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ABSTRACT : The correlation between numerical and experimental data regarding determining the crack 

closing under variable amplitude loading is discussed in the present work. There are many techniques used to 

try to correlate the mentioned data without consensus in Scientific Community. The crack propagation 

simulation began with the development of the finite element method; the analyses were conducted to obtain a 

basic understanding of crack growth. Nowadays structural and materials engineers develop structures and 

materials properties using a combination of simulation and experimental tests. The aim of this paper is to verify 

the effect of different crack propagation rates in the determination of crack opening and closing stress of an 

ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyhole Specimen Test Load 

Histories by finite element analysis. To understand the crack propagation processes under variable amplitude 

loading, retardation effects are observed.  
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I. INTRODUCTION  

 The most common technique for predicting the fatigue life of automotive, aircraft and wind turbine 

structures is Miner’s rule [1]. Despite the known deviations, inaccuracies and proven conservatism of Miner’s 

cumulative damage law, it is even nowadays being used in the design of many advanced structures. Fracture 

mechanics techniques for fatigue life predictions remain as a backup in design procedures. The most important 

and difficult problem in using fracture mechanics concepts in design seems to be the use of crack growth data to 

predict fatigue life. The experimentally obtained data is used to derive a relationship between stress intensity 

range (K) and crack growth per cycle (da/dN). In cases of fatigue-loaded parts containing a flaw under 

constant stress amplitude fatigue, the crack growth can be calculated by simple integration of the relation 

between da/dN and K. However, for complex spectrum loadings, the simple addition of the crack growth 

occurring in each portion of the loading sequence produces results that, very often, are more erroneous than the 

results obtained using Miner’s rule with an S-N curve. Retardation tends to cause conservative results using 

Miner’s rule when the fatigue life is dominated by crack growth. However, the opposite effect generally occurs 

where life is dominated by the initiation and growth of small cracks.  
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In these cases, large cyclic strains, which might occur locally at stress raisers due to overload, may pre-

damage the material and lower its resistance to fatigue. The experimentally derived crack growth equations are 

independent of the loading sequence and depend only on the stress intensity range and the number of cycles for 

that portion of the loading sequence. The central problem in the successful utilization of fracture mechanic 

techniques applied to the fatigue spectrum is to obtain a clear understanding of the influence of loading 

sequences on fatigue crack growth [2]. Investigations covering the effects of particular interest, after high 

overload, loading in the growth rate region, called crack growth retardation, seem to have little interest 

nowadays. Stouffer & Williams [3] and other researchers show a number of attempts to model this phenomenon 

through manipulation of the constants and stress intensity factors in the Paris-Erdogan equation however little 

appears to have been done in the effort to develop a completely rational analysis of the problem. Probably, the 

only reason that the existing models of retarded crack growth are not satisfactory is that these models are 

deterministic whereas the fatigue crack growth phenomenon shows strong random features. In addition, most of 

the reported theoretical descriptions of the retardation are based on data fitting techniques, which tend to hide 

the behavior of the phenomenon. If the retarding effect of a peak overload on the crack growth is neglected, the 

prediction of the material lifetime is usually very conservative [4]. Accurate predictions of the fatigue life will 

hardly become possible before the physics of the peak overload mechanisms is better clarified. According to the 

existing findings, the retardation is a physically very complicated phenomenon which is affected by a wide 

range of variables associated with loading, metallurgical properties, environment, etc., and it is difficult to 

separate the contribution of each of these variables [5].  

 

II. CRACK PROPAGATION CONCEPTS  

Irwin [6,7] defines in his work a release energy rate G, which is a measure of the available energy,   

dП-potential of energy and A-crack area, to provoke crack propagation as shown in Eq. (2.1). The term rate as 

employed is not related to a derivate in relation to the time but is referred to a change in the potential energy rate 

in the crack area.  Later, this quantity has been called K, and is used to characterize the stress state ("stress 

intensity") near a crack tip caused by a remote load or residual stress in isotropic and elastic bodies. The stress 

field in the crack tip is given by Eq. (2.2),  

dA

d
G


                 

   (2.1) 

......)()()()2( 2/1

32

2/1   rhAgAfrK ijijijij   (2.2) 

Where K is the stress intensity factor; r and  are the distance from the crack tip and the angle between the 

crack tip and the plane of the crack, respectively; Ai is a constant of the material; fij (), gij () and hij() are 

functions of ..After years, the stress-intensity factors for a large number of crack configurations have been 

generated; and these have been collated into several handbooks (see, for example, Refs [8,9]).  

The use of K is meaningful only when small-scale yielding conditions exist. Plasticity and nonlinear 

effects will be covered in the next section. Because fatigue-crack initiation is, in general, a surface phenomenon, 

the stress-intensity factors for a surface- or corner-crack in a plate or at a hole, such as those developed by Raju 

and Newman [10,11], are solutions that are needed to analyze small-crack growth. Some of these solutions are 

used later to predict fatigue-crack growth and fatigue lives for notched specimens made of a variety of materials 

[12]. Paris & Erdogan [13] conducted a revision on the crack propagation approach from Head [14] and others 

and discussed the similarity of these theories and the differences of results between them, isolated and in group 

tests. Paris, Eq. (2.3), suggested that, for a cyclical load variation, the stress field in the crack tip for the cycle 

can be characterized by a variation of the stress intensity factor, 
 

minmax KKK  . (2.3) 

Where Kmax and Kmin  are the maximum and the minimum stress intensity factors, respectively. In the crack 

propagation curve, the linear part represents the Paris - Erdogan law, when plotting the values of K vs da/dN in 

a logarithmic scale.  
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Fatigue crack initiation and growth under cyclic loading conditions is controlled by the plastic zones 

that result from the applied stresses and exist in the vicinity (ahead) of a propagating crack and in its wake or 

flanks of the adjoining surfaces. For example, the fatigue characteristics of a cracked specimen or component 

under a single overload or variable amplitude loading situations are significantly influenced by these plastic 

zones. In modelling the fatigue crack growth rate this is accounted by the incorporation of accumulative damage 

cycle after cycle and should include plasticity effects. During the crack propagation, the plastic zone should 

grow and the plastic wake will have compressive plastic zones that can help to keep the crack close. Hairman & 

Provan [15] discuss the problems pertaining to fatigue loading of engineering structures under single overload 

and variable amplitude loading involving the estimation of plasticity-affected zones ahead of the crack tip.  

 

II.1   CRACK TIP PLASTICITY 

Most solid materials develop plastic strains when the yield strength is exceeded in the region near a 

crack tip. Thus, the amount of plastic deformation is restricted by the surrounding material, which remains 

elastic during loading. Theoretically, linear elastic stress analysis of sharp cracks predicts infinite stresses at the 

crack tip. In fact, inelastic deformation, such as plasticity in metals and crazing in polymers, leads to the 

relaxation of crack tip stresses caused by the yielding phenomenon at the crack tip. As a result, a plastic zone is 

formed containing microstructural defects such as dislocations and voids. Consequently, the local stresses are 

limited to the yield strength of the material. This implies that the elastic stress analysis becomes increasingly 

inaccurate as the inelastic region at the crack tip becomes sufficiently large and linear elastic fracture mechanics 

(LEFM) is no longer useful for predicting the field equations. The size of the plastic zone can be estimated when 

moderate crack tip yielding occurs. Thus, the introduction of the plastic zone size as a correction parameter that 

accounts for plasticity effects adjacent to the crack tip is vital in determining the effective stress intensity factor 

(Keff) or a corrected stress intensity factor. The plastic zone is also determined for plane conditions; that is, plane 

strain for maximum constraint on relatively thick components and plane stress for variable constraint due to the 

thickness effects of thin solid bodies. Moreover, the plastic zone develops most commonly in materials 

subjected to an increase in the tensile stress that causes local yielding at the crack tip. Most engineering metallic 

materials are subjected to irreversible plastic deformation. If plastic deformation occurs, then the elastic stresses 

are limited by yielding since stress singularity cannot occur, but stress relaxation takes place within the plastic 

zone. This plastic deformation occurs in a small region and it is called the crack-tip plastic zone. A small plastic 

zone, (r << a) is referred to as small-scale yielding. On the other hand, a large-scale yielding corresponds to a 

large plastic zone, which occurs in ductile materials in which r >> a. This suggests that the stress intensity 

factors within and outside the boundary of the plastic zone are different in magnitude so that KI (plastic) > KI 

(elastic). In fact, KI (plastic) must be defined in terms of plastic stresses and displacements in order to 

characterize crack growth, and subsequently ductile fracture. As a consequence of plastic deformation ahead of 

the crack tip, the linear elastic fracture mechanics (LEFM) theory is limited to r << a;  otherwise, elastic-plastic 

fracture mechanics (EPFM) theory controls the fracture process due to a large plastic zone size (r ≥ a). This 

argument implies that r may be determined in order to set an approximate limit for both LEFM and EPFM 

theories. Figure 1.b shows schematic plastic zones for plane stress (thin plate) and plane strain (thick plate) 

conditions [16]. 

II.2   PLANE STRAIN 

1. Large thickness B, and εz ~ 0 on in an internal region and. σz = υ(σ x + σ y). This means that the material is 

constrained in the z-direction due to a sufficiently large thickness and the absence of strain in this axis. In fact, 

the stress in the z-direction develops due to the Poisson’s effect as explicitly included in the equation that 

defines σz. 

2. Yielding is suppressed due to the kinematics constraint from the surrounding elastic material. 

3. Plastic deformation is associated with the hinge mechanism (internal necking) Fig. 1.a)  

4. The plastic zone size is small in the midsection of the plate (Fig. 1.a). This condition implies that the plastic 

zone must be smaller than the crack length 

 

 



American Journal of Engineering Research (AJER) 2023 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 185 

II3  PLANE STRESS 

1. The thickness B is small, σz = 0 and εz ≠  0  on the surface (external region) and through the whole thickness. 

This means that the stresses normal to the free surface are absent and therefore, σz = 0 through the thickness. 

Consequently, a biaxial state of stress results. 

2. If  σ y ≥ σ x >0 (Tresca Criterion), then yielding occurs by a cumulative slip mechanism  (Fig. 1.b) 

3. The height of the yielded zone is limited due to the slip mechanism. 

4. The total motion has a necking effect in front of the crack as it opens 

  

Fig 1: Yielding Mechanism of a Plate [6,7] 

 

                        Plane Stress B ≤ 2.5( KIC/σ ys)2                                                                      (2.4) 

 

Irwin [6], has shown that the effect on the plastic zone is to artificially extend the crack by a distance r1 

(Figure 2) known as Irwin’s plastic zone correction. The elastic stress distribution shown in Figure 2 indicates 

that as σy → ∞. Actually, σy is limited to σys as shown by the elastic-plastic stress distribution. This means that   

σy → ∞ occurs mathematically, not physically. In order to account for the changes due to the artificial crack 

extension or virtual crack length and to visualize the plastic zone as r → 0 a cylinder, the crack length a can be 

replaced by ae in Eq. (2.4). Moreover, the virtual crack length defined by ae is referred to as the effective crack 

length in the literature. The conditions of equilibrium for an immobile crack tip include internal and external 

forces per unit length [15,16]. In such a case, the areas related to the shedding loads Ps and Pys , Eqs. (2.5) and 

(2.6) due to yielding, as indicated in Fig. 2, are equal; that is APs=APys when the plastic zone size is r << a 

Mathematically, these loads are the equilibrium forces per unit length defined by [16]. 
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Fig 2:  Crack Tip Plastic Zone [16] 
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Where B=    thickness     

            λ =    1    for plane stress 

            λ = 3   for plane Irwin’s yielding factor for plane strain [7] 

 

For equilibrium conditions, the force balance 
  0 PP yss  leads to the determination of the plastic zone 

size. Hence, 
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Inserting (2.2) into (2.8) and integrating yields 
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When yielding occurs, the boundary between the elastic and the plastic, the yield strength is estimated by a yield 

criterion. Thus, the elastic stress can be defined by:  

 
ysy

                                                                                                                                   (2.12) 

Inserting eq. (2.12.) into (12.3) gives 2r1= r1+r2 which implies that r1=r2 and from Figure 2, r1= r1+r2 Hence, 

ae= a+r  is the virtual crack length proposed by Irwin [6], Eq. (2.13). Obviously, Eq. (2.14) provides the 

effective stress intensity factor , and α is the geometric factor. 

   aK I
                                                                                                                             (2.13) 

    aK eI
ra                                                                                               (2.14) 

The plastic zone size can be calculated by Eq. (2.4) and (2.5).This KI equation is the corrected stress intensity 

factor due to finite specimen size and plasticity. Now, inserting Eqs. (2.4) into (2.14) yields. 
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Where σ = Applied stress (MPa);  σys = Yield strength (MPa);   a = Crack length (m) 
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Furthermore, the plastic zone size for plane stress conditions can easily be determined by combining Eqs. (2.4) 

and (2.12). Thus 
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In plane strain condition, yielding is suppressed by the triaxial state of stress and the plastic zone size is 

smaller than that for plane stress as predicted by the α parameter in Eq. (2.17). The same reasoning can be used 

for mode III. Thus, the plastic zone becomes [12]. 
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II.4   DUGDALE’S APPROXIMATION 

Dugdale [17] proposed a strip yield model for the plastic zone under plane stress conditions. Consider 

Fig. 3 which shows the plastic zones in the form of narrow strips extending a distance r each, and carrying the 

yield stress σys The phenomenon of crack closure is caused by internal stresses since they tend to close the crack 

in the region where  a < x < c.   

 

   

Fig. 3: Dugdale Plastic Zone Strip Model [17] 

Furthermore, assume that stress singularities disappear when the following equality is true KI = - KI,  

where KI is the applied stress intensity factor and  KI is due to yielding ahead of the crack tip [6]. Hence, the 

stress intensity factors due to wedge internal forces are defined by  
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According to the principle of superposition, the total stress intensity factor is KI = KA+ KB  so that 
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The plastic zone correction can be accomplished by replacing the crack length a for the virtual crack 

length ( a+r ), and P for  σys Thus, the stress intensity factor are: 
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But,  Kσ = KI and the simplified equation takes the form  
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Expanding the trigonometric function Eq. (2.27) yields 

 

(2.28) 

           and neglecting the high order terms from (2.27) becomes:     
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Substituting Eq. (2.29) into (2.14) gives the corrected stress intensity factor due to plasticity at the crack 

tip and crack geometry 






























2

2
1





ys

I
aK                                                                                                         (2.30)  

Expression (2.30) is similar to Irwin’s expression, eq. (2.16). In addition, if r << a, plasticity 

corrections are not necessary. Fig. 4 compares the normalized stress intensity factors as per Irwin’s and 

Dugdale’s approximations. The curves significantly differ as σ/σys → 1; however, similarities occur at r < σ/σys ≤ 

0.2. This strongly suggests that both Irwin’s and Dugdale’s approximation methods should be used very 

carefully because their differences in normalized stress intensity factor. 

 

Fig4: Normalized Stress Intensity factor as function of stress ratio [16] 
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The models of Irwin [6,7] and Dugdale [17] give an idea of the size of the plastic zone but not of its 

shape. The size, in general, is estimated as a circle of certain diameter (ry or rp) obtained on the basis of 

reasoning given in the above models for crack-tip-plasticity. In these models the effect of the shape of the 

plasticity affected zones is not taken into account.  

II.5 CRACK PROPAGATION MODELS 

In the original Paris crack propagation equation [18] the driving parameters are C, K and m. In Tab. 1 it 

is possible to see some other crack propagation equations for constant amplitude loading, which are 

modifications of the Paris equation,
 
relating the mentioned parameters. 
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Table 1 – Empirical Crack Growth Equations for Constant Amplitude Loading [18] 

Murthy et al. [19] discuss crack growth models for variable amplitude loading and the mechanisms and 

contribution to overload retardation. Tab. 2 presents some authors and the application of their models. 

 

 

Yield Zone Concept Crack Closure Concept 

Wheeler [20]  Elber [27] 

Willenborg, Engle, Wood [21]  Bell and Creager (Generalized Closure) [28] 

Porter [22]  
Newman (Finite Element Method) [29]  

Gray (Generalized Wheeler) [23]  
Dill and Staff (Contact Stress ) [30] 

Gallagher and Hughes [24]  Kanninen, Fedderson, Atkinson [31]  

Johnson [25]  Budiansky and Hutchinson [32] 

Chang et al. [26]  de Koning [33]  

Table 2 – Fatigue Crack Growth Models [19] 

II.6 RETARDATION PHENOMENON 
 

Corbly & Packman [34] present some aspects of the retardation phenomenon some of which are presented 

below. 

1. Retardation increases with higher values of peak loading peak for constant values of lower stress levels 

[35,36]. 

2. The number of cycles at the lower stress level required to return to the non-retarded crack growth rate is a 

function of Kpeak, Klower, R peak,, Rlower and number of peak cycles [37]. 

3. If the ratio of the peak stress to lower stress intensity factors is greater than l.5 complete retardation at the 

lower stress intensity range is observed. Tests were not continued long enough to see if the crack ever 

propagated again [37].  
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4. With a constant ratio of peak to lower stress intensity the number of cycles to return to non-retarded growth 

rates increases with increasing peak stress intensity [36,37].  

5. Given a ratio of peak stress to lower stress, the number of cycles required to return to non-retarded growth 

rates decreases with increased time at zero load before cycling at the lower level [37].  

6. Increased percentage delay effects of peak loading given a percent overload are greater at higher baseline 

stress intensity factors [38].  

7. Delay is a minimum if compression is applied immediately after tensile overload [39]. 

8. Negative peak loads cause no substantial influence of crack growth rates at lower stress levels if the values of 

R > 0 for the lower stress [40].  

9. Negative peak loads cause up to 50 per cent increase in fatigue crack propagation with   R = - 1 [39]. 

10. Importance of residual compressive stresses around the tip of crack [41] 

11. Low-high sequences cause an initial acceleration of the crack propagation at the higher stress level which 

rapidly stabilizes [42].  

 
II.7 SMALL SCALE YIELD MODELS 

While the basic layout of the small scale yield model has been established by Newman [29] and this 

approach was applicable to general variable amplitude loading. The small scale yield model employs the 

Dugdale [17] theory of crack tip plasticity modified to leave a wedge of plastically stretched material on the 

fatigue crack surfaces. The fatigue crack growth is simulated by severing the strip material over a distance 

corresponding to the fatigue crack growth increment as shown Fig. 5. In order to satisfy the compatibility 

between the elastic plate and the plastically deformed strip material, a traction must be applied on the fictitious 

crack surfaces in the plastic zone (a  x < aafict), as in the original Dugdale model, and also over some distance 

in the crack wake (aopen  x < a), where the plastic elongations of the strip L(x) exceed the fictitious crack 

opening displacements V(x). The compressive stress applied in the crack wake to ensure L(x)=V(x) are referred 

to as the contact stresses. The fatigue crack growth is simulated using the strip material as shown schematically 

in Fig. 5.  

 

Fig. 5: Schematic Small Scale Yield Model [29] 

Ricardo et al. [43] discuss the importance in the determination of materials properties like crack opening 

and closing stress intensity factor. The development of crack closure mechanisms, such plasticity, roughness, 

oxide, corrosion, and fretting product debris, and the use of the effective stress intensity factor range, has 

provided an engineering tool to predict small and large crack growth rate behavior under service loading 

conditions.  
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The major links between fatigue and fracture mechanics were done by Christensen [44] and Elber [45]. 

The crack closure concept put crack propagation theories on a firm foundation and allowed the development of 

practical life prediction for variable and constant amplitude loading, such as those experienced by modern-day 

commercial aircraft. Numerical analysis using finite elements has played a major role in stress analysis crack 

problems.  

Swedlow [35] was one of the first to use finite element method to study the elastic-plastic stress field 

around a crack. The application of linear elastic fracture mechanics, i.e. the stress intensity factor range, K, to 

the “small or short” crack growth has been studied for a long time to explain the effects of nonlinear crack tip 

parameters. The key issue for these nonlinear crack tip parameters is crack closure. Analytical models were 

developed to predict crack growth and crack closure processes like Dugdale [17], or strip yield, using the 

plasticity-induced approach in the models considering normal plane stress or strain effects. Schijve [36], 

discussing the relation between short and long cracks presented also the significance of crack closure and 

growth on fatigue cracks under services load histories. The ultimate goal of prediction models is to arrive at 

quantitative results of fatigue crack growth in terms of millimeters per year or some other service period. Such 

predictions are required for safety and economic reasons, for example, for aircraft and automotive parts. 

Sometimes the service load time history (variable amplitude loading) is much similar to constant amplitude 

loading, including mean load effects. In both cases, quantitative knowledge of crack opening stress level Sop is 

essential for crack growth predictions because Keff is supposed to be the appropriate field parameter for 

correlating crack growth rates under different cyclic loading conditions. The correlation of crack growth data 

starts from the similitude approach, based on the Keff, which predicts that the same Keff cycles will produce 

the same crack growth increments. The application of Keff to variable amplitude loading requires prediction of 

the variation of Sop, during variable amplitude load history, which for the more advanced prediction models 

implies a cycle-by-cycle prediction. The Fig. 6 shows the different K values. 

 

Fig. 6: Definitions of K Values, Schijve
 
[36] 

 

The application of Keff is considerably complicated by two problems: (1) small cracks and (2) threshold 

K values (Kth). Small cracks can be significant because in many cases a relatively large part of the fatigue life 

is spent in the small crack length regime. The threshold problem is particularly relevant for fatigue under 

variable amplitude spectrum, if the spectrum includes many “small” cycles. It is important to know whether the 

small cycles do exceed a threshold K value, and to which extension it will occur. The application of similitude 

concept in structures can help so much, but the results correlation is not satisfactory and the arguments normally 

are: 

 The similarity can be violated because the crack growth mechanism are no longer similar. 

 The crack can be too small for adopting K as a unique field parameter. 

 Keff and others conditions being nominally similar, it is possible that other crack tip aspects also affect 

crack growth, such as crack tip blunting and strain hardening, Schijve
 
[36]. 
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Newman and Armen [46-48] and Ohji et al. [49] were the first to conduct the two dimensional analysis 

of the crack growth process. Their results under plane stress conditions were in quantitative agreement with 

experimental results by Elber [45], and showed that crack opening stresses were a function of R ratio 

(Smin/Smax) and the stress level (Smax/0), where 0 is the flow stress i.e: the average between σys and σu. 

Blom and Holm [50] and Fleck and Newman [51-52] studied crack growth and closure under plane-strain 

conditions and found that cracks did close but the cracks opening levels were much lower than those under 

plane stress conditions considering same loading condition. Sehitoglu et al. [53] found later that the residual 

plastic deformations that cause closure came from the crack. McClung [54-56] performed extensive finite 

element crack closure calculations on small cracks at holes, and various fatigue crack growth models.  

     Newman [57] found that Smax/0 could correlate the crack opening stresses for different flow stresses 

(0). This average value was used as stress level in the plastic zone for the middle crack tension specimen, 

McClung [56] found that K analogy, using Kmax/K0 could correlate the crack opening stresses for different crack 

configurations for small scale yielding conditions where K0=o(a). (K-analogy assumes that the stress-

intensity factor controls the development of closure and crack-opening stresses and that by matching the K 

solution among different cracked specimens, an estimate can be made for the crack-opening stresses.) 

 

II.8 CRACK OPENING STRESSES 

The applied stress level at which the crack surfaces are fully open (no surfaces contact), denoted as S0, 

was calculated from the contact stresses at Smin. To have no surface contact, the stress-intensity factor due to 

applied stress increment (S0 - Smin) is set equal to the stress intensity factor due to the contact stresses. Solving 

for S0 gives: 
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And c0 is the current crack length minus c*, where c* is the crack growth increment over which S0 is 

held constant. The analytical closure model provides no information about the amount of crack growth per 

cycle. Crack growth is simulated by extending the crack an incremental value and the moment of the maximum 

applied stress. The amount of crack extension (c*), was arbitrarily defined as c*,=0.05max, where max is the 

plastic zone size caused by the maximum applied stress occurring during the c* growth increment. The 

increment in width of element n, and its significance is discussed in the next section. If  j = 0 for j = 11 to  n – 

1 at the minimum applied stress, then the crack is already open, and S0 cannot be determined from equation 

(14). The stress j at the crack tip changes from compression to tension when the applied stress level reaches S0, 

[56]. The crack growth equation proposed by Elber [45] states that the crack growth rate is a power function of 

the effective stress intensity factor range only. Later, Hardraht et al. [58] showed that the power law was 

inadequate at high growth rates approaching to fracture. The results presented herein show that it is also 

inadequate at low growth rates approaching threshold. To account for these effects, the power law was modified 

to :  
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FcSK maxmax                                                                                                              (2.35) 

and  

              FcSSKeff 0max                                                                                               (2.36)                                                            

The constants C1 to C5 are determined by experimental test under constant amplitude loading. The 

factor F is the boundary correction factor on stress intensity. The analytical closure model provides no 

information about the amount of crack growth per cycle. Extending the crack an incremental value at the 

maximum applied stress simulates crack growth.  

II.9 MODIFIED DUGDALE MODEL (CRACK CLOSING) 

 Various modified Dugdale models were proposed [59-60]. After Elber [45] defined crack closure, the 

research community developed analytical or numerical models to simulate fatigue crack growth and closure. 

These models were designed to calculate the growth and closure behavior instead of assuming such behavior as 

in the empirical models. Seeger [61] and Newman [48] developed two type of models. Seeger modified the 

Dugdale model and Newman developed the ligament or strip yield model. Later, a large group of similar models 

were also developed using the Dugdale framework. Budiansky & Hutchinson [62] studied crack closure using 

an analytical model, while Dill & Saff [30], Fuhring & Seeger [63], and Newman [64] modified the Dugdale 

model. Some have used analytical functions to model the plastic zone, while others divided the plastic zone into 

a number of elements. The model by Wang & Blom [65] is a modification of Newman’s model [64] but their 

model was the first to include weight functions in analyzing another crack configuration.  

III.  CRACK PROPAGATION BY FINITE ELEMENT METHOD 

Elber´s [45] experiments of crack closure with constant amplitude loading proposed the following 

equation for fatigue crack propagation rates:  

n

effKC
N

a
)(




                                                                                                                       (3.1)  

Where C and n are constants of the material and Keff is the effective stress intensity factor range that 

can be calculated by:  

FcSK effeff                                                                                                              (3.2)  

Where:  

c -  half length of the crack,  F – boundary correction factor,  Seff – effective stress range. 
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Fig. 7 shows the center crack panel that was used to evaluate the crack propagation.  

 

                                               

Fig. 7: Center Crack Panel, Newman [29]  Fig. 8: Finite Element Model of Center  

       Crack Panel  Newman [29] 

Fig. 8 shows the panel idealized to finite element method. The panel material was assumed to be elastic 

perfect plastic with a tensile (and compressive) yield stress, 0, of 350.0 MPa and  modulus of elasticity of 

70000 MPa. These properties are for an aluminum alloy. The released nodes range from node A to node F. The 

accuracy of the calculated crack opening stresses would be affected by the mesh size chosen to model the crack 

tip region. A finer element mesh size would give more accurate results. Newman [29] evaluated three types of 

mesh, as shows in Tab. 3.  

 

mesh KT a ( mm ) elements Nodes 

I 7.2 0.64 398 226 

II 14.4 0.16 533 300 

III 20.9 0.08 639 358 

W = 460.0 mm and a  28.0 mm 

Table 3- Mesh at Crack Tip 

Fig. 9 displays how is obtained the stabilization of opening stress during crack propagation. The best 

agreement with experimental results was mesh II, although mesh III provides also good results. Nowadays, with 

the computer facilities, the time to evaluate this mesh is reduced, and the size of the element and the increment 

are mostly used today to evaluate crack closure analysis or propagation. Matos & Nowell [66] present a 

literature review of the phenomenon of plasticity-induced fatigue crack closure under plane strain conditions 

and mention that there are controversial topics concerning the mechanics of crack propagation. In general there 

is no consensus in the scientific community.  
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Fleck [67] used finite elements to simulate plasticity induced crack closure under plane strain 

conditions and predicted that the nature of the closure process changes from continuous to discontinuous after a 

sufficient increment of crack growth. He suggested that closure involves only a few elements relatively distant 

from the current crack tip and the closure levels decay steadily as the crack grows beyond its initial length. In 

the limit, the closure would not occur at all. In Singh et al. [67] the authors provide a review of some crack 

propagation issues. The paper cover the transients and single overload effects as well as the plasticity induced 

crack closure. In this topic Singh et al [68] presented a discussion regarding how the researchers normally work 

in crack propagation simulation considering overload-induced crack closure. Lei [69] determine the crack 

closure by finite element method in a compact specimen. In the work Lei [69] use ABAQUS [70] to perform the 

crack propagation simulation using the crack face method was good agreement with experimental data. 

 
Fig. 9:  Constant Amplitude Crack Extension [29] 

 
IV.  DESCRIPTION OF MODEL 

 

A compact tension specimen was modeled using a finite element code, MSC/Patran, r1 [71] and 

ABAQUS
 
Version 68 [70] used as solver. Half of the specimen was modeled and symmetry conditions applied. 

A plane stress constraint is modeled by the finite element method covering the effects in two dimensional (2D) 

small scale yielding models of fatigue crack growth under variable spectrum loading, and the boundary 

conditions are presented in Fig. 10. The finite element models has triangle and quadrilateral elements with 

quadratic formulation and spring elements, SPRING1, used to node release in crack surface (this element works 

only in the y direction).  

 
 

Fig. 10: FEM Model of CT specimen  
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FALSTAFF (Fighter Aircraft Loading STAndard For Fatigue evaluation) is a loading sequence standard 

representative of the load history of the wing root of a fighter aircraft. Mini-FALSTAFF is a reduced load 

history that maintains the properties in terms of accumulative damage in the structure. In this work MINI-

FALSTAFF spectrum loading was generated by Genesis [6] and removed compressive forces. The spectrum 

loading MINI-FALSTAFF modified is shown in Fig11.   

 

Fig. 11. - MINI-FALSTAFF Modified 

Fig.11 presents a modified load history, adapted from the MINI-FALSTAFF histogram considering only 

tractive loads. The maximum load used was scaled to produce a Kmax  0.6 KIC, using Eq. (4.1), where KIC is the 

critical stress intensity factor of adopted material in the present study. With the value of Kmax from KIC computed 

as mentioned above is computed the maximum load using equation 3.1 to be applied in the specimens as 

explained in next. The force is divided in nine steps between loads Pmin- Pmax and nine steps between the Pmax-

Pmin, in each cycle. The smallest element size, 0.025 mm, was estimated based on the plastic zone size (rp) ahead 

of the crack tip and computed by eq. (4.2). Only the first 20 reverses from load history shown in Fig. 12 were 

used to identify crack opening/closing and retardation effects.  
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Where: Kmax= maximum stress intensity factor; Pmin= minimum applied load; Pmax= maximum 

applied load; B = specimen thickness; a = crack length; W = width of the specimen; a/W = ratio of the 

crack length to the specimen width; f(a/W) = characteristic function of the specimen geometry.  

 

 

       









W

a
f

BW

P
K

2
1

max

max                                                   (4.1) 



American Journal of Engineering Research (AJER) 2023 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 198 

Antunes & Rodrigues [72] discuss that numerical analysis of plastic induced crack closing (PICC) 

based on finite element method (FEM) consists of discretizing and modeling the cracked body having elastic–

plastic behavior, applying a cyclic load, extending the crack and measuring the crack closure level. The finite 

element mesh must be highly refined near the crack front, with micron scale, in order to model the forward and 

reversed crack tip plastic zones. The forward plastic zone is made up of the material near the crack tip 

undergoing plastic deformation at the maximum load, therefore it is intimately related to Kmax. The reversed 

plastic zone encompasses the material near the crack tip undergoing compressive yielding at the minimum load 

and is related to ΔK. Commercial FE software packages offer tools to deal with elastic–plastic deformation, 

crack propagation and contact between crack flanks, and are therefore adequate to model PICC. However, the 

numerical models have significant simplifications with respect to real fatigue crack propagation, namely: 

– discrete crack propagations, of the same size as near crack tip elements, which give fatigue crack growth rates 

significantly higher than real values; 

– crack propagation is modeled at a constant load when in reality it occurs continuously during the whole load 

cycle. 
 

In numerical simulations, the crack can be incremented at maximum load [73], at minimum load 

[74,75] or at other positions of the load cycle. Ogura et al. [49] advanced the crack when the crack tip reaction 

force reached zero during the load cycle. However, none of these approaches truly represents the fatigue 

process, where, according to slip models of striation formation, crack extension is a progressive process 

occurring during the entire load cycle. The proposal to increment at minimum load was designed to overcome 

convergence difficulties caused by propagating the crack at maximum load. This is unrealistic since the crack is 

not expected to propagate in a compressive stress field. However, several authors [76,77] have already found 

that the load at which the crack increment occurs does not significantly influence crack closure numerical 

results. Under constant amplitude loading, crack tip opening load will typically increase monotonically, with 

increasing crack growth, until a stabilized value is reached. So, it is important to define the minimum crack 

extension needed to stabilize the opening level. It is usually sufficient to increase the crack ahead of the 

monotonic plastic zone resulting from the first load cycle [78,79]. The stress level in the crack tip, Fig. 12, must 

to be positive to characterize the crack opening and negative to characterize the crack closure. Antunes & 

Rodrigues [72] consider as basic criteria to determine the crack opening or closing:  the first contact of the crack 

flank, which corresponds to the contact of the first node behind the current crack tip. This is the conventional 

definition proposed by Elber [45] and has been widely used by Jiang et al. [73]. In this work the nodes released 

in the crack tips were located at the minimum load of a cycle to simulate crack growth and will be considered 

the first contact of the node behind the crack tip, positive stress (+Syy) to characterize the crack opening and 

negative stress  (-Syy) to characterize the crack closing. 

 

Fig.12: Crack Opening and Closing Criterion [72]  

Tab. 4 displays the mechanical properties of the simulated material, a low alloy steel, where YS = yield 

strength; UTS = ultimate tensile strength;  E = Young´s modulus; ET = tangential modulus;   = Poisson’s ratio.  
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YS 

(MPa) 

UTS 

(MPa) 

E 

(MPa) 
ET 

(MPa) 
 

230 410 210 000 21000 0.30 
 

Table 4: Material Properties of a Low Alloy Steel 

V. NUMERICAL RESULTS 

The data presented in table 5 shows when crack open and close based on the load data used Mini-

Falstaff. 

Table 5. Numerical Crack Opening and Closure Data from Mini-Falstaff 

Cycle N.o Kmin Kmax Kop Kcl 

 mmMPa  mmMPa  mmMPa  mmMPa  

1 90 120 NI NI 

2 10 104 80 70 

3 35 90 40 60 

4 30 55 33 35 

5 31 59 42 33 

6 25 61 41 40 

7 77 127 90 80 

8 39 130 70 84 

9 43 120 90 55 

10 22 46 30 35 

 

V. DESCRIPTION OF CRACK PROPAGATION TEST 

The fatigue crack propagation test was performed using the MINI-FALSTAFF loading, eliminating the 

compressive part of the signal to avoid contact problems between the crack surfaces and in order to maintain the 

specimen with a load ratio greater than zero. Ninety loading blocks of the MINI-FALSTAFF, totaling 810000 

cycles. The elastic flexibility variation method of the ASTM E647 (1995) standard is used to perform the pre-

crack in the specimen. The pre-crack test was performed in a servo-hydraulic system with a capacity of 100 KN, 

at room temperature, under a sine wave of constant amplitude considering the flat state of tension, as shown in 

Fig. 13.  Fig. 14 illustrates the MINI-FALSTAFF block used in the crack propagation test.  
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Fig. 13 Sevo-Hydraulic Mechanical Testing System 

                 
 

Fig. 14 MINI-FALSTAFF Loading Block 

Some photos of the test performed (Figs. 15 to 18) as well as some additional images made with a 

scanning electron microscope (SEM) in an attempt to identify the streaks that characterize the change in loading 

of variable amplitude are presented below (Figs. 19 and 20).  
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Fig. 15 Assembling the Specimen on the   MTS 

Machine 

Fig. 16 Crack propagation observed under 

an optical microscope 
 

  

Fig. 17 Crack propagation observed at 

the end of the test 
Fig. 18 Extensometers Placed on the 

  Specimen for Data Acquisition 

 

  

Fig. 19 SEM image in greater magnification 

of end of Crack Propagation   
 

Fig. 20 SEM image of the End of Crack 

Propagation 
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VI. DISCUSSION OF RESULTS 

In the present work was identified how difficult is to determine with proper precision the crack opening 

or closure regarding numerical data. It was necessary to use the iterative process in the crack surface step by 

step during loading and unloading to find the crack opening or closing as shown in details in Ricardo [80]. The 

retard effect is present in some cycles in special cases where there are overloads. In constant amplitude loading, 

the effective plastic zone increases with the extension of the crack length; the crack propagation rate has no 

influence in the quality of results, assuming that it is in respect to the Newman [47] recommendation with four 

elements yielded in the reverse plastic zone. In variable amplitude loading the crack length can not progress 

until a new overload occurs or the energy spent during cyclic process creates a new plastic zone and the driving 

force increases the crack length. The researchers normally work with simple overloads or specific load blocks; 

this approach can induce some mistakes in terms of results that can be conservative or nonrealistic. Based on the 

experimental results it is not possible identify when the crack open or closure with precision. There are very 

examples with time history totally random. The work continues with utilization of other alloy like aluminum, 

that is easier to determine when crack open and closure in variable amplitude loadings 

VII. CONCLUSIONS 
 

In this work it was possible to identify the crack opening and closure using the finite element method. In 

the literature there are few works covering crack propagation simulation with random loads like MINI-

FALSTAFF loads histories. Normally only a few load blocks are used to reduce the complexity; this should 

provide conservative answers when used to develop structural components. To improve the correlation between 

numerical and experimental data it is necessary to increase the crack length to obtain the same qualitative results 

that is estimated by the Irwin equation. The next step in this work will be to perform some analyses with the 

same model and load history but with aluminum alloy. These data will be compared with experimental test and, 

if necessary, adjustment of the crack propagation model will be done to improve the crack propagation model.  
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