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ABSTRACT: This study focuses on a two-stage Gough-Stewart platform. The lower stage generates the 

oscillatory motions of ships on sea, while the upper stage is equipped to stabilize or control motion with 

trajectory tracking capabilities. The dynamic model of the robotic system is formulated using the Lagrange 

equations. Based on this model, a computed torque controller is developed in task space. Oscillation generation 

and stabilization are evaluated through simulations utilizing the kinematic and dynamic parameters of two 

Bosch Rexroth robots. The simulation results confirm the precision of the dynamic model and the efficiency of 

the designed controller. 
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I. INTRODUCTION 

The robot system includes two Gough-Stewart platforms (GSPs) [1] arranged in lower and upper 

stages. Each GSP consists of an upper work plate and a lower base plate, connected by six legs with universal 

joints. The length of these legs is controlled by either electric motors or hydraulic cylinders. As shown in Figure 

1, the lower stage of the two-stage GSP generates oscillations, while the upper stage is dedicated to stability 

maintenance. Sensors on the work plates of both stages provide direct measurements of the plates' position, 

orientation, velocity, and angular velocity. 

 

.  

Fig. 1. Design of the 2-dof balancing table 
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The GSP’s high rigid structure and precise positioning make it valuable across numerous applications, 

including flight simulation, robotic surgery, precision machining, and mobile stabilization. Balance stabilization 

is essential for various equipment on transportation vehicles, such as cooking tables, treatment tables, and 

gangways on ships [2,3]. By using the GSP to generate the oscillations of moving vehicles, a semi-natural 

simulation system for motion or balance stabilization control is achieved. This approach mitigates the high 

costs, time, and complexity involved in performing motion stability control research directly on diverse mobile 

platforms across different vehicle types and terrains.    

Many researchs have addressed the dynamics modeling and control of GSP, utilizing motion equations 

like Newton-Euler, Lagrange, Kane’s equations, or principles of virtual work [4-6]. Control methods have been 

applied to GSP, including kinematic control, inverse dynamics in joint and task space, PID, sliding mode, 

adaptive controls and others [7-9]. While single-stage GSP are frequently studied, research on multi-stage GSPs 

remains limited due to the challenges of their closed-chain mechanisms and high degrees of freedom [8-13]. 

This paper develops a dynamic model and computed torque controller for a two-stage GSP, employing a 

multibody approach based on Lagrange’s equations with multipliers. The structure of the paper is as follows: 

Section 1 provides an introduction; Section 2 details the kinematic and dynamic modeling of the two-stage GSP; 

Section 3 presents the controller design; Section 4 describes the parameters of the robot system used in 

simulation; Section 5 presents comptation and simulation; Section 6 discusses the results and concludes the 

paper. 

 

II. DERIVING KINEMATIC AND DYNAMIC EQUATIONS 

 

To establish the kinematic equations for the two-stage GSP, the coordinate frames are assigned to the 

robot's links. Figure 2a illustrates the kinematic diagram of the complete two-stage GSP, while Figure 2b depicts 

the kinematic layout of a single GSP at the k-th stage, where k=1,2. 

 
Fig. 2. The two-stage Gough-Stewart platforms 

 

Notations: Bk is the base plate,  Pk. is the work plate of the k-th platform. Bki, Pki is the center of the 

joints on the Bk, Pk (i=1..6), respectively. 

The base frame O0x0y0z0 is attached at the center of the base plate of the lower platform, with the z0 

axis perpendicular to the plate Bk and pointing upwards, and the x0 axis passing through the midpoint of the line 

connecting joints Bk1 and Bk6. The frames Okxkykzk (k=1,2) are attached to the work plates of the corresponding 

platform at stage 1 and stage 2, where the zk axis is perpendicular to the plate Pk and points upwards, and the xk 

passes through the midpoint of the line connecting joints Pk1 and Pk6.  The distance from the center of the plates 

to the joint centers on the corresponding plates are a1i, b1i, a2i, b2j, respectively. The leg lengths of the robots at 

levels 1 and 2 are denoted as d1i,  d2j, where i, j = 1,..,6. 

The frame Bkixk-1,iyk-1,izk-1,i is attached to the base plate (lower plate), with the origin at the center of the 

i-th joint;  the axis Bkixk-1 coincides with Ok-1Bki; the axis Bkizk-1,i is perpendicular to the plane of the base plate 

and points upwards. The frame Pkixpiypizpi is attached to the plate Pk, with the origin at the center of the i-th joint; 

the axis Pkixpi coincides with OkPki; the axis Pkizpi is perpendicular to the plate Pk. 

The generalized coordinate vectors, which define the orientation and position in the workspace of the 

work plates of robots 1 and 2, are denoted as p1, p2, respectively: 
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   , 1, 2
T

k k k k k k kx y z k   p  (1) 

The generalized coordinate vectors in the joint space of the robots 1 and 2 is: 

   , 1, 2
T

k k k k k q d θ ψ   (2) 

Where , ,kk kd θ ψ is the generalized coordinate vectors with components being the lengths and angles 

of the legs of the lower and upper platform, respectively. 

 

 

 

 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1, 2,

T

k k k k k k k

T

k k k k k k k

T

k k k k k k k

d d d d d d

k     

     



 



d

θ

ψ

 (3) 

Consider the kinematic loop of the i-th leg at stage k of the robot, as shown in Figure 3. The 

coordinates of point P in the Ok-1 frame is determined in two ways, corresponding to two paths. The 

transformation from the frame Ok-1xk-1yk-1zk-1 to the frame Pkixkiykizki through the two paths is as follows: 

Path 1: Rotate the frame Ok-1xk-1yk-1zk-1 around the zk-1 axis by an angle ki, then translate along the xk-1,i 

axis by a distance rkb. Rotate the frame Bkixk-1,iyk-1,izk-1,i around the Bkixk-1,i, Bkiyk-1,i, axes by the angles ki, ki. 

Translate Bkixkiykizki along the zki axis by a distance dki. 

Path 2: Perform three basic rotations by angles k, k, k and three basic translations along the xk-1, yk-1, 

zk-1 axes to take the frame Ok-1xk-1yk-1zk-1 into alignment with the frame Okxkykzk. Rotate the frame Okxkykzk 

around the zk axis by an angle ki, then translate along the xk axis by a distance rkb. 

Following the two kinematic paths at the i-th leg, by determining the homogeneous transformation 

matrices at each step and multiplying the transformation matrices together, we obtain the homogeneous matrices 

that determine the position and orientation of the frame Pkixkiykizki relative to the frame Ok-1xk-1yk-1zk-1 as follows: 

 
   

   

1 1 1,

1, 1, 1,

1 1

2,
1, 2; 1, 6

, , ,

, , , , , , ;

k k k i

ki k i kb k i ki ki ki ki

k k k

ki k k k k k k ki kp ki
k i

r d

x y z r

  

   

  

 

 
 





A A A

A A A

 (4) 

From (4), since the position of point Pki calculated from both paths is the same, we obtain three 

equations based on the position of point Pki as follows: 

 

   

   

   

1 1

1 1, 2,

1 1

3 1, 2,

1 1

3 1, 2,

1, 4 1, 4

2, 4 2, 4 ; 1, .., 6

3, 4 3, 4

k k

i ki ki

k k

i ki ki

k k

i ki ki

f

f i

f

 

 

 

 

  

 







A A

A A

A A

 (5) 

Thus, for each kinematic loop of the i-th leg, we have 3 equations. Since a single platform of the robot 

has 6 legs, there are a total of 18 equations: 

    ( ) ( ); , , ; 1, .., 6; 1, 2; , , , , ,
T T

k k k k k ki ki ki k k k k k k kd i k x y z       q pf q f p  (6) 

Equation (6) can be simplified to the following form: 

 
18 1

( , ) ( , ) ( ) 0

( , ); 1, 2

k k k x k k k k

k k k
k

  

 

f q p f q p f X

X q p
 (7) 

Considering both levels of the robot, k=1, 2, we obtain the generalized kinematic equations of the two-

stage robot system, consisting of 36 equations. 

Kinematic problems: The forward kinematics problem is to determine the position and orientation of 

the work plate (workspace variables pk) from the known joint variables (joint space variables qk or dk), at a 

specific stage of the robot system. The inverse kinematics problem is to compute the variables in the joint space 

(find dk, qk), given the desired motion of the work plate (given pk). 

Velocities computation: The velocities of the rigid bodies (links) in the robot system are generally 

calculated for the k-th stage of the robot. By differentiating the first equation of equation (6), we obtain: 

 
18 6

1 1

; 1, ...,18
k k

ki kj Pk k qk k

ki kji j

 


 

 
    

 
 

f f
p q J p J q

p q
 (8) 

From (8), the velocities of the generalized coordinates in the joint space can be calculated: 

 1

k qk pk k


q J J p   (9) 

Accelerations computation:  

Differentiate equations (8) with respect to time: 

 

2 218 18 18 6 6 6

1 1 1 1 1 1

, 1, ..,18
k k k k

ki kj ki ks kl ks

ki kj ki ks sl ksj i i s l s
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

     

   
    

     
     

f f f f
p p p q q q

p p p q q q
 (10) 
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Equation (10) is rewritten in the following form: 

 

 1 2 18

2 218 18 6 6 6

1 1 1 1 1

; , , . . .

, 1, ..,18

pk k k k k k k

k k k

k ki kj ks kl ks

ki kj ks sl ksj i s l s

  

 
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 

  
    
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    

J p g g g g g

f f f
g p p q q q

p p q q q

 (11) 

Differentiate equation (9) to obtain the acceleration of the generalized coordinates in joint space: 

 1 1 1

k qk pk k qk pk k qk qk k

  
  q J J p J J p J J q   (12) 

 
Dynamic modeling of the the two-stage GSPs 

GSP is derived first; then, the dynamic model of the two-stage GSPs is combined and solved 

simultaneously. 

This section presents the dynamic modeling for the k-th stage of the robot as shown in Fig.1b. The 

generalized coordinates and the first and second derivatives of the generalized coordinates for the k-th stage of 

the robot in the dynamic problem include 18 joint variables, represented in the algebraic vector qk, and 6 

generalized coordinate variables of the work plate Pk, represented in the algebraic vector pk. 

Applying the Lagrange equations of motion with Lagrange multipliers, the dynamic state of the k-th 

stage robot system is described by the constraint equations (6) and the differential equations of motion: 

 
       

 

*
,

0, 1, 2

k k k k k k k k k k k k

k k k

    

 





M X X C X X X P X Q X U U

f X
 (13) 

Where: , ,
k k k

X X X  are the generalized coordinate vector, its first and second time derivatives, 

respectively: 

 ( , ); ( , ); ( , )
k k k k k k k k k
  X q p X q p X q p  (14) 

Mk(Xk) is the generalized mass matrix: 

  
1,1 1,2 1,24

24,1 24,2 24,24

...

... ... ... ...

...

k k

k k k

k k k

m m m

m m m



 
 
 
 
 

M X  (15) 

The matrix Mk(Xk) is calculated as follows: 

  
1

;;
n

i

Ci i

Ti Ti

T T

ki Ti Ti Ri i Rik k

k k

m





 

 

 

M (X )

r ω

J J

X X

J J J I J  (16) 

With n being the number of moving links at stage k, mi is the mass of the i-th moving link. JTi, JRi are 

the translational Jacobian matrix and the rotational Jacobian matrix of the i-th moving link. These matrices are 

calculated based on the position of the center of mass and the angular velocity of the links. Ii is the inertia tensor 

of the link with respect to the coordinate system located at the center of mass. 

The angular velocity of the i link in the system is calculated using the skew symmetric matrix, through 

the direction cosine matrix Ai of link i: 

 

0

( ) 0

0

iz iy

T

i i i iz ix

iy ix

k k

 

 

 



  



 
 
 
  

ω X , X A A   (17) 

 ,
k k k

C X X is the centrifugal and Coriolis matrix, is function of the generalized coordinates and velocities 

,
k k

X X : 

  
 

 
 

 ,
1

2
k k k

T

k k k k

n k k n

k k

 
   

 

 
 
 

C X X

M X M X
E X X E

X X
 (18) 

Where En is the unit matrix of size [24x24]. 

Pk is the [24x1] vector of generalized forces due to potential forces: 

 ( )

T

k

k k

k





 
 
 

Π

X

P X   (19) 

Where kΠ  is the potential energy of the system. 

Qk is the [24x1] vector of generalized forces due to non-conservative forces: 

  , , .., ,
T

k k k k k


1 2 23 24
Q Q Q Q Q   (20) 

Uk* is the [1x24] vector whose elements are the generalized forces of the constraint forces at the joints: 
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 * * * *

1 2 23 24
, , ..., ,

k k k k

T

k    U U U U U   (21) 

Uk is the [1x24] vector, with elements representing the driving forces at the legs: 

  
1 2 6
, , ... , 0, 0, 0, ..., 0, 0, 0

k k k

T

k U U U U  (22) 

The solution to the dynamic equation system (13) is performed when the dynamic components in the 

system are computed. 

The forward dynamics problem of the robot: Given the driving forces at the legs and external forces 

acting on the robot, determine the motion of the work plate. 

By differentiating the constraint equations twice with respect to time, from (12) we have: 

 
     

   

*
,

,

k k k k k k k k k k k k

k k k k k k

   







M X X C X X X P Q U U

G X X g X X

X
 (23) 

The constraint forces can be expressed in the form of Lagrange multipliers as follows: 

 
* T

k k kU G λ   (24) 

 

1 1

1 24

18 18

1 24

...

... ... ...

...

Where

k k

k k

k

k k

k k

f f

X X

f f

X X

 

 



 

 

 
 
 
 
 
 
  

G   (25) 

Substituting into equation (22) and writing in matrix form, we have: 

 
 

 

   

 

,( )

,0

T
k k k k k k k k kk k k k

k k k kk k

   


    
    

    

X C X X X P Q UM X G X

λ g X XG X

X
 (26) 

The equations (26) has 42 equations, with 42 unknowns consisting of 24 unknowns for the generalized 

coordinates, their first and second derivatives, and 18 Lagrange multipliers k. 

The inverse dynamics problem: Calculating the inverse dynamics is an important task in controlling the 

parallel robot system to meet the specified requirements. Given the motion of the work plate , ,k k kp p p and the 

external forces Pk, Qk find the motion , ,k k kq q q and driving forces Uk at the legs. The motions of the robot legs 

are solved using the inverse kinematics, where the unknowns in the inverse dynamics include the 6 driving 

forces variables in Uk and 18 Lagrange multipliers in k. 

Rewriting the expression
* *T

k k k
 U G λ  and substituting it into the first equation of (12), we have: 

          *
,

T

k k k k k k k k k k k k k k k   M X X C X X X P Q GX X X λ U  (27) 

The equations (13) becomes: 

 
       

 

,
k k k k k k k k k k k k k

k k

   







M X X C X X X P X Q X K y

f X 0
 (28) 

  
*

1 2 6 1 2 18

24 24

Where: ; , , .., , , , ..,
T

Tk
k k k k k k k k

x

U U U   
 

  
 

E G
K y

0 0
 (29) 

To compute the inverse dynamic equations (28), the inverse kinematics problem in the second equation 

is computed first, and then substituted into the first equation to determine the driving forces and Lagrange 

multipliers, as well as the constraint forces. 

Dynamic modeling of the two-stage GSPs 

The dynamic equation (13) combined for the two-stage GSPs is written as follows: 

 
       

 

*
,

0

    







M X X C X X X P X Q X U U

f X
 (30) 

Where: 

 

 
 

 

1 1 1 1 1

2 2 2 2 2 2

2

48 1 ; ; ; ;48 48 48 48 48 1

*
; ; ;48 1 48 1 48 1 36 1

;x x x x

x x x x

     

   

           
           
           

      
      
         

1

1 11 1

2 2 2

1

2

X X X M C P
X X X M C P

X X X M C P

*
U f XQ U

Q U U f X
*Q U f XU

 (31) 
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The equations of motion (30) has 84 equations, with 84 unknowns consisting of 48 unknowns for the 

generalized coordinates, their first and second derivatives, and 36 Lagrange multipliers . 

To design the computed torque controller in the task space, the dynamic equations should be simplified 

into a compact form that represents the relationship between the driving force at the legs and the variables in the 

task space. This requires eliminating the Lagrange multipliers, following the method presented in [14]. As 

previously, the equations are first simplified for a single platform, then extended to the entire system for clarity 

in the derivation. 

From (9), we have: 

 
1

k qk pk

k k k

k

k



  
  
  

   

q J J
X p p

p E
H   (32) 

Where E6x6 is the unit matrix. 

From equations (12) and (32), we obtain: 

 1 1 1 1

k qk pk k qk pk k qk qk qk pk k

   
  q J J p J J p J J J J p  (33) 

Equation (33) can be rewritten in the form: 

 
1 1 1 1

k qk pk qk pk qk qk qk pk

k k k k k

k

k k

   


    
    
    

     

q J J J J J J J J
X p p p p

p E E
H S  (34) 

Multiply both sides of the first equation of (13) by: 

 
T

k k k k k k k k k

T T T T T T

k k k k k k   H M X H C X H P H Q H G Hλ U  (35) 

Since 0
T

k k k
H G λ  [14], equation (35) becomes: 

 
k k k k k k k

T T T T T

k k k k k  H M X H C X H P H Q H U  (36) 

Substitute (9) and (33) into (36): 

    ( )
k k k k k k k k k k k

T T T T T T

k k k k k k k k  H M H H M S H C H H P H Q HX X Up p  (37) 

Equation (37) simplifies to: 

 
k k k kk k k   M C P QT p p   (38) 

Where: 

 (; ); ; ;
k k k k k k k k k k k k k

T T T T T T

k k k k k k k     M H M H C H M S H C H P H P Q H Q H UT    (39) 

 

III. COMPUTED TORQUE CONTROL  IN TASK SPACE 

 

From (38), choose the computed torque control law [15, 16]: 

 ( )
k k k kk kd kkP k kD k    M C P QT p K K pe e  (40) 

, ,
k k k

e e e are the error vectors for position, orientation, velocity, and acceleration of the work plate of k-th 

platform, respectively. 

 
1 2 6 1 2 6
, , ..., , , ...,;

kd kd

T T

k k k k k k k k k k
e e e e e e           e p p e p p  (41) 

[15, 16] presents methods for proving system stability. 

,
kD kP

K K are diagonal and positive definite matrices. 

 1 2 1 2( , , ..., ), 0; ( , , ..., ), 0, 1, 2, ...6kP kP kP kPs kPs kD kD kD kDs kDsdiag K K K K diag K K K K s    K K  (42) 

The above expressions for a single platform are combined to expressions for two-stage GSPs as follows: 

   M C P QT p p   (43) 

The above expressions for a single platform are combined to expressions for two-stage GSPs as follows: 

 
1 1 1

2 2 2 2

12 1 ; ; ; ; ;12 12 12 12 12 1 12 1; ;x x x x x      
             
             
             

1 1 1 1

2 2 2

T X p M C P Q
T X p M C P Q

T X p M C P Q
 (44) 

 
1 1 1 1 1

2 2 2 2 2

; ;12 1 12 1 12x1 12x1 12x1; ;
P D

P D

P x D x    
         
         
         

K K e e e
K K e e e

K K e e e
 (45) 

The computed torque control law of two-stage GSPs: 

        ( ) , ,d P D    M q C P QT p K K pe e q q q q q  (46) 

Figure 4 presents the block scheme of computed torque control in task space of the two-stage GSPs. In 

the control system diagram, the position and velocity of the work plates are measured using MRU-PD Motion 

Reference Units from Inertial Labs, which are placed on the work plates of the lower and upper platforms. 
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Fig. 3. Block scheme of computed torque control in task space 

  

IV. KINEMATIC AND DYNAMIC PARAMETERS OF THE ROBOT 

The platforms used for computations and simulations include: the GSP at stage 1 is eMotion-1500/2700-

6DOF-650-MK1 (referred to as E1500), and the GSP at stage 2 is the MicroMotion 600 (referred to as M600) 

from Bosch Rexroth, Figure 1. The kinematic and dynamic parameters of the lower and upper platform are 

shown in Table 1 and Table 2. The moments of inertia in Table 2 are calculated relative to the coordinate frame 

attached to the center of mass of each corresponding rigid body. The center of mass coordinates are calculated 

relative to the coordinate frame attached to the local frame, as shown in Figure 2. 

Table 1. Kinematic parameters of two-stage GSPs 

r1b  (m) r1p (m) 1b (deg) 1p (deg) r2b (m) r2p (m) 2b (deg) 2p (deg) 

1.28 1.10 8.60 20.86 0.35 0.32 14.61 21.56 

Table 2. Dynamic parameters of two-stage GSPs 

 m (kg) xC (m) yC (m) zC (m) Ixx (kgm2)  Iyy (kgm2)  Izz (kgm2) 

Cross B1i 2.46 0 0 0 0.0046 0.0035 0.0035 

Cyl B1i 150.4 0 0.059 0.544 19.384 18.392 1.539 

Pis P1i 31.63 0 0 -0.375 2.632 2.362 0.046 

Cross B1i 2.46 0 0 0 0.0046 0.0035 0.0035 

Plate P1 238.2 0 0 0.150 63.384 63.384 135.562 

Cross B2i 0.48 0 0 0 3.56e-5 1.18e-5 1.18e-5 

Cyl B2i 9.65 0 0 0.168 0.110 0.110 0.006 

Pis P2i 3.84 0 0 -0.144 0.020 0.020 0.0008 

Cross P2i 0.48 0 0 0 3.56e-5 1.18e-5 1.18e-5 

Plate P2 36.50 0 0 0.120 1.305 1.305 2.566 

Leg lengths of the E1500 platform: stroke length: 950 mm; minimum leg length: 1306.14 mm; maximum 

leg length: 2256.14 mm. Leg lengths of the M600 platform: stroke length 350 mm; minimum leg length: 463.6 

mm; maximum leg length: 813.6 mm. 

Figure 5 shows the diagram created in MATLAB/Simulink in combination with MSCAdams software to 

compute and simulate the motions of the robot system. 

 

V. COMPUTATION AND SIMULATION RESULT 

The computed torque controller in the task space is applied to the two-stage platform in the study  that 

the lower platform simulates the oscillations, while the upper platform maintains stable balance. 

The PD block of E1500 platform is modified with K1Pi=5000, K1Di=250 (i=1..6) and the PD block of  

M600 platform is modified with K2Pi=5000, K2Di=250 (i=1..6).  
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Fig. 5. Robot system diagram in MATLAB/Simulink and MSCAdams 

The inputs of the work plates: 

The oscillation generated at the work plate of the E1500 simulates the ship's oscillation on sea waves at 

sea state 6, presented in [17], Figure 6. The motion data of the ship is took from [18], sea state 6, wave type 

(beta): long-crested (unidirectional), wave coming from bow (front), wave  angle: 180 degrees. Ship: HMS 

Norfolk, dimensions: 137 x15x16m. 

The set balance position and orientation of the work plate of the M600 platform: 

  2 0 0 2.403 0 0 0P r   (46) 

In this case, input data of the orientation and position of the lower work plate are in numerical form, 

velocity is calculated using numerical differentiation. 

 
Fig. 6. Oscillations of the ship at sea state 6, wave long-crested [18] 

 

With the oscillations of the work plate on the E1500 are regenerated in Figure 7, the computation 

program produces results for position, orientation errors, the motion and driving forces of the legs of the E1500 

platform, as shown in Figure 8, 9. The set balance position and orientation of the work plate of the M600 

(Figure 10), the errors, motion and driving forces of the legs of the M600 platform, as shown in Figure 11, 12. 
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Fig. 7. Oscillations of the work plate of  E1500 platform 

 
Fig. 8. Position, orientation errors of the work plate of  E1500 

 
Fig. 9. Position, velocity, acceleration, and forces of the legs of  E1500 
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Simulation results for the E1500 platform: Absolute average position error: 0.0089 cm. Absolute 

average orientation error: 0.0659 deg. Maximum absolute position error: 0.0142 cm. Maximum absolute 

orientation error: 0.0703 deg. Maximum control force response: 1353.6270 N 

 

 
Fig. 10. The work plate of  M600 maintains balance 

 
Fig. 11. Balancing errors of the work plate of  M600  

 
Fig. 12. Position, velocity, acceleration, and forces of the legs of M600 
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Simulation results for the M600 platform: Absolute average position error: 0.1532 cm. Absolute 

average orientation error: 0.0012 deg. Maximum absolute position error: 0.1652 cm. Maximum absolute 

orientation error: 0.0070 deg. Maximum control force response: 167.3197 N. 

 

VI. CONCLUSION 

The computational and simulation outcomes show that the first platform successfully regenerates the 

required oscillations of the ship, with real-time calculations of its leg motions and driving forces. Meanwhile, 

the work plate of the second platform achieves stable balance around the desired position with minimal error, 

making it ideal for balance stabilization in maritime transportation applications. 

This study develops kinematic and dynamic model of two-stage Gough-Stewart platform featuring a 

closed-loop structure and numerous degrees of freedom. The kinematic and dynamic equations establish the 

relationship between driving forces, constraint forces, external forces, and the movements of the legs and work 

plates across different stages, facilitating both forward and inverse dynamics analysis. 

The designed computed torque controller enables the lower platform to generate vehicle motion 

oscillations while ensuring stability on the work plate of upper platform. 
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