig.11, showcase the correlation between the 50 classes and 

their respective classroom evaluation scores. This comparative analysis seeks to provide a thorough insight into 

the algorithm's accuracy in assessing student classroom engagement, ultimately validating it against established 

industry standards. 

 
Fig.11. Comparison results 

 
The bar chart shows that the algorithm evaluation results are approximately consistent with the 

expected results, with an average deviation of 0.5. The study found that the algorithm performed better in small 

classrooms, where the classroom areas were more accurately delineated, and the results were basically 

consistent with the expected results. Additionally, there were few instances of missed target detections. Some 

classrooms had larger errors in their teaching evaluation results, which were found to be larger in size and with 

more occlusions compared to other classrooms. Larger classrooms tend to be more sensitive to pixel changes 

when dividing regions, resulting in more chances for students at the intersection of regions to be incorrectly 

divided into other regions. Additionally, due to the high number of students in the classroom, many seat 

positions may be obscured during HSV filtering of the seat regions, leading to inaccuracies in the region 

screening process. Despite this, most of the evaluation deviations were within acceptable limits, indicating the 

feasibility of the teaching quality evaluation approach proposed in this paper. 
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V. CONCLUSION  

In this paper, we propose a teaching quality evaluation algorithm based on the classroom field, 

leveraging the correlation between the location of students in the classroom field and the teaching quality 

evaluation elements. We also introduce the concept of classroom panoramic stitching during the algorithm 

design process to address the issue of a single photo from the rear camera being insufficient to display the 

overall appearance of the classroom. Additionally, we improve the YOLOv5 algorithm to enhance the detection 

accuracy of the classroom dataset. After testing, the teaching quality evaluation algorithm proposed in this paper 

has met the expected results and can serve as a powerful tool and reference for future teaching quality 

evaluation. Additionally, the proposed evaluation algorithm can be combined with other algorithms to evaluate 

and analyze classroom teaching from multiple perspectives, further improving the quality and effectiveness of 

classroom teaching. However, subsequent research will focus on optimizing the algorithm to address the 

aforementioned issues, enabling it to be applied to classrooms of varying sizes and improving its overall ap-

plicability. 
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