American Journal of Engineering Research (AJER)2024American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-13, Issue-2, pp-118-127www.ajer.orgResearch PaperOpen Access

Power Flow Analysis and Voltage Stability Enhancement with Static Var Compensation on South Sulawesi Power Grid

Antarissubhi¹, Jeremias Leda², Simon Patabang³ Ramdania Tenreng⁴ ¹(Muhammadiyah Makassar University,South Sulawesi Indonesia Corresponding Author: antarissubhi@unismuh.ac.id

ABSTRACT : The purpose of a power flow study is to determine the voltage, phase angle, active and reactive power of each buses in the power grid. This study investigates the power flow in the South Sulawesi power grid that cause changes related to the operation of the 75 MW Sidrap Wind Farm or Pembangkit Listrik Tenaga Bayu. The Newton-Raphson method, one of the most popular methods for power flow is used for numerical calculations. This calculation is done in the environment of MATLAB for 33 buses. The calculation results show that the largest voltage change occurred on the Poso bus that is by 0.03 in per-unit. All buses experienced a phase angle shift, with the Poso bus also showing the largest shift by 43.580 degrees. The highest line losses of approximately 4.638 MW occurred on the line 18-19 Talassa to Geneponto transmission line, with total losses significantly reduced by 2,282 MW. It needs 30 MVAR installed at bus number 3 to improve voltage stability. These results were obtained by determining Poso as swing bus.

KEYWORDS: power flow, newton-raphson, static var compensation, south sulawesi.

Date of Submission: 03-02-2024

Date of acceptance: 14-02-2024

I. INTRODUCTION

1.1 Background

The need of power system development is determined by the economic operation of power system and efficient investment scheduling and also must be based on appropriate planning. The study of power flow is the basis of electrical energy system development. The power flow study calculates the voltage, current, power factor, active and reactive power at various buses in an electrical system under normal conditions, both for present operation and for expected operation to occur in the future. Trend research is very important when planning future system development. For successful operation, it is important to understand the impact of connections to other power grid systems, newly installed loads, new power plants and transmission lines prior to installation [1-4].

The latest development of South Sulawesi power grid system is the operation of the Wind Farm or Pembangkit Listrik Tenaga Bayu (PLTB) located in the Pabalesan Mountains, Mattirotasi Tashi Village, Watan Pulu District, and Sidrap Regency. The Sidrap PLTB connection with a capacity of 75 MW will definitely impact South Sulawesi's power system. In the document of PLN RUPTL 2016-2025: 449 [5], Sidrap PLTB is planned as one of the power plants in South Sulawesi. Therefore, an updated power flow study is needed to serve as a comparison and evaluation for the operation of 75 MW Sidrap PLTB in the power grid of South Sulawesi.

1.2 Previous Study

To solve the power flow equation, assume that the power system is in equilibrium. Four parameters are assigned to each bus: voltage magnitude |V|, phase angle δ , active power P, and reactive power Q. Buses are divided into the following categories: 1) slack or swing bus where the voltage |V| and phase angle δ is known, 2) load bus where active power P and reactive power Q are known, and 3) generator bus where phase angle δ and active power P are known [6-9]. There are several methods to solve the power flow equation, for instance

Gauss-Seidel method, Newton-Raphson method, fast the couple method and others. All methods have been proven to works well and correct [10-13].

Performing power flow analysis using the Gauss-Seidel method provides fast and accurate results according to I Putu S A, (2004)). However, it is only suitable for power systems with a small number of busbar. Firdaus and Susanto, F. (2014) conducted a study on power flow research in South Sulawesi and West Sulawesi using the Electric Power System Analysis Program (ETAP). Meanwhile, A.M. Shiddiq Yunus et al., 2014 discusses the power flow in the electrical interconnection system of the South Sulawesi grid [14, 15-19].

1.3 Objective

The main objectives of this research are:

- Calculate the voltage, phase angle, active power, and reactive power of each bus of the South Sulawesi power interconnection system related to the operation of the Sidrap 75 MW PLTB.
- Calculate of line losses in transmission lines.
- Determine the static var compensator to improve voltage stability on the grid system of South Sulawesi.

II. THEORETICAL REVIEW

2.1 Newton-Raphson Method

In an interconnected system with *n* buses, if P_k and Q_k are known, the voltage on each *k* bus can be calculated using the following formula:

$$V_{k} = \frac{1}{V_{kk}} \left(\frac{P_{k} - jQ_{k}}{V_{k}^{*}} - \sum_{n=1}^{N} Y_{kn} . V_{n} \right)$$
(1)

Here, $n \neq k$.

For a particular bus where voltage is specified instead of reactive power, the real and imaginary components of voltage are determined by first calculating the value of reactive power [20-23]. From equation (1), one can get:

$$P_k - jQ_k = \left(Y_{kk}.V_k + \sum_{n=1}^N Y_{kn}.V_n\right) \times V_k^*$$
(2)

If n = k then:

$$P_{k} - jQ_{k} = V_{k}^{*} \sum_{n=1}^{N} Y_{kn} V_{n}$$
(3)

$$Q_k = -\operatorname{Im}\left\{V_k^* \sum_{n=1}^N Y_{kn} V_n\right\}$$
(4)

The process of solving linear algebraic equations like this is called iteration (Stevenson Jr, 1990: 184-185). Application of Newton-Raphson method can be performed using bus voltages and transmission line admittances in polar or rectangular form. If in polar form then:

$$V_{k} = |V_{k}| \angle \delta_{k} \qquad V_{n} = |V_{n}| \angle \delta_{n} \qquad Y_{kn} = |Y_{kn}| \angle \theta_{kn}$$
(5)

So then:

$$P_{k} - jQ_{k} = \sum_{n=1}^{N} \left| V_{k} V_{n} Y_{kn} \right| \angle (\theta_{kn} + \delta_{n} - \delta_{k})$$
(6)

$$P_{k} = \sum_{n=1}^{N} \left| V_{k} V_{n} Y_{kn} \right| \cos(\theta_{kn} + \delta_{n} - \delta_{k})$$
(7)

www.ajer.org

$$Q_{k} = -\sum_{n=1}^{N} \left| V_{k} V_{n} Y_{kn} \right| \sin(\theta_{kn} + \delta_{n} - \delta_{k})$$
(8)

Although the values of P_k and Q_k are known, nevertheless values of V_k and δ_k are not known yet, except the value of slack or swing buses. Nonlinear equations of equation (7) and (8) can be decomposed into a series of simultaneous linear equations by specifying the relationship between active power change ΔP_k and reactive power ΔQ_k with respect to voltage change ΔV_k and phase angle change $\Delta \delta_k$ as follows [24-25]:

$$\begin{vmatrix} \Delta Pk \\ \Delta Qk \end{vmatrix} = \begin{vmatrix} J1 & J2 \\ J3 & J4 \end{vmatrix} \begin{vmatrix} \delta k \\ Vk \end{vmatrix}$$
(9)

The elements of the Jacobian matrix can be calculated using equations (7) and (8) at each iteration step, starting from the estimation of the initial voltage and phase angle values. Based on the difference between the set value and the calculation result, changes in active power ΔP_k and reactive power ΔQ_k can also be calculated using the inverse method iteratively. The iterative process then continues until the set tolerance is reached [26].

2.2 Power Flow And Losses of Line Transmission

After calculating the iterative solution for the bus voltage, the next step is to calculate the power flow and losses in the transmission line. Notice the transmission line that connects bus *i* and bus *j* below [27-28]:

Figure.1. Transmission Line Model for Power Flow Calculation

Line current which flow through bus *i* is defined by the positive polarity of direction of $i \rightarrow j$ as follows:

$$I_{ij} = I_l + I_{i0} = y_{ij} (V_i - V_j) + y_{i0} V_i$$
(10)

On the other hand, line current which flow through bus *j* is defined by the positive polarity of direction of $j \rightarrow i$ as follows:

$$I_{ji} = -I_l + I_{j0} = y_{ij} (V_j - V_i) + y_{j0} V_j$$
(11)

Complex power Sij from bus i to j and also Sji from bus j to i are express as follow:

$$S_{ij} = V_i I_{ij}^* \tag{12}$$

$$S_{ji} = V_j I_{ji}^* \tag{13}$$

This means that the losses of line transmission can be express in algebraic summation as follows:

$$S_{Lij} = S_{ij} + S_{ji} \tag{14}$$

2.3 Static Var Compensation

Circuits and loads in power system, in addition to conductor resistance, always contain reactance. Transmission lines, for example have series inductance and shunt capacitance which are affected by circuit length, conductor size and spacing. In long lines these quantities may became significant [29-30]. Also, most loads for instance electric motor, transformer, etc, have reactance so that there is a reactive component in the current supplying the load. The total current can be expressed by its in phase and out of phase components called real and reactive, respectively.

The real powers in Watts are:	
Single phase case:	Watts = $E \times I \times \cos \Theta$
Three phase case:	Watts = $1,732 \times E \times I \times \cos \Theta$
The reactive powers in Var are:	
Single phase case:	$Var = E \times I \times \sin \Theta$
Three phase case:	$Var = 1,732 \times E \times I \times \sin \Theta$

Various methods are used to supply var needed in a power system, these are shunt reactors, shunt capacitors, series capacitors, synchronous condensers and static var compensators. Static var devices do not provide the real power input provided by the inertia of synchronous condensers when frequency disturbance occur. The choice between static and rotating devices to supply var requirements will be based on capital costs of installation, maintenance cost, losses and the need for inertial support.

III. RESULT AND DISCUSSION

3.1 Method

This research is a simulation using a digital computer. Several computer programs have been developed to perform power flow studies but this study uses MATLAB program. The program used to complete the power flow is *lfnewton*. It has been implemented with *lfybus, busout, and lineflow* (Hadi Saadat: 1998) and has been tested with IEEE 30 bus systems and 41 sections of transmission lines. The procedure stages are:

- Data preparation includes bus data and line data based on the single line diagram of South Sulawesi grid system in normal conditions.
- Newton-Raphson power flow calculations are performed by determining base values, accuracy, acceleration factors, and maximum iterations for full-load operating scenarios.
- Initial values for each bus must be entered in the bus data file.
- Once the complete data is prepared, the program can be executed.
- The results are displayed on the computer screen.

The choice of bus data file format is customized to accommodate all the required bus information in each column: voltage |V|, phase angle δ , active power *P* and reactive power *Q* including the shunt capacitor. Each bus must be assigned a code, that is, 1 for slack or swing buses, 2 for generator buses, and 0 for load buses. In the same way, the line data file format must be adapted to the need for transmission line parameters: resistance *R*, reactance *X* and half of *line charging susceptance* $\frac{1}{2}B$ in per-unit according to MVA base and transformer tap settings.

Fig.1. South Sulawesi Power Grid Source: RUPTL PLN 2016-2025

3.2 Result And Discussion

Power flow solution in this research is done by selecting Poso bus as slack or swing bus. This is because Poso is the farthest generating bus from Makassar as load center. The following calculation results show the voltage ratio and phase angle of different buses of South Sulawesi power grid with and without Sidrap 75 MW PLTB interconnection.

Solution	by Newto Without	on-Raphson Method PLTB Sidrap	d With PLI	B Sidrap	
_					
Bus	Voltage	Angle	Voltage	Angle	Nominal
No.	Mag.(pu)	Degree	Mag.(pu)	Degree	Voltage kV
1	1.090	0.000	1.090	8.630	150
2	1.031	-0.240	1.032	6.230	150
3	0.993	-1.981	0.994	4.492	150
4	0.926	-5.183	0.927	1.294	150
5	1.010	1.854	1.010	6.870	150
6	1.020	2.740	1.022	5.993	150
7	1.030	3.128	1.030	6.402	150
8	1.030	-0.548	1.030	2.257	150
9	1.028	-5.409	1.028	-3.077	150
10	1.050	-5.674	1.050	-3.377	150
11	1.044	-5.478	1.044	-3.191	150
12	1.070	-5.164	1.070	-2.922	150
13	1.141	-5.661	1.141	-3.419	150
14	1.121	-6.134	1.121	-3.891	70
15	1.066	-5.326	1.066	-3.084	150
16	1.035	-5.173	1.035	-2.996	150
17	1.053	-4.233	1.054	-2.056	150
18	1.070	-0.569	1.070	1.563	150
19	1.030	7.325	1.030	9.267	150
20	1.025	4.901	1.025	6.697	150
21	1.010	3.168	1.010	4.792	150
22	1.002	3.416	1.002	4.943	150
23	1.010	5.564	1.010	6.949	150
24	1.030	7.525	1.030	8.855	150
25	1.011	5.266	1.016	6.485	150
26	0.976	20.775	1.002	1.539	150
27	1.010	27.415	1.010	0.465	150
28	1.030	43.580	1.000	0.000	150
29	1.006	3.122	1.012	4.530	150
30	1.067	-5.292	1.067	-3.049	30
31	1.010	-5.096	1.010	-2.821	70
32	1.013	-5.528	1.013	-3.230	70
33	1.012	-5.515	1.012	-3.229	70

It can be seen on the solution, that the bus voltages is a range of value between 0,096 - 1.141 per unit in which the changes is at bus number 2, 3, 4, 6, 17, 25, 26, 28 and 29. The biggest change is in the bus number 28 with reduction of 0.03 per unit. However, all buses have a phase angle δ shift or displacement. The largest displacement occurred at bus number 28 with a value of 43,580 degrees. At the same time, the flow of active power *P* and reactive power *Q* between the busbar also change depend on total power produced by the generator as follows:

3 Sidrap 75 M	1W					
Slack/Swing			l	Generat	cion	Injected
is Te	otal	MW	Mvar	MW	Mvar	Mvar
SO		1054.000	790.500	1084.232	670.548	170.000
idrap 75 MW						
/Swing		Load	l	Generat	cion	Injected
is To oso	otal	MW 1054.000	Mvar 790.500	MW 1081.950	Mvar 663.079	Mvar 170.000
	B Sidrap 75 M /Swing 1s T oso idrap 75 MW c/Swing 1s T oso	B Sidrap 75 MW c/Swing ns Total oso idrap 75 MW c/Swing ns Total oso	B Sidrap 75 MW c/SwingLoad as Total MW bso 1054.000 idrap 75 MW c/SwingLoad as Total MW bso 1054.000	B Sidrap 75 MW Load c/Swing Total MW Mvar los Total MW Mvar loso 1054.000 790.500 idrap 75 MW Load los Total MW s Total MW los Total MW loso 1054.000 790.500	B Sidrap 75 MW c/SwingLoadGenerat us Total MW Mvar MW oso 1054.000 790.500 1084.232 idrap 75 MW c/SwingLoadGenerat us Total MW Mvar MW oso 1054.000 790.500 1081.950	B Sidrap 75 MW c/Swing Load is Total MW Mvar isso 1054.000 790.500 1084.232 670.548 idrap 75 MW Load Generation iss Total MW Mvar idrap 75 MW Load Generation iss Total MW Mvar iss Total MW Mvar iss 1054.000 790.500 1081.950

	Bus		Load		Generation		Injected		Remark	
No	Code	Name	MW	Mvar	MW	Mvar	Qmin	Qmax	Mvar	
1	2	Bakaru	16	12	129					150 kV
2	0	Polmas	16	12						150 kV
3	0	Majene	16	12						150 kV
4	0	Mamuju	24	18						150 kV
5	2	Pinrang	24.8	18.6	0.8					150 kV
6	0	Parepare	36.8	27.6						150 kV
7	2	Suppa			64.8					150 kV
8	2	Barru	16	12	50					150 kV
9	0	Pangkep	99.6	74.7					50	150 kV
10	0	Bosowa	36.8	27.6						150 kV
11	0	Kima	24	18						150 kV
12	2	Tello	48	36	205.32					150 kV
13	0	Tallo Lama	48	36					40	150 kV
14	0	Bontoala	48	36						70 kV
15	0	Panakukang	48	36						150 kV
16	0	TanjungBunga	96	72						150 kV
17	0	Sungguminasa	72	54						150 kV
18	2	Talasa			115					150 kV
19	2	Jeneponto	40	30	200					150 kV
20	0	Bulukumba	24	18					30	150 kV
21	2	Sinjai	24	18	10					150 kV
22	0	Bone	56	42					30	150 kV
23	2	Soppeng	24	18	15					150 kV
24	2	Sengkang	24	18	195					150 kV
25	0	Sidrap	40	30	75					150 kV
26	0	Makale	24	18						150 kV
27	2	Palopo	24	18	9					150 kV
28	1	Poso			195					275 kV
29	0	Maros	24	18						150 kV
30	0	Barawaja	8	6						30 kV
31	2	Borongloe	24	18	20					70 kV
32	0	Mandai	32	24						70 kV
33	0	Daya	16	12					20	70 kV
	T	otal	1.054.0	790.5	1,283,9	-	-	-	170	

Table 1. Bus Data

Bus	Due I				_	_			
	Dus	R (pu)	X (pu)	B/2 (pu)	 Bus	Bus	R (pu)	X (pu)	B/2 (pu)
From	То		u ,		From	To	N 7	· · ·	
1	2	0.02627	0.09440	0.00743	9	12	0.01090	0.03919	0.00493
1	5	0.03076	0.11023	0.01012	9	32	0.01090	0.03919	0.00493
2	3	0.02630	0.09451	0.00744	16	17	0.00354	0.02128	0.00271
2	6	0.03663	0.13159	0.01819	17	18	0.00485	0.03324	0.00627
3	4	0.07342	0.26379	0.02076	17	29	0.02717	0.18617	0.03512
5	6	0.01388	0.04974	0.00670	18	19	0.03333	0.11974	0.00942
6	7	0.00393	0.01413	0.00111	19	20	0.02431	0.08733	0.00687
6	8	0.02314	0.08290	0.01116	20	21	0.07195	0.25851	0.02035
6	25	0.01002	0.03599	0.00283	20	22	0.07195	0.25851	0.02035
8	9	0.02419	0.08667	0.01167	21	22	0.04064	0.14603	0.01149
9	10	0.01090	0.03919	0.00493	22	23	0.02289	0.08153	0.00804
9	11	0.01090	0.03919	0.00493	23	24	0.01053	0.06335	0.00807
10	12	0.01683	0.06049	0.00761	23	25	0.02821	0.10138	0.00964
11	12	0.01090	0.03919	0.00493	24	25	0.01090	0.03919	0.00493
12	13	0.00363	0.01300	0.00175	25	29	0.01090	0.03919	0.00493
12	17	0.00192	0.01318	0.00249	25	26	0.03137	0.18876	0.02406
12	15	0.00236	0.00848	0.00067	26	27	0.01959	0.07038	0.00554
13	14	0.02023	0.03714	0.00011	27	28	0.04064	0.14603	0.01149
12	30	0.01090	0.03919	0.00493	31	32	0.01090	0.03919	0.00493
12	31	0.01090	0.03919	0.00493	31	33	0.01090	0.03919	0.00493
					32	33	0.01090	0.03919	0.00493

Table 2. Line Data

Source: PT. PLN (Persero) Sulselrabar

The total power P produced by all generators before and after the Sidrap-PLTB connection is reduced by 2,282 MW, and the power Q is also reduced by 7,469 MVar.

Line losses also changes, for overall, transmission line losses is reduced by 2,282 MW, with the highest losses occurred in sections 18-19 and the highest loss reductions in sections 27-28.

Fig.2. Single Line Diagram of South Sulawesi Power Grid in Normal Condition Source: PT. PLN (Persero) Sulselrabar

3.3 Voltage Stability Enhancement

It can be seen on the simulation result of power flow Solution by Newton-Raphson Method, there are two buses that have voltage magnitude below 1.0 per-unit value with PLTB Sidrap. The values are 0.994 on bus number 3 and 0.927 on bus number 4. While on bus number 4, the voltage magnitude is change from 0.976 to 1.002 which is fine. The other bus voltage magnitude is in good condition.

To improve the voltage magnitude on bus number 3 and also bus number 4 at least up to its nominal or 1.0 per-unit the used of static var compensator of is then needed. The installation of 30 MVAR static var compensator at bus number 4 is taken into simulation. This will leads to enhance voltage stability.

Without 	VAR Compe Without	ensation PLTB Sidrap	With PLTH	3 Sidrap	
Bus No.	Voltage Mag.(pu)	Angle Degree	Voltage Mag.(pu)	Angle Degree	Nominal Voltage kV
 3 4	0.993 0.926	-1.981 -5.183	0.994 0.927	4.492 1.294	150 150
26	0.976	20.775	1.002	1.539	150
With VAF 	Compensa Without	ation PLTB Sidrap	With PLTH	3 Sidrap	
Bus No.	Voltage Mag.(pu)	Angle Degree	Voltage Mag.(pu)	Angle Degree	Nominal Voltage kV
 3 4	1.042 1.059	-14.077 -17.915	1.042 1.059	4.132 0.295	150 150
26	0.998	-8.328	1.002	1.628	150

Based on the solution above, one can say that voltage stability has been enhance because the magnitude of voltage on bus number 3, 4 and 26 are improved to 1.042, 1.059 and 1.002 per-unit, respectively.

The final result of simulation as follows:

Power Flow Solution by Newton-Raphson Method Maximum Power Mismatch = 1.23379e-07 No. of Iterations = 5

Bus	Voltage	Angle	Load		Gene	Generation		
No.	Mag.	Degree	MW	Mvar	MW	Mvar	Mvar	
1	1.090	8.814	16.000	12.000	129.000	105.783	0.000	
2	1.050	6.187	16.000	12.000	0.000	0.000	0.000	
3	1.042	4.132	16.000	12.000	0.000	0.000	0.000	
4	1.059	0.295	24.000	18.000	0.000	0.000	30.000	
5	1.010	7.052	24.800	18.600	0.800	-75.139	0.000	
6	1.023	6.159	36.800	27.600	0.000	0.000	0.000	
7	1.030	6.584	0.000	0.000	64.800	34.002	0.000	
8	1.030	2.440	16.000	12.000	50.000	19.677	0.000	
9	1.028	-2.898	99.600	74.700	0.000	0.000	50.000	
10	1.050	-3.198	36.800	27.600	0.000	0.000	0.000	
11	1.044	-3.013	24.000	18.000	0.000	0.000	0.000	
12	1.070	-2.744	48.000	36.000	205.320	547.347	0.000	
13	1.141	-3.241	48.000	36.000	0.000	0.000	40.000	
14	1.121	-3.713	48.000	36.000	0.000	0.000	0.000	
15	1.066	-2.906	48.000	36.000	0.000	0.000	0.000	
16	1.035	-2.818	96.000	72.000	0.000	0.000	0.000	
17	1.054	-1.879	72.000	54.000	0.000	0.000	0.000	
18	1.070	1.740	0.000	0.000	115.000	98.650	0.000	
19	1.030	9.442	40.000	30.000	200.000	-34.896	0.000	
20	1.025	6.870	24.000	18.000	0.000	0.000	30.000	
21	1.010	4.964	24.000	18.000	10.000	18.822	0.000	
22	1.002	5.113	56.000	42.000	0.000	0.000	30.000	
23	1.010	7.118	24.000	18.000	15.000	-15.279	0.000	
24	1.030	9.023	24.000	18.000	195.000	46.631	0.000	
25	1.017	6.648	40.000	30.000	75.000	0.000	0.000	
26	1.002	1.628	24.000	18.000	0.000	0.000	0.000	
27	1.010	0.527	24.000	18.000	9.000	38.882	0.000	
28	1.000	0.000	0.000	0.000	-7.662	-5.835	0.000	
29	1.012	4.697	24.000	18.000	0.000	0.000	0.000	
30	1.067	-2.871	8.000	6.000	0.000	0.000	0.000	

		<i>v</i>	0	0	N N	/	
31	1.010	-2.643	24.000	18.000	20.000	-148.984	0.000
32	1.013	-3.051	32.000	24.000	0.000	0.000	0.000
33	1.012	-3.050	16.000	12.000	0.000	0.000	20.000
Tota	1		1054.000	790.500	1081.258	629.660	200.000

IV. CONCLUSION

The power flow solution gives the complex voltages at all the buses and the complex power flows in the lines. It provides information with the node voltage values and their respective phase angles, injected power at all the buses in a connected network hence defining the best location as well as optimum ability of the proposed design of generating station or substation. Conditions of over voltage or over load may occur at power system network and to deal with these problems power flow analysis is an important technique

The conclusion that can be drawn based on the results of power flow and line losses is that with the 75 MW PLTB Sidrap interconnected there is a change in due to changes in the bus voltages |V|, phase angle δ , real power *P* and reactive power *Q* in the South Sulawesi power grid, namely:

- a) Changes to the bus voltage magnitude |V| occur on bus number 2, 3, 4, 6, 17, 25, 26, 28, and 29. There was a significant leak on bus number 28, meaning that there were about 0.03 per-units.
- b) All buses experience changes in phase angle δ , with the most occurred on bus number 28 of 43,580 degrees.
- The highest line losses of 4.638 MW occur in sections 18 and 19, the transmission from Tallasa to c) Jeneponto.
- The installation of 30 MVAR compensator is needed at bus number 4 to enhance voltage stability. d)
- When using bus Poso as a swing or slack bus, total line losses decrease significantly. e)

REFERENCES

- Stevenson, Jr. William D., 1990, Analisis Sistem Tenaga Listrik, 4th ed. Jakarta: Penerbit Erlangga. [1].
- A.M. Shiddiq Yunus, et.al, 2014, Power Flow of Electrical Interconnection System of Sulselrabar System 2014, Makassar [2]. International Conference on Electrical Engineering and Informatics MICEEI 2014, Universitas Hasanuddin Makassar, 26-30 November.
- [3]. Firdaus, Susanto, F., 2014, Studi Aliran Daya Pada Sistem Sulawesi Selatan Dan Barat Dengan Menggunakan Program ETAP 4.0, NALAR, Vol. 7, No.1, Hal. 736-744.
- [4]. Hadi Saadat, Power System Analysis, USA: McGraw Hill, 1999.
- [5]. RUPTL PLN 2016-2025, Keputusan Menteri Energi Dan Sumber Daya Mineral Republik Indonesia Nomor 5899 K / 20 / MEM / 2016 tentang Pengesahan Rencana Penyediaan Tenaga Listrik PT. Perusahaan Listrik Negara (Persero) Tahun 2016 s.d. 2025, Jakarta: ESDM.
- [6]. I Putu Suka Arsa., 2004., Penerapan Metode Gauss Seidel Untuk Meningkatkan Kualitas Perkuliahan Jaringan Distribusi Melalui Pembelajaran Berbasis Komputer (Matlab)., Jurnal Pendidikan dan Pengajaran IKIP Negeri Singaraja.
- [7]. Seifi, H., Sepasian, M.S.: 'Electric power system planning: issues, algorithms and solutions' (Springer Science & Business Media, Berlin, 2011)
- Borkowska, B.: 'Probabilistic load flow', IEEE Trans. Power Appar. Syst., 1974, PAS-93, (3), pp. 752-759. [8].
- [9]. Zhao M, Chen Z, Blaaberg F. Load Flow Analysis for Variable Speed Offshore Wind Farms. IET Renew. Power Gener. 2009; 3(2): 120-132.
- [10]. Castro LM, et al. A Unified Approach for the Solution of Power Flows in Electric Power Systems Including Wind Farms. Electric Power Systems Research. 2011; 81: 1859-1865.
- [11]. Haque MH. Incorporation of Fixed Speed Wind Turbine Generators in Load Flow Analysis of Distribution Systems. International Journal of Renewable Energy Technology. 2015; 6(4): 317-324.
- [12]. Glover JD, et al. Power System Analysis and Design. Cengage Learing Nelson Education Ltd. 2012.
- Gianto R, Khwee KH. A New Method for Load Flow Solution of Electric Power Distribution System. International Review of [13]. Electrical Engineering. 2016; 11(5): 535-541.
- [14]. Bunch, J.B., Miller, R.D., Wheeler, J.E.: 'Distribution system integrated voltage and reactive power control', IEEE Trans. Power Appar. Syst., 1982, PAS-101, (2), pp. 284–289. Shirmohammadi, D., Hong, H.W.: 'Reconfiguration of electric distribution networks for resistive line losses reduction', IEEE
- [15]. Trans. Power Deliv., 1989, 4, (2), pp. 1492-1498.
- [16]. Tinney, W.F., Hart, C.E.: 'Power flow solution by Newton's method', IEEE, Trans. Power Appar. Syst., 1967, PAS-86, (11), pp. 1449-1460.
- [17]. Sauer, P.W., Pai, M.A.: 'Power system steady-state stability and the load-flow Jacobian', IEEE Trans. Power Syst., 1990, 5, (4), pp. 1374-1383
- Stott, B., Alsac, O.: 'Fast decoupled load flow', IEEE Trans. Power Appar. Syst., 1974, PAS-93, (3), pp. 859-869. [18]
- Iwamoto, S., Tamura, Y.: 'A load flow calculation method for ill-conditioned power systems', IEEE Trans. Power Appar. Syst., [19]. 1981, PAS-100, (4), pp. 1736-1743.
- [20]. Tortelli, O.L., Lourenço, E.M., Garcia, A.V., et al.: 'Fast decoupled power flow to emerging distribution systems via complex pu normalization', IEEE Trans. Power Syst., 2015, 30, (3), pp. 1351-1358.
- [21]. Ghatak, U., Mukherjee, V.: 'An improved load flow technique based on load current injection for modern distribution system', Int. J. Electr. Power Energy Syst., 2017, 84, pp. 168–181.
- Maya, K., Jasmin, E.: 'A three phase power flow algorithm for distribution network incorporating the impact of distributed [22]. generation models', Proc. Technol., 2015, 21, pp. 326-331.
- [23]. Wang, X., Shahidehpour, M., Jiang, C., et al.: 'Three-phase distribution power flow calculation for loop-based microgrids', IEEE Trans. Power Syst., 2018, 33, (4), pp. 3955–3967.

- [24]. Cheng, C.S., Shirmohammadi, D.: 'A three-phase power flow method for real-time distribution system analysis', IEEE Trans. Power Syst., 1995, 10, (2), pp. 671–679.
- [25]. Liu, J., Salama, M.M.A., Mansour, R.R.: 'An efficient power flow algorithm for distribution systems with polynomial load', Int. J. Electr. Eng. Edu., 2012, 39, (4), pp. 371–386.
- [26]. Adriana SQ Ferreira, Carlos A., Castro, Daniel P., Bernardon, and Garcia J. Vinícius. "Power flow solution with controls and limits represented by nonlinear programming techniques", In Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th International, IEEE pp. 1-5. 2009.
- [28]. C. Chen, J. Wang, Z. Li, H. Sun, and Z. Wang, "PMU uncertainty quantification in voltage stability analysis," IEEE Trans. Power Syst., vol. 30, no. 4, pp. 2196-2197, July 2015.
- [29]. Vignesh V, S. Chakrabarti and S. C. Srivastava, "Classification and modelling of loads in power systems using SVM and optimization approach," in Proc. IEEE PES General Meeting, Denver, CO, 2015, pp. 1-5.
- [30]. S. M. Zali and J. V. Milanovic, "Generic model of active distribution network for large power system stability studies," IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3126-3133, Aug. 2013.