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ABSTRACT 

The integration of bioethanol into gasoline blends has gained significant attention for improving engine 

performance and reducing environmental impacts. This study evaluated predictive modeling and error analysis 

of the physicochemical characteristics of gasoline-bioethanol blends (E0, E5, E10, and E15) in a four-stroke 

gasoline engine. The importance of optimizing blend ratios for efficiency and sustainability underscores the 

relevance of this research. The physicochemical characteristics, including cetane number, viscosity, density, 

carbon residue, and heating values, were measured using a data logger and analyzed across blend ratios ranging 

from 0% to 15%. Profiles of these characteristics were created to assess their relationship with bioethanol 

content. Predictive models were developed using SAS software, with R-squared and RMSE values evaluated as 

performance metrics to assess model accuracy and fitness. 

The results indicate that the coefficient of performance (COP) demonstrated higher sensitivity to bioethanol 

content in the 0-10% range, stabilizing about10%, suggesting an optimal blend ratio of around 10%. Brake 

power efficiency decreased linearly with increasing bioethanol content due to the lower energy density of higher 

ethanol blends. However, the enhanced combustion efficiency of bioethanol compensated for some efficiency 

losses. Notably, the E10 blend achieved the highest brake power of 391.65 W, Model evaluation revealed robust 

predictive capabilities, with R-squared and RMSE values for COP at 0.964 and 0.585, respectively, and for 

braking thermal efficiency at 0.996 and 0.133, respectively. These metrics confirm the model's high accuracy 

and reliability in predicting engine performance characteristics across blend ratios. Future research should 

explore the impact of higher ethanol concentrations on engine durability and further optimization of bioethanol-

gasoline formulations for enhanced sustainability and effectiveness. 

Keywords:  Predictive Modeling;  Engine Performance; Error Analysis, Physicochemical, SAS, Bioethanol 

Blends 
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I. INTRODUCTION 

The increasing need for sustainable and eco-friendly energy sources has heightened the emphasis on 

renewable fuels such as bioethanol which was derived from biomass like corn, sugarcane, and cellulosic 

materials, provides a renewable substitute for fossil fuels. Combining bioethanol with gasoline diminishes 

greenhouse gas emissions and improves fuel characteristics, including octane rating, so enhancing engine 

performance. Gasoline-bioethanol mixtures, typically designated as E10 (10% ethanol) or E15 (15% ethanol), 

are already utilized worldwide, demonstrating the pragmatic potential of bioethanol in tackling energy and 

environmental issues [1]. The incorporation of ethanol modifies the physicochemical characteristics of gasoline, 

encompassing density, viscosity, energy content, and vapor pressure. These modifications affect combustion 

properties, engine efficiency, and emissions. Understanding and forecasting these alterations is essential for 

optimizing blend formulations to attain a balance among efficiency, performance, and environmental 

sustainability. Predictive modeling provides a robust method for understanding the intricate relationships 
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between fuel characteristics and engine performance. The predictive models can replicate the impact of ethanol 

concentration fluctuations on the physicochemical parameters of the mix using experimental data and 

sophisticated computational methods, Biodiesel is being utilized in a growing array of sectors as a clean energy 

source, as global demand for renewable energy rises and It can be directly blended with petroleum diesel and is 

extensively utilized in transportation, agricultural machinery, power generation equipment, and several other 

sectors. In recent years, numerous nations and areas have advanced the production and utilization of biodiesel 

via policy incentives and regulatory mandates to diminish reliance on fossil fuels and mitigate greenhouse gas 

emissions [,2,3]. 

Biodiesel has emerged as a highly viable alternative fuel among other renewable energy sources due to 

its renewability, environmental sustainability, and compatibility with existing diesel engines. Biodiesel is a fuel 

derived by the transesterification of vegetable oil, animal fat, or waste oil with alcohols (such as methanol or 

ethanol), primarily consisting of fatty acid methyl esters (FAMEs). In comparison to conventional petroleum 

diesel, biodiesel not only diminishes greenhouse gas emissions but also significantly lowers the emissions of 

carbon monoxide (CO), hydrocarbons (HC), and particle matter (PM), thus alleviating air pollution and 

enhancing environmental quality [5]. Globally, the utilization of biodiesel fosters agricultural and industrial 

advancement while significantly diminishing reliance on petrochemical fuels [6]. Nonetheless, notwithstanding 

the benefits exhibited by biodiesel in the environmental and energy sectors, numerous challenges persist in its 

practical implementation. The physicochemical qualities of biodiesel vary considerably based on the raw 

materials and production methods, which directly influence its performance in diesel engines [7]. The 

combustion characteristics, emission characteristics, and engine performance effects of biodiesel in engines also 

fluctuate based on the fuel content. Consequently, precise prediction of biodiesel characteristics and its efficacy 

in diesel engines is a primary emphasis of contemporary research [8]. 

The characteristics of biodiesel directly influence its efficacy in diesel engines. The physicochemical 

properties of biodiesel, including viscosity, density, heating value, and oxidation stability, influence not only the 

combustion efficiency of the fuel in the engine but also the engine's starting performance, fuel consumption, 

emission characteristics, and long-term reliability. The combustion process of biodiesel in diesel engine systems 

directly influences thermal efficiency, power production, and emissions. The elevated oxygen concentration in 

biodiesel enhances combustion efficiency and diminish HC and CO emissions [9]. This trait results in elevated 

nitrogen oxide (NOx) emissions. Consequently, in the optimal design of engines, it is essential to account for 

both the physicochemical qualities and combustion characteristics of the fuel. Robust predictive models must be 

developed to assess the comprehensive performance of biodiesel. Conventional research methodologies 

primarily derive the qualities of biodiesel from experimental measurements; however, this approach is both 

time-intensive and expensive, and it is also subject to specific experimental inaccuracies. [10]. With the 

advancement of computing technology and data science, predictive methodologies utilizing mathematical 

models and machine learning (ML) have become significant research domains. These approaches may swiftly 

forecast biodiesel characteristics by utilizing current experimental data, offering a solid scientific foundation for 

fuel research and application. 

The creation of predictive models can significantly reduce trial time and costs while examining the 

effects of various raw materials and manufacturing methods on fuel performance, therefore optimizing 

production and enhancing fuel quality [11]. Prediction models utilizing linear regression, support vector 

machines (SVMs), and artificial neural networks (ANNs) can precisely forecast essential characteristics such as 

heating value, viscosity, and oxidation stability of biodiesel [12]. The utilization of these models allows 

researchers to comprehend the attributes of various biodiesel fuels, offering efficient instruments for fuel 

optimization design. Simultaneously, a growing contingent of researchers is employing data-driven 

methodologies to forecast the performance of biodiesel in engines. Through the analysis of extensive 

experimental data and model training, machine learning techniques elucidate the intricate nonlinear correlations 

between fuel characteristics and engine performance, resulting in very accurate forecasts. These methodologies 

offer novel insights into the research of biodiesel-engine interactions and provide substantial assistance in 

optimizing fuel mixtures and engine design. 

Sangotayo et al. [13] formulated models that delineate the statistical correlation between operational 

parameters, including input and outlet temperatures as a function of local time, and response variables such as 

COP and EER. Regression analysis is a robust statistical instrument that allows researchers and engineers to 

create predictive models for comprehending and enhancing systems. Biodiesel, as a crucial renewable energy 

source, has substantial environmental advantages and application potential due to its renewability, reduced 

carbon dioxide emissions, and favorable biodegradability. Biodiesel research has advanced swiftly, with 

scholars consistently broadening the sources of raw materials, fuel blend compositions, and application contexts 

for biodiesel [14]. The efficacy of biodiesel fluctuates based on the raw materials utilized. Moreover, biodiesel 

is generally combined with diesel through the use of additives for practical application. Consequently, the 

characteristics of biodiesel blends and their efficacy in diesel engines are more intricate than those of other 
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alternative fuels. This present research focuses on the assessment of predictive modeling and error analysis for 

physicochemical characteristics of gasoline-bioethanol blends in a gasoline engine 

 

II. MATERIALS AND METHODS 

Materials and Equipment 

This study utilized the following materials and components: a 35-liter Bed Side refrigeration system, a 

0.5mm thick aluminum light sheet, automotive paint in Ash color, a 16-gauge electrode, a capillary tube, a hose, 

fiber, resin, wheels, bioethanol fuel (quantity and composition), and refrigerant (R134a). 

 

Construction and Development of a Compartment 

The bio-ethanol engine, automotive air conditioner, and vaccine storage are the three systems that 

constitute the compact refrigeration module. The automotive air conditioner is directly connected to the bio-

ethanol generator. The refrigeration unit that is implemented is a modification of the original components of an 

automotive vapor-compression air-conditioning system, which consists of a compressor, condenser, expansion 

valve, and evaporator, as well as an oil chiller and oil separator. The movement of air streams facilitates the 

exchange of heat between the condenser and evaporator. The thermostatic type of expansion valve is 

implemented. The refrigerant for this investigation will be R-134a. The indoor coil, which serves as an 

evaporator, absorbs heat from the fan-driven air stream as the refrigerant passes through it, thereby delivering 

refrigeration. The refrigerant is introduced to the outdoor coil after compression, where it dissipates heat into an 

additional air stream. The automotive air conditioning system is capable of functioning in a refrigeration cycle.  

A 4-stroke, single-cylinder gasoline engine with a power output of 5 to 10 horsepower was implemented. This 

engine supplied the mechanical energy necessary to operate the refrigeration compressor. Equation (1) 

determines the engine's I.C. brake output and Equation (2) determines the brake power, PB. 

 
ω is the angular speed in radians per second  (rad/sec.) 

 

Thus,   

 

Equation 3 gives the expression for the brake thermal efficiency. 

 
Where PB is the brake power in watts, mf is the mass flow rate of the fuel by this engine in kg/s, CV is the 

heating value used by this engine in J/kg. 

 

Refrigeration System 

Figure 1 displays the components of the refrigeration system, which includes a compressor, refrigerant, heat 

exchangers, and condenser. The refrigeration system is depicted in Figure 2 from the orthogonal and isometric 

perspectives such as from the front, end, and top views. 

i. Refrigeration Compressor - a reciprocating compressor that is hermetically sealed and compatible with 

the engine's power output was chosen. The refrigerant's pressure and temperature were increased by 

compressing it with the compressor. 

ii. Refrigerant - R134a, an environmentally benign refrigerant, was used to charge the system. This was 

charged by the system's specifications.  

iii. Heat Exchangers - These were employed to transfer heat from the refrigerated chamber to the external 

environment. 

iv. Condenser - A condenser that is air-cooled and has an adequate heat rejection capacity was employed. 

The purpose of this was to transfer heat from the refrigerant to the ambient air. 

v. Evaporator - A fin-tube-type evaporator was implemented. This functioned to absorb heat from the 

refrigerated space. 

vi. Thermostatic Expansion Valve (TXV): A Thermostatic Expansion Valve (TXV) was installed. This 

regulated the passage of refrigerant into the evaporator. 

vii. Refrigeration Chamber: This is an insulated chamber with a volume of approximately 1-2 cubic meters 

that was employed. This functioned as the experiment's cooling compartment. 
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Figure 1: Refrigeration System 

 

 
Figure 2: Orthogonal and Isometric View of the Refrigeration System 

 

III. METHODOLOGY FOR SYSTEM ASSEMBLY 

A suitable coupling of the belt drive system was implemented to establish a connection between the 

refrigeration compressor and the petroleum engine. The compressor discharge line was connected to the 

condenser intake using copper tubing. The expansion valve outlet was connected to the evaporator inlet, and the 

expansion valve inlet was connected to the condenser outlet. The evaporator output was reconnected to the 

compressor vacuum line. All connections were examined to ensure they a secured and leak-proof, they were 

examined. Vacuum pumps were implemented to evacuate the system, thereby eradicating any air and moisture. 

Subsequently, the refrigerant (R134a) was introduced into the system. 

 

EVALUATION OF PERFORMANCE 

The compressor vacuum and discharge pressures, temperatures at critical locations, refrigerant flow 

rate, and fuel consumption rate of the gasoline engine were monitored and recorded. The temperature and flow 

rate data that were obtained were analyzed to ascertain the cooling capacity of the system. 

Coefficient of Performance (COP) was computed using Equation 4. 

 

 
 

The Gasoline-driven refrigeration system's efficacy was assessed using the Coefficient of Performance (COP) 

 

Data Collection 

The data logger was utilized to collect data on temperature, pressure, and flow rate throughout the 

testing period. The cooling capacity, coefficient of performance (COP), and fuel efficiency were computed. 

Theoretical predictions were compared with experimental outcomes. The data was examined to discern trends, 

including the impact of engine strain on system performance. 
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Technique of model assessment 

The correctness of the correlations was evaluated using two widely employed statistics metrics: Root 

Mean Square Error (RMSE)  and Mean Absolute Bias Error (MABE). (MJ/m2) for the regression model as 

presented in Eq.(5-7), [16,16,17]  

 

   nHHMBE mici /,,      (5) 

   nHHMABE mici /,,      (6) 

    2/12

,, / nHHRMSE mici     (7) 

 

The RMSE test offers insight into the short-term efficacy of correlations by facilitating a term-by-term 

comparison of the actual discrepancies between estimated and measured values; a smaller RMSE indicates a 

more precise estimate. A positive MBE indicates overestimation, whereas a negative number denotes 

underestimated by the model. A disadvantage of this approach is that an overestimation of one observation 

negates an underestimation of another, resulting in MBE values that demonstrate systematic error or bias, while 

RMSE reflects a non-systematic error [18]. The research assessed the correlations and regressions among the 

blend ratios, physicochemical properties, and performance parameters of the system The coefficient of 

determination (R²) seeks to attain a value of 1, ideally reaching 100% to ensure greater accuracy and reliability 

in data modeling [19]. 

 

IV. RESULT AND DISCUSSION 

Micro Cooling System Assembly Developed 

Micro-cooling systems were developed to maintain the appropriate temperature for preservation. Figure 

3 shows the developed micro-cooling system assembly and the assembly includes the insulated compartment, 

cooling unit, temperature control system, data logging and monitoring, evaporator outlet and blower motor with 

protective cover, condenser with fan, dryer, alternator, freezer compartment, base and base tire, vaccine tray, 

and working substance. 

Micro-cooling systems reduce heat transfer from the outside via an enclosed compartment and the 

highest-quality thermal insulation materials utilized in this compartment maintain the internal temperature 

regardless of ambient conditions. The compartment's cooling technology was designed to keep the air 

temperature within the vaccine storage range. The energy-efficient cooling unit runs for a long time without 

using much power and a precise temperature control system with digital thermostats and sensors was also 

developed. These components continuously monitor the interior temperature to modify cooling output. This 

ensures that temperature fluctuations from the ideal range (2°C to 8°C) were obtained, maintaining reliable 

preservation conditions. The system logs data for the tracking of temperature changes to monitor vaccine 

storage. 

The micro refrigeration system can run on AC mains and battery backup using a gasoline-bioethanol 

blend. Immunizations can be preserved in locations with intermittent energy, making them suitable for distant 

areas or emergencies. A crucial healthcare invention, the gasoline-driven vaccine refrigeration system (Figure 

3), ensures appropriate vaccine storage and transportation. Its strong architecture and precise temperature 

management help preserve vaccine efficacy and public health and safety. 

 

 
Figure 3: Assemblage of Gasoline-driven Refrigeration System 
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Physicochemical Properties of Gasoline-Bioethanol Blends 

Figures 4 to 11 show that each physicochemical feature fluctuated as the volume fraction of ethanol in 

the combinations rose. The predictive models were developed using SAS software as presented in Figures 4 -14 

with the corresponding coefficient of determination, R2, and its trends. The gasoline-bioethanol mixture 

increased density, viscosity, heating parameters, and specific gravity. Predictive models of the properties are 

shown on the plot and error analysis of models are evaluated as function MSE and RMSE. 

Figure 4 shows octane numbers against blending ratios. Fuel mixtures with ethanol blends from 6% to 

15% have higher octane ratings than those with 0 to 6%. At a 6% blend ratio, the minimum octane is 8°C. This 

helps reduce ringing in high-compression engines, which need higher-octane fuels. Ethanol burns cooler and 

consumes slower than gasoline, allowing for more regulated combustion. This improves the blend's effective 

octane rating, reducing pre-ignition and clanging. 

 

 
Figure 4: Trend of Octane Number against Blending Ratios 

 

Figure 5 shows the link between blending ratios and centipoise viscosity at 20 °C. Viscosity rises from 

0 to 6%, then drops as ethanol is added to gasoline, raising the blend ratio from 6% to 15%. At a 6% mix ratio, 

viscosity peaks at 14 centipoise. Additionally, ethanol is more viscous than petroleum. Blending increases fuel 

mixture viscosity (Figure 5). This change may affect engine combustion and fuel atomization. In cooler 

temperatures, ethanol may have higher fuel viscosity than pure gasoline, reducing engine performance and fuel 

delivery. At operational temperatures, viscosity may stabilize, but the compound will still be thicker than 

gasoline. 

 
Figure 5: Trend of Viscosity centipoise @ 20 °C against Blend Ratio (%) 
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In Figure 6, Flashpoint is graphed against blending ratios. Ethanol blends with gasoline from 6% to 

15% increase the fuel mixture's flashpoint. At 6% mix ratio, 25°C is the minimal flashpoint. Blended gasoline is 

less volatile than pure gasoline because its flash point rises. This can improve storage and handling safety. The 

addition of ethanol to gasoline should change its volatility. Ethanol reduces gasoline's lighter components' 

volatility, raising the blend's flash point. This change may lessen vapor lock and improve high-temperature 

safety. 

 
Figure 6: Trend of Flashpoint versus Blending Ratios 

 

Density-blending ratio correlation is shown in Figure 7. Density increases from 0 to 6%, then declines 

when ethanol is combined with gasoline, boosting the blend ratio from 6% to 15%. At 6%, the density reaches 

0.89 kg/L. Ethanol reduces gasoline density (Figure 7). Engine fuel supply and combustion may be affected by 

density reduction. The fuel density reduces as ethanol content increases. This may vary fuel volumetric flow 

rate, influencing engine performance and efficiency. The combination's density increased. 

 
Figure 7: Trend of Density (kg/L) versus Blend Ratio (%) 

 

Figure 8 shows the carbon residue-blending ratio graph. The carbon residue in the fuel mixture reduces 

from 0% to 10% but increases when 10% to 15% ethanol is added to gasoline. The minimum carbon residue is 

74% at a 10% mixing ratio. Ethanol has less carbon and more oxygen than gasoline, which reduces carbon 

residue at lower blend ratios, but gasoline's high carbon content persists at lower ethanol concentrations. The 

blend with 10% ethanol has the lowest Carbon residue (74%), indicating excellent mixing. However, adding 

more complicated compounds may increase Carbon residue. Lower carbon residue reduces particulate matter 

and CO2 emissions, while optimum blending ratios boost engine efficiency and reduce maintenance. 
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Figure 8: Trend of Carbon residue versus Blend Ratio (%) 

 

Blending ratios and Specific Gravity (SG) are shown in Figure 9. Specific gravity rises from 0 to 6%, 

then drops when ethanol is added to gasoline, raising the blend ratio from 6% to 15%. At 6% blend ratio, 

specific gravity peaks at 0.85. Specific gravity affects fuel density, viscosity, and combustion properties. Ideal 

blending ratios increase engine efficiency, power output, and emissions, and understanding SG-blend ratio 

connections helps refine fuel specifications. Suboptimal interactions between ethanol and gasoline at high 

concentrations, the surplus of ethanol increasing volume and decreasing density, and molecular arrangements 

that affect mixture density may reduce specific gravity beyond the 6% blend ratio. 

 

 
Figure 9: Trend of Specific Gravity @ 20oC versus Blend Ratio (%) 

 

Figure 10 shows how mixing ratios affect the pour point. As the blend ratio rises from 0% to 15%, the 

fuel mixture's pour point fluctuates. The pour point peaks at 8oC at a 10% blend ratio. It shows that ethanol's 

lower viscosity and higher volatility affect the blend's pour point. At 0-5% ethanol, gasoline dominates the 

combination. Ethanol and gasoline molecules interact to raise the pour point (5-10%). The blend's pour point 

(8°C) at 10% ethanol indicates optimal mixing. Over 10% pour point decreases: The pour point is decreased by 

adding 10-15% ethanol, which may disrupt molecular connections. The pour point affect gasoline flowability, 

especially in cooler conditions. Optimized blending ratios ensure engine reliability, while Pour point-blend ratio 

relationships guide fuel storage and management. 
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Figure 10: Trend of Pour point oC versus Blend Ratio (%) 

 

The cetane number and blending ratios are shown in Figure 11. The Cetane number of the fuel 

combination varies from 0% to 15%, peaking at 15°C at a 10% blend ratio. Higher octane and lower cetane of 

ethanol affect blend cetane. At ethanol concentrations of 0–5%, the combination behaves like gasoline; at 5–

10%, ethanol and gasoline molecules interact, raising the Cetane Number. At 10% ethanol, the mix has the 

maximum Cetane Number, indicating optimal amalgamation. A higher Cetane Number improves gasoline 

ignition and reduces engine knocking, and optimum blending ratios reduce emissions and efficiently burn fuel. 

 

 
Figure 11: Trend of Cetane number oC versus Blend Ratio (%) 

 

Characterization of Engine Test ResultsforE0, E5, E10 and E15 Blends 

Speed, torque, braking power, brake thermal efficiency, and COP from the four-stroke spark-ignition 

engine test rig. Results are shown in Figures 12-14. The finding was used to determine the engine test rig's 

gasoline-bioethanol performance parameters. Figure 12 shows torque (Nm), Figure 13 shows braking power 

(kW), and Figure 14 shows brake thermal efficiency (%) and COP from the engine test rig running on a 

gasoline-bioethanol blend at 356.19 rad/sec. Analyzing engine performance data at 356.19 rps while adjusting 

torque, braking power, and brake thermal efficiency.  

Figure 12 shows that torque (Nm) declines with the gasoline-bioethanol ratio. Lower torque reduces 

engine power and performance, but lower energy density and changed combustion characteristics may reduce 

fuel efficiency and impair acceleration and responsiveness. 
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Figure 12: Trend of Torque (Nm) versus Blend Ratio (%) 

 

Figure 13 shows how the gasoline-to-bioethanol blend ratio affects brake power (kW).  Brake Power 

(kW) decreases non-linearly with the bioethanol mix ratio, with a greater loss at higher bioethanol 

concentrations. Bioethanol's lower energy content reduces brake power and bioethanol's high octane rating can 

cause engine knock or pinging, reducing brake power and fuel efficiency. Low Brake Power reduces vehicle 

acceleration, responsiveness, and performance, lowers fuel efficiency, especially at high bioethanol mix ratios, 

and damages engine components over time. 

 

 
Figure 13: Trend of Brake power (kW) versus  Blend Ratio (%) 

 

Figure 14 shows that the gasoline-to-bioethanol blend ratio linearly decreases braking power 

efficiency. The coefficient of performance (COP) declines from 0% to 10% as the gasoline-to-bioethanol blend 

ratio increases, but 12% remains stable beyond 10%.  Braking power efficiency decreases linearly with the 

bioethanol mix ratio, therefore each percentage point increase in bioethanol reduces this efficiency. As the 

bioethanol blend ratio increases from 0% to 10%, the coefficient of performance (COP) decreases, but it 

stabilizes at 6% above 10%. Bioethanol requires engines to adjust to their combustion properties at high mix 

percentages and blends above 10% increase performance and reduce losses. High bioethanol concentrations 

increased combustion efficiency, compensating for energy density decreases, although the long-term effects on 

engine components need to be assessed. The brake power of the E10 gasoline-bioethanol blend peaks at 391.65 

W, which is the engine's output power after friction and other losses. The E10 gasoline-bioethanol combination 

(8.16%) has higher brake power, indicating a more efficient engine at the same speed. 
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Figure 14: Trend of braking thermal efficiency and Coefficient of Performance (COP) of the system versus 

Blend Ratio (%) 

 

Table 1.0 presents a summary of the predictive model with R2 and calculated values of RSME as 

displayed in the Figures 4 -14 .RMSE quantifies the disparity between predicted and actual values of the trends 

as depicted in the Figures 4 -14. It computes the square root of the mean of the squared deviations between 

expected and actual values.  Low RMSE values signify that the model effectively fits the data and yields more 

precise forecasts, whereas high RMSE values denote greater inaccuracy and reduced forecasting precision. 

RMSE values ranging from 0.2 to 0.5 indicate that the model can predict data with acceptable accuracy, whereas 

lower values signify superior model fit and enhanced prediction accuracy.  Adjusted R-squared quantifies the 

proportion of variance in the dependent variable elucidated by the independent variables, with elevated Adjusted 

R-squared values signifying a high degree of precision. Criteria for modified R-squared values  A value of 0.75 

or above signifies a high degree of accuracy, while a value of 0.4 or higher is considered acceptable in some 

circumstances. RMSE and R-squared serve as complementing metrics for assessing model performance. RMSE 

quantifies the discrepancy between predicted and actual values of the parameters, whereas Adjusted R-squared 

assesses the fraction of variance elucidated by the model. 

 

Table 1.0 Summary of the predictive model with R-squared and RSME 

 
Properties Model for Blend Ratio (0%-15%) Coefficient of 

Determination 

RMSE 

Octane Number y = -0.012x3 + 0.36x2 - 2.683x + 14 R² = 1 1.176982 

Viscosity y = 0.003x3 - 0.082x2 + 0.531x + 0.411 R² = 1 0.27155743 

Flashpoint y = -0.018x3 + 0.54x2 - 3.733x + 32 R² = 1 1.176982 

Density y = 1E-04x3 - 0.003x2 + 0.024x + 0.835 R² = 1 0.041391 

Carbon Residue %   y = 0.13x2 - 2.13x + 83.35 R² = 0.949 0.782624 

Specific Gravity y = -0.002x2 + 0.016x + 0.829 R² = 0.995 0.076575 

Pour point y = -0.018x3 + 0.42x2 - 2.233x + 7 R² = 1 1.176982 

Cetane number y = -0.018x3 + 0.44x2 - 2.333x + 13 
 

R² = 1 1.176982 

Torque y = -0.076x + 4.87 R² = 0.925 0.533772 

Brake power y = -0.000x3 + 0.004x2 - 0.038x + 1.658 R² = 1 0.384199 

Braking thermal efficiency y = -0.416x + 22.58 R² = 0.996 0.132853 

Coefficient of Performance 

(COP) 

y = 0.058x2 - 1.353x + 18.58 

 

R² = 0.964 0.585587 

 

Low RMSE values indicate that the model effectively fits the data and generates more precise 

predictions. Conversely, increased values suggest a decrease in forecast accuracy and a greater degree of 

inaccuracy. The R-squared is a standardized equivalent of the root mean square error, which is a non-

standardized measure of goodness-of-fit. The majority of the models in Table 1.0 have RMSE values ranging 

from 0.2 to 0.5, which indicates that the model can predict the data with reasonable accuracy. Additionally, an 

R-squared value of 0.75 or higher indicates a high level of accuracy, according to a general guideline. The 
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RMSE and R-squared values of the Coefficient of Performance (COP) are 0.585587 and 0.964, respectively. 

The RMSE and R-squared of the braking thermal efficiency are 0.132853 and 0.996, respectively. 

 

V. CONCLUSIONS 

The following conclusions were derived from the present investigation on an evaluation of predictive 

modeling and error analysis for physicochemical characteristics of gasoline-bioethanol blends in a gasoline 

engine. The results revealed that bioethanol significantly influences the engine's performance metrics. The 

coefficient of performance (COP) displayed high sensitivity to bioethanol content in the 0-10% range and 

stabilized beyond 10%, indicating an optimal blend ratio around E10. While brake power efficiency decreased 

linearly with increasing bioethanol content due to its lower energy density, enhanced combustion efficiency at 

higher ethanol ratios mitigated these losses. The E10 blend emerged as the most practical and efficient option, 

achieving the highest brake power of 391.65 W. 

The predictive models developed in this study demonstrated strong accuracy, with R-squared values of 

0.964 for COP and 0.996 for braking thermal efficiency, alongside RMSE values of 0.585 and 0.133, 

respectively. These metrics validate the reliability of the models in predicting engine performance across 

varying blend ratios. The findings emphasize the E10 blend as an optimal solution for balancing engine 

performance and environmental benefits. This study contributes to the growing body of research on bioethanol-

gasoline blends and highlights the potential for their broader application in sustainable energy systems.  
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