American Journal of Engineering Research (AJER) 2024
American Journal of Engineering Research (AJER)

e-1SSN: 2320-0847 p-1SSN : 2320-0936

Volume-13, Issue-11, pp-01-10

WWWw.ajer.org
Research Paper Open Access

Optimizing Delta Load Processes from SAP HANA to
Microsoft Fabric (One Lake) Using Azure Data Factory
(ADF) and Database Triggers
Govinda Rao Banothu

SAP Analytics Cloud Technical Specialist, NJ, USA.
1Corresponding Author: https://orcid.org/0009-0000-4728-7684

ABSTRACT : This paper examines the optimization of delta load processes from SAP HANA to Microsoft Fabric
utilizing Azure Data Factory (ADF) and database triggers. As organizations increasingly seek real-time data
integration solutions, delta loading emerges as a critical technique for transferring only modified data, thereby
reducing bandwidth and processing time. The study outlines the architecture and methodologies for implementing
delta loads, focusing on the role of database triggers in SAP HANA to capture data changes efficiently. By
leveraging ADF's capabilities for orchestration and transformation, the proposed framework enhances data
movement to Microsoft Fabric, enabling organizations to gain timely insights and improve decision-making. This
paper discusses the challenges associated with traditional data loading methods, including data consistency and
latency, and present strategies to address these issues through automation and streamlined workflows. Real-world
case studies illustrate the effectiveness of the approach, highlighting performance improvements and operational
efficiencies. This research paper contributes to the field of data engineering by providing actionable insights for
organizations aiming to optimize their data integration processes in cloud environments.

KEYWORDS Delta Load, SAP HANA, One Lake Storage, Azure Data Factory, Data Integration, Change Data
Capture, Data Pipeline Optimization.

Date of Submission: 26-10-2024 Date of acceptance: 07-11-2024

I. INTRODUCTION
SAP HANA (High-Performance Analytic Appliance) is a revolutionary in-memory database and
application platform designed to handle both transactional (OLTP) and analytical (OLAP) workloads in real-time.
Online Transaction Processing (OLTP) systems are designed to handle many short online transaction
requests. They focus on managing day-to-day operations and ensuring data integrity and consistency.
Online Analytical Processing (OLAP) systems are designed for complex queries and data analysis, providing
insights, and supporting decision-making processes.

Key Features: -

= Columnar Storage: Data is stored in columns rather than rows, which optimizes read operations and improves
data compression.

= Massive Parallel Processing: Utilizes multiple CPU cores to process large volumes of data simultaneously,
enhancing performance.

= Data Compression: Techniques like dictionary compression reduce memory usage, allowing more data to be
stored efficiently.

= Code Push Down: This paradigm allows data-intensive calculations to be executed directly in the database
layer, minimizing data movement, and improving performance.

Azure Data Factory (ADF) is a cloud-based data integration service that enables organizations to design,
schedule, and manage workflows driven by data, facilitating the orchestration of data movement and

http://www.ajer.org/

American Journal of Engineering 2024

transformation. It is designed to handle complex hybrid extract-transform-load (ETL) and extract-load-transform
(ELT) processes.

Key Features: -

= Broad Connectivity: ADF offers extensive support for various data sources, including databases, file systems,
and Saas$S applications, enabling smooth data integration.

= Data Movement: The Copy Activity allows users to move data between different data stores efficiently.

= Data Transformation: Users can transform data using mapping data flows or by leveraging compute services
like Azure Databricks and Azure HDInsight.

= Triggers and Scheduling: ADF supports various triggers (scheduled, event-based) to automate pipeline
execution based on specific conditions.

= Monitoring and Management: Built-in monitoring tools provide insights into pipeline performance, allowing
users to track success and failure rates.

Il. LITERATURE REVIEW
The graph below shows that cloud adoption is expected to grow significantly in the next 12-18 months. The

number of organizations running more than 50% of their workloads in the cloud is expected to double.

P What percentage of your P What percentage of your workloads
workloads are in the cloud today? will be in the cloud in the next
12-18 months?
TODAY NEXT 12-18 MONTHS

Up to 25%

35 [[s~

26%

2% [I 2+
S51%-75%
399 | =+l D - | 559

+75% will be runni ing
mo:elhan

Fig. 1. Share of Workloads in the Cloud [1].

50% of ads
in the cloud

Full Load: -

A full load involves transferring an entire dataset from a source system to a target system. This process
typically occurs during the initial data migration or when a comprehensive refresh of the dataset is needed. Full
loads can be time-consuming and resource-intensive, especially for large datasets, as they require copying all
records regardless of changes since the last transfer.

Delta Load: -

Delta load, on the other hand, refers to the process of transferring only the data that has changed since the
last load. This includes new records, updates to existing records, and deletions. Delta loading is generally more
efficient than full loading, as it reduces the amount of data moved and minimizes the load on both source and
target systems.

Importance Of Delta Load: -

Delta load is crucial for several reasons:

= Efficiency: By transferring only changed data, delta loads significantly reduce the volume of data processed,
saving time and resources.

= Timeliness: Delta loading allows for more frequent updates, enabling organizations to have access to near
real-time data, which is essential for timely decision-making.

= Reduced Impact on Systems: Since delta loads require less processing power and bandwidth, they minimize
the impact on source systems, ensuring they remain responsive for transactional operations.

= Cost-Effectiveness: With reduced data transfer and processing requirements, organizations can lower
operational costs associated with data storage and movement.

American Journal of Engineering 2024

In summary, delta loading is a vital practice for organizations looking to maintain current and accurate data while
optimizing performance and resource utilization.

And we need Delta Loads as well to be loaded into the cloud because delta loading is vital for
organizations as it enables efficient data integration by transferring only the changes made since the last load. This
approach significantly reduces data volume, saving bandwidth and processing time. It supports near real-time
insights, allowing businesses to make timely decisions based on the latest information. Additionally, delta loads
lower storage and processing costs, enhance data quality, and facilitate scalability as data volumes grow. Overall,
delta loading helps organizations optimize their data management processes and maintain a competitive edge in a
data-driven environment.

11l. CHALLENGES IN DELTA LOADING
Integrating SAP ERP systems and Microsoft One lake and extracting delta loads becomes more difficult

cause as per the following [6] SAP Note 3255746: Unpermitted usage of Operational Delta Provisioning (ODP).

SAP restricts the use of CDC Connector with that the delta loads becomes too difficult, and the
Organizations are forced to either stay with SAP Warehouse Solution or Use HANA Connectors only. That is
where this paper comes in handy in pulling delta loads conveniently.

Delta loading, which involves loading only the changes (inserts, updates, deletes) since the last load,
presents several challenges related to data consistency and integrity:

Data Integrity:

Partial updates: If updates are made to records during the delta loading process, there's a risk of loading
outdated or incomplete data.

Simultaneous Modifications:

Multiple users or systems may update the same records concurrently, leading to conflicting changes that can result
in data integrity issues.

Tracking Changes:

Change Detection: Accurately identifying which records have changed since the last load can be complex,
especially if the source system lacks robust change tracking mechanisms.

Timestamps: Relying on timestamps can be problematic if system clocks are not synchronized, leading to
missed or duplicated records.

Data Validation: Ensuring that the changes comply with business rules and integrity constraints can be
challenging, particularly for complex data models.

IV. METHODOLOGY
Data extraction techniques from SAP HANA via ADF;

Requirements Gathering:

Identify Data Sources:
Determine the specific SAP HANA tables or views to be extracted.

Understand Business Needs:
Gather requirements regarding the frequency, volume, and purpose of the data extraction.

American Journal of Engineering 2024

Environment Setup:

Azure Subscription:
Make sure you have an active Azure subscription that grants you access to Azure Data Factory.

SAP HANA Configuration:
Verify that SAP HANA is accessible, and appropriate users have permissions to extract data.

Azure Data Factory Configuration:

Create ADF Instance:
1) Log in to the Azure portal.
2) Create a new Azure Data Factory instance.
Integration Runtime:
Set up a self-hosted integration runtime (SHIR) if SAP HANA is on-premises or not directly accessible via
ADF.

SHIR is a service that enables secure data integration between cloud services and on-premises data sources. It
allows organizations to move and transform data across different environments, ensuring that data remains
accessible and can be processed without extensive reconfiguration or risk.

Establish Connectivity to SAP HANA:

Linked Service Configuration:

In ADF, create a linked service for SAP HANA. Specify connection details such as server name, port,
database name, and authentication method.

Test Connectivity:
Validate the connection to ensure it is correctly set up.

Edit linked service
=7 SAP HAMA Learn more [

Data Pipeline Design:

Create Data Pipeline:
Design a data pipeline in ADF to manage the data extraction process.

Source Dataset Configuration:
Define a source dataset pointing to the desired SAP HANA tables or views.

American Journal of Engineering 2024

Use query @mble O cuey
Partition option © @ none () physical panitions of table Dynamic range

Packet size (KE)

Sink Dataset Configuration:
Define a sink dataset, specifying the destination for the extracted data (e.g., Azure Blob Storage, Azure SQL

Database).

Cr—
Wy Copy doa2 ;
w0

Copy command settings.

Dataflow Development:

Mapping Data Flows:
Optionally, create data flows within ADF to transform the data during extraction if necessary (e.g., filtering,

aggregating).

Set Up Data Movement Activities:
Use Copy Data activities to define how data will be transferred from SAP HANA to the destination.

Parameterization and Scheduling:

Parameterization:
Implement parameters in the pipeline to allow for dynamic filtering or control over the extraction process (e.g.,

date ranges).
Trigger Configuration:

Schedule the pipeline execution using triggers (e.g., time-based, event-based). Make sure that you first publish to
the adf-publish branch.

And upon successful execution of the stored procedure will be merged into the original table.

American Journal of Engineering

Monitoring and Error handling

Set Up Monitoring:

Use ADF monitoring features to track the execution status of pipelines.

Implement Error Handling:
Configure retry policies and alerts for failures to ensure robust data extraction.

V. OPTIMIZED SOLUTION

Setting up HANA database triggers:

Firstly, we need a Loging Table which is going to be exactly the replica of the Source table but without any keys
defined and 2 additional Columns for timestamp and DML operation.

Original Table: -

Logging Table: -

Table Name:
DEMO_TRIGGER

Columns Indaes‘Furtheerpertiss Runtime Information

2024

Name SOL Data Type Di.. ColumnStoreData Type Key Not Null Default
[1 TCHRTACCTS NVARCHAR 4 STRING XM X
2 GL_ACCOUNT NVARCHAR 10 STRING X2 X
3 LANGU NVARCHAR 1 STRING X3 X
4 THTSH NVARCHAR 20 STRING X
5 TG NVARCHAR 8 STRING X
SQL || Result
seleot * from -oevio_tazcesas
CHRT_ACCTS GL_ACCOUNT LANGU TXTSH TXTLG
1 DCsSO 0000617111 E AuditFees TESTMBMX Audit Fees TESTMBMX
2 DCSO 0000179012 E TESTH TEST GL Account Creation with Create optien
3 DCXo 0012999900 E TEST-Cash Acc. EUR TEST-Cash Account EUR
4 DCXD 0013996000 E TEST-Bank EUR TEST-Bank EUR
5 DCXo 0013996001 E TESTEUR Interim Acc ~ TEST-Bank EUR Interim Account
6 DCXD 0013996007 E TESTEUR Proc. Acc. TEST-Bank EUR Processing Account
7 DCXo 0013997000 E TEST-Bank USD TEST-Bank USD
8 DCX0 0013997001 E TESTUSD Interim Acc ~ TEST-Bank USD Interim Account
9 DCXo 0013997007 E TESTUSD Proc. Ace. TEST-Bank USD Processing Account
10 DCX0 0013998000 E TEST-Bank GBP TEST-Bank GBP
Table Name:
DEMO_TRIGGER_DELTA
Columns | Indexes | Further Properties| Runtime Information
Name SOL Dats Type Di.. ColumnStoreDstaType Key Mothull Default Comt
ﬁ CHRT_ACCTS MNVARCHAR 4 STRING
2 GLACCOUNT NVARCHAR 0 STRING
3 LANGU MNVARCHAR 1 STRING
4 XTSH NVARCHAR 20 STRING
5 TATLG MNVARCHAR 60 STRING
6 UPDATE_TIMESTAMP TIMESTAMP LONGDATE
7 LOG_TYPE NVARCHAR 1 STRING

WWW.ajer.org

Page 6

American Journal of Engineering 2024

Em SQL || 5 Result

select * from "DEMO_TRIGGER_DELTA"
CHRTACCTS GLLACCOUNT LANGU TXTSH izt UPDATE_TIMESTAMP LOG_TYPE
1 DCso 0001333111 E INSERT Test INSERT Test Long ~ Nov 1, 2024, 7:51:50,166 AM |
2 DCXO 0013998000 UPSERTTest UPSERTTestLong Nov 1, 2024, 7:53:1843AM U
3 DCsO 0000170012 E TESTI TESTGL Accoun... Nov 1, 2024, T:54:26.385 AM D

After the creation of the Logging Table comes the part of Database Triggers. Triggers can be defined for the
following events:

INSERT: Triggered when a new row is added [2].

Procedure Name:
DEMO_TRIGGER 5P

Create Statement
“ennare aicees IR v veicees__se+ aeven skt on IRRRIIIIN e ratcore REFERENCING WEW ROW DEHO_TRIGEERREF POR EACH BoW
BeoTH mszar
‘v I 710 _TRIGCTR_DELTA® VALUES (:DEMO_TRISGER_REF.CHRT ACCTS,
\DeNG_TatcsTa_sEe.cr,_actom,

+DEMO_TRIGGER_REF .LANGU,
+DEMO_TRIGSER_REF.TXTSH,
+DEMC_TRIGSER_REF.TXTLG,
CURRENT_UTCTIHESTAME,
e)

UPDATE: Triggered when an existing row is modified.

Procedure Name:
DEMO_TRIGGER U 5P
Creme Statement.

= cuzarz teacazs (L

e R e

" VALUES {:DEMC_TRIGGER_REF.CHRT_ACCTS,

DELETE: Triggered when a row is removed.

Pracedure Name
DEMO,_TRIGGER,[_SP
Create Statement

= canare rercszs [N

woeuo_twooze_p_se arram veiers on [-veio_thicotee srERescinG oL sow Do TRIGGER_REF FoR ZACH RN

ELTA™ VALUES (:DEMC_TRIGGER REF.CHRT_ACCTS,
UNT,

CURRENT_UTCTIMESTAME,
)

ADF pipeline design for delta loading:
Create 2 Set of pipelines both with copy activity for Initial and Delta Loads.

Initial Pipeline: -
Copy activity with Source data set for Source table and sink data set for target table on Fabric Data Warehouse
(One lake).

rnal of Engineerino

“4 Sweasiorglte Valdste - Vedatecopyrunime [> Dsbug . Add ingger

£
L]
Gemensl Sowce Sk Magping Setings User penpartier
—— o Preview daes
ab MO_TRGGER
U quesy OLS

Delta Pipeline: -

2024

Copy activity with source data for logging table and sink data for target table on Fabric data warehouse along with
a stored procedure to process the logging table and then further updating the target table on fabric data warehouse.

2 Seweasstemplate Valdste Valdatecopy nbme [Debug £ Addigge

Stored procadure °

= Stored procedure

General Source Sink Mapping Settings User properties

Sink dataset * o warehouseTstiel & Open + New

~ Bataset properties

Hame
sinkTable
Copy command settings.
Default values. F ew
Table option

Pre-copy script

Below is the SQL used for the stored procedure for processing the logging table: -

@) Prcview Copilot uses Al. Mistakes can happen. Verify code suggestions before running them. Review terms (3

set tgt.[TXTSH] = src.[TXTSH],
+tgt.[TXTLG] = src.[TXTLG]
from [DEMO_LOGGING].[DEMO].[DEMO_TRIGGER] AS tgt
18 inner join [DEMO_LOGGING].[DEMO].[DEMO_TRIGGER_DELTA] AS src
11 on tgt.[CHRT_ACCTS] = src.[CHRT_ACCTS]
12 and tgt.[GL_ACCOUNT] = src.[GL_ACCOUNT]
13 and tgt.[LANGU] = src.[LANGU]
14 and src.[LOG_TYPE] in ('U');
1s
16

1 CREATE PROC [DEMO].[DELTA_MERGER]
2

3 As

4 BEGIN

5

6 update tgt

8

9

17 insert into [DEMO_LOGGING].[DEMO].[DEMO_TRIGGER] ([CHRT_ACCTS],
18 [GL_ACCOUNT],

19 [LANGU],

20 [TXTSH],

21 [TXTLG])

22 SELECT

23 [CHRT_ACCTS],

24 [GL_ACCOUNT],

25 [LANGU],

26 [TXTSH],

27 [TXTLG]

28 FROM

29 [DEMO_LOGGING] . [DEMO] . [DEMO_TRIGGER_DELTA]
38 WHERE

a1 [LOG_TYPE] in ('I') ;

33 delete [DEMO_LOGGING].[DEMO]. [DEMO_TRIGGER]

34 from [DEMO_LOGGING].[DEMO].[DEMO_TRIGGER] as tgt

35 inner join [DEMO_LOGGING].[DEMO].[DEMO_TRIGGER_DELTA] as src
36 on tgt.[CHRT_ACCTS] = src.[CHRT_ACCTS] and

a7 tgt.[6L_ACCOUNT] = src.[GL_ACCOUNT] and
a8 tgt.[LANGU] = src.[LANGU] and

39 [LOG TYPE] = 'D';

40

41 END

a5

Page 8

American Journal of Engineering 2024

Results:
And now after execution of Delta Pipeline the delta records will be first extracted from the HANA system.

Bomormet O oG

And upon successful execution of the stored procedure will be merged into the original table.

¢
il

oo

B oemoTRGGER X DeN0 TRIGGER

Data pravim - DENO TRIGGER Showing 1000 ows

VI. CONCLUSION

In conclusion, this research paper presents a comprehensive framework for optimizing delta load
processes from SAP HANA to Microsoft Fabric utilizing Azure Data Factory (ADF) and database triggers. The
study highlights the importance of delta loading in real-time data integration, enabling organizations to transfer
only modified data, reduce bandwidth and processing time, and gain timely insights. The proposed approach
leverages ADF's capabilities for orchestration and transformation, and database triggers in SAP HANA to capture
data changes efficiently. The research addresses the challenges associated with traditional data loading methods,
including data consistency and latency, and presents strategies to address these issues through automation and
streamlined workflows. The real-world case studies demonstrate the effectiveness of the approach, showcasing
performance improvements and operational efficiencies. This research contributes to the field of data engineering
by providing actionable insights for organizations aiming to optimize their data integration processes in cloud
environments. The findings of this study can be applied to various industries and organizations seeking to improve
their data management processes, reduce costs, and enhance decision-making capabilities.

VIl. FUTURE WORK

Future work can involve real time replication from Source tables, Automatic generation of pipelines
leveraging the meta data which can be extracted from SAP HANA Systems, Cleanup of logging tables from source
system.

REFERENCES
[1]. 101 Shocking Cloud Computing Statistics (UPDATED 2024) Reference. [Online]. Available at
https://www.cloudzero.com/blog/cloud-computing-statistics/
[2]. CREATE TRIGGER Statement (Data Definition) | SAP Help Portal Reference. [Online]. Available at
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20d5a65575191014946db96aaedbef5h.
html

American Journal of Engineering 2024

[3]. Copy activity - Azure Data Factory & Azure Synapse | Microsoft Learn
https://learn.microsoft.com/en-us/azure/data-factory/copy-activity-overview

[4]. SAP HANA Cloud, SAP HANA Database Deployment Infrastructure (HDI) Reference. [Online]. Available at:
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-sap-hana-database-deployment-infrastructure-hdi-reference/triggers-
hdbtrigger

[5] High Performance Analytical Application Reference. [Online]. Available at:
https://www.jetir.org/papers/JETIRBD06049.pdf

[6]. Unpermitted usage of ODP Data Replication APIs. Reference. [Online]. Available at:
https://me.sap.com/notesLatestChanges/0003255746/E/diff

