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Abstract

In this paper, Turing instability of a double diffusion of Leslie-Gower competition model is considered.
Then a series of numerical simulations of the discrete model are performed with diffrent parameters,
which get the strip type wave and speckle pattern.
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. Introduction

Reaction-diffusion systems have been proposed as mechanisms for biological pattern
formation in embryological and ecological context, see Murray [10] or Sun et. al. [15]. All such
works are based on the pioneering work of [16]. Segel and Jackson [14] were seemingly the first to call
attention to the fact that Turing's idea would be applicable in ecological situation also. They conjectured
that the nature of the equations which describe chemical interaction does not seem fundamentally
different from the nature of those which describe ecological interaction among the species. Again, the idea
that dispersal could give rise to instabilities and hence to spatial pattern was due to a number of
authors (see [11] or [15], for review) can not cause the Turing's instability.

Then, we have a natural problem. Can the discrete competitive Leslie-Gower system produce Turing
instability? Indeed, Turing instabilities of the discrete versions are respectively considered in [2], [6]
and [7]. When the diffusion co- efficients are equivalent and the periodic boundary values are added,
the wave patterns and the spiral patterns are observed. Furthermore, there are also the different
statements for the space- and time-discrete model, the dynamical be- haviors of activator and inhibitor
from t to t + 1 contains two distinctly different processes, one is the ‘“reaction” stage, the other is
“dispersal” stage, for example, see Mistro et al. [13] and [9], Punithan et al. [12], Huang et al. [3] and
[4] for

the predator-prey model, competitive system ([2] and [6]), diffusion-migeration
systems [19], statistical physics [1], Gierer—Meinhardt system [17] and so on.

The present paper 1s motivated by [7] and [18], the Turing instability or the
diffusion-driven instability will be considered for the Leshe-Gower competition
model
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which can be obtained by using the nonstandard discretization scheme, where

o1 (h)=e"—1, oy (h) =" —1
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and h > 0 1s the time stepsize, Liu and Elaydi [§]. For convenience, ¢, (h) and
w5 (R) will be denoted by ¢, and ¢,, respectively.
Clearly, Systems (1) exists a same positive equilibrium
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when the conditions 0 < 21,29 < 1 holds. In view of Theorem 4 1n [8], we know
that the positive equilibrium E of (1) 1s globally asymptotically stable in this
case. When the diffusion coefficients and the Neumann boundary values are
added, the positive equilibrium E becomes unstable and we find lots of Turing
patterns.

1. Turing Instability with double diffusion

First of all, we consider the discrete eigenvalues problem of the form

—Auj = Mg, (1,7) € [1,m] x [1,7],
Ui 0 = U1, Uin = Uine1,? € [0,m+1], (3)
w0 = Ulj, Umj = Ums1,j,J € [0,n+1],

where
Augy = uip1 j + i +uioj +uij—1 — dug;

By using the separation variables method, see Zhang, Zhang and Yan [18], we
can obtain the eigenvalues

2 (k=17

+ sin? U _2?1) T (4)
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and the corresponding eigenfunctions

(kD) (k=1)(2:—1)7 (I=1(25-1)=
©;;  =cos . cos 5, , (5)

for (i,), (k,1) € [1,m] x [1,n].
In the following, we consider the algebraic equation
PANE2X +bA+c=0. (6)

which 1s important for the stability analysis of discrete systems. It 1s well known
that 1t has two roots of the form

b= VBT —4c

A2 5

By simple calculate, we can obtain the following result:

Proposition 1. The roots A1 2 of the algebraic equation (6) satisfy the
condition [A 2| < 11f, and only if P(1) =14+b+e>0, P(-1)=1—b+c>0
and P(0) =c< 1.

Let
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Then, the Jacobian matrix associated with the linearized system of (1) is
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Correspondingly, the characteristic equation 12
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Thus, we immediately get that
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Note that 0 < 21,25 << 1 and

"+ syt =1,
st +yt =1,

then, we can know that

e < 1and 0 < 729

0 < P E—
1+ T+,

< 1.

In this case, we can obtain that
0<P(1)<1, P(—1) >0, and P(0) < 1

which means that the equilibrium point (z*,y") of the system (1) is globally
asymptotic stability.
Now, we consider the reaction-diffussion system of the form

1+
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with the Neumann boundary conditions

t
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for (¢,7) € [I,m] x [I,n] and t € ZT, where m and n are positive integers,
dy,ds > 0 are the diffusion coefficients,
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Clearly, (z*,y") 1s also positive equilibrium of (7)-(8), thus, the linearized
form of (7) in (z*,y*) = (u*,v%) 1s
{ t;H—qu —l—fuu +fu’b o)
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Then respectively taking the inner product of (9) with the corresponding
(k)

eigenfunction ;; ' of the eigenvalue Ay for (z,7), (k,I) € [1,m] x [1,n] and use

the Neumann boundary conditions (8), we see that
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Let U =31 E 1 ‘P;; x-- and VI =31, E;"':l @Ef”v%: then we have
Ul = f,Ut + £,V — di A U?
Lft-i—l =g D +§'1.Vt dg)\HV”

or

{ UT_FI = (fu - d'l’\ki) U’ + fv“’ft (10)

VH_] = gubrf + {91, — dg).k;] Vt.

If (U*, V?) is a solution of the system (10), then ( ug; = = Uty {kn,fux} =V, {k”)

also clearly a solution of (9) with the Neumann boundary conditions (8). Thus,
the unstable system (10) will produce that the problem (9)-(8) 1s untable.
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Proposition 2. If there exists some eigenvalue \y; of (3) such that system
(10) 15 untable, then the positive equilibrium (z*,y*) of (7)-(8) 1s also untable.

The Jacobian matrix of system (10) 1s

1+s20,y" —E£20, 3"

Jr = 1+ 1+, _ dl)\k‘: 0
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correspondingly, the characteristic function 1s
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which can cause Turing pattern. Calculating these mnequalities 13 difficult, but

we can rely on numerical simulations in the next section.

I11.  Numerical simulation
For simplicity, we let d1 = dy = d, ¢ = vy = ¥, &1 = g2 = £, and we provide

three examples that satisfy the conditions (11). In the following, a series of
numerical simulations will be performed so that we can explore the dynamieal
behavior of the discrete competition system (7) with the conditions (8). In all
of the following simulations, the small amplitude random perturbation 1z 0.001
around the steady state, the size of the lattice 15 chosen to be 200 x 200, and
set A = max (M) = 0.7998.

Simulations of pattern development at ¢ = 1000; 2000; 5000; 20000, which
shows the evolution 1n the spacing as the interaction time proceeds. Here we

choose three different sets of parameters, which can show us the speckle pattern
(see fig.1) and the strip type (see fig.2).
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Fig.2. the diagram when ¢ =14, =0.5,d =023

V. Conclusions
Firstly, we have presented a theoretical analysis of Turing instability for Leslie- Gower
competition model, and give some condition. Secondly, a large variety of Turing pattern are obtained by
numerical simulations which is consistent with the predictions drawn from the analysis of the discrete
competitive system.
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