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ABSTRACT: Authors solve numerically through an implicit finite difference scheme the transfer equations, 

permanent, laminar and three-dimensional between an isothermal body of revolution, inclined or not, and a 

Newtonian fluid considered in ascending flow generated by the natural, forced, rotatory and coupled two-by-two 

convections in order to bring an answer element to the research question which seems less common in the 

scientific literature at our disposal. Many authors deal with the aerodynamic problems of wind turbines, but these 

works are often based on the behavior of the blades ignoring the contribution of the often conical and elliptical 

profile at the wind sensor entrance. In this framework, the theoretical absence allows us to bring in this paper not 

only the reason for its existence, but also its corresponding limit to the governing thermodynamic quantities 

allowing to optimize their modules to the good of the turbine stability. 

KEYWORDS: three-dimensional convection, aerodynamic profile, ellipse and cone of revolution, shape limit, 

dynamic momentum.  
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NOMENCLATURE 

Roman letter symbols 

a  thermal diffusivity of the fluid, (m2.s-1)  

a’ length of the semi-axis, according to the length: case of ellipsoid, (m) 

b length of the semi-axis, perpendicular to the axis of revolution, (m) 

b’  length of the half-axis of the truncated base of the ellipsoid, perpendicular to the axis of revolution, (m) 

B rotation parameter 

Cfu meridian friction coefficient 

Cfw azimuthal friction coefficient 

Cp  specifique heat capacity at constant pressure of the fluid, (J.kg-1.K-1)  

Gr dimensionless Grashof number 

L  length of the reference body (cone, ellipsoid), (m)  

Nu  local Nusselt number 

Pr Prandtl number 

r  normal distance between the M projection from a point P to the axis of revolution, (m)  

Re  Reynolds number relative to the speed at infinity U∞, far from the wall 

Re rotational Reynolds number relative to rotational speed 

Sx,Sgeometric configuration factors 

T∞ fluid temperature away from the wall, (K)  
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Tp wall temperature, (K) 

Vx  velocity component in x direction, (m.s-1)  

Vy velocity component in y direction, (m.s-1)  

Vφ velocity component in φ direction, (m.s-1)  

x, y  meridian and normal coordinates, (m)  

 

Greek letter symbols  

𝛼 body inclination angle, (°)  

𝛼𝑒 eccentric angle in the literature, (rad): case of an ellipsoid, (rad) 

φ azimuthal coordinate, (°)  

𝜈 kinematic viscosity, (m2.s-1)  

𝜆 thermal conductivity, (W.m-1.K-1)  

𝛽 volumetric coefficient and thermal expansion, (K-1)  

µ dynamic viscosity(kg.m-1.s-1) 

o        half angle of the cone: case of a cone, (°)     

Ω Richardson number 

Indice/Exponent 
+ dimensionless variables 

 

I. INTRODUCTION 

The fluid flow around the blades of a wind turbine is very complex. A mathematical model is therefore 

proposed to better present it. In such a situation, the Navier-Stokes equations will be used for this purpose by 

posing simplifying assumptions facilitating the resolution of the system of equations of continuity, momentum 

and heat. In this paper, we will focus more on the particle channeling on the possible sensor of the wind motor. 

Many researchers invest on the physical and aerodynamic behavior of the wind sensor, but so far, we rarely find 

the works articulating on the necessity of the conical or elliptical shape of common use of the nose of these wind 

turbines (figure 1). The absence of the above-mentioned profile in an aeromechanical system certainly leads to a 

depression at the central level of the sensor causing the instability of the turbine. This disturbance can influence 

not only the design aspect of the mast or its whole system, but also the structure economic dimension. 

 

 
Figure 1. Conical, elliptical profile at the inlet of the wind sensor, [1]. 

 

Among the works listed, there are still many performances on fluid flows around a conical or elliptical 

profile, but often treated more in the fundamental approach ignoring the practical framework of the research. The 

scientific concept of these works remains only in the observation leading to correlation or law at the discretion of 

researchers and usually to meet the subjective and hypothetical perception of each. With respect to this, we bring 

our contribution through a theory limiting the shape parameters of the questioned profiles responding to the 

performance of the modern wind turbine. 

 

II. THEORETICAL FRAMEWORK 

Since 1953, the general relation on the solutions of an axisymmetric system of an isothermal body was 

developed by Merk and Prins [2]. They studied the natural laminar thermal convection of the boundary layer type 

in the vicinity of a smooth cone and observed the body surface condition contributes to the transfer performance 

and the roughness attenuates the exchange. The effects of transpiration velocity on a laminar boundary layer flow 

by free convection from a non-isothermal vertical cone were investigated by [3] and they concluded that due to 

the increase in temperature gradient, the velocity as well as the surface temperature decreases. [4] and [5] 
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investigated the global heat transfer in unsteady laminar natural convection from an isothermal vertical cone using 

the integral method. Many authors have treated so far, the thermodynamic problems around a cone and ellipsoid 

immersed in a two-dimensional or three-dimensional, linear or rotational flow [6], [7], [8], [9], [10], [11], [12], 

[13], [14] and [15], but without alliances with applied research. The same applies to the coupling of convections 

with various parameters depending on the objective of the authors [16], [17], [18], [19], which make little 

contribution to the practical side of research. With regard to all these works, the absence of the practical side leads 

us to a reflection whose objective is to offer a new scientific knowledge on the meaning of the events and the 

necessity of use of the questioned profile as aerodynamic regulator, often recommended at the entrance of the 

modern turbine in spite of the absence of the writings of it. 

 

III. THEORETICAL FOUNDATIONS 
The physical model consists of a body of revolution (cone and ellipsoid) of length L and inclined at an 

angle α or not to the vertical. The wall of the body is kept at a constant temperature Tp, different from the 

temperature T∞ of the fluid away from the wall which is also constant. Figure 2 represents the spatial configuration 

of the physical model of the system under study. 

 

 
Figure 2. Physical model and co-ordinates system. 

 

IV. CONSERVATION EQUATIONS IN THE BOUNDARY LAYER 

The conservation equations are presented in the same way for the two bodies. We only present the case of natural 

convection and complete with the reference quantities and boundary conditions of the other cases considered 

(forced, rotary, and the couplings of two by two of the three convections). 

 

a. Case of pure natural convection  

Authors pose 𝛥𝑇 = 𝑇𝑝 − 𝑇∞,  and the appropriate reduced variables are [20]: 

x+ =
x

L
, y+ =

y

L
Gr

1

4, φ+ = φ, Vx
+ =

Vx

√LgβΔT
, Vy

+ =
VyGr

1
4

√LgβΔT
, Vφ

+ =
Vφ

√LgβΔT
, r+ =

r

L
  and 

T+ =
T−T∞

TP−T∞
 (1) 

Continuity, momentum and heat equations 
∂Vx

+

∂x+
+

∂Vy
+

∂y+
+

1
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+
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+
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With 𝑃𝑟 =
𝜇𝐶𝑝

𝜆
=

𝜈

𝑎
 and Gr =

gβ(Tp−T∞)L3


2  

Nusselt number and friction coefficients expressions  

NuGr−
1

4 = − (
∂T+

∂y+
)

y+=0
; Cfu = Lcf (

∂Vx
+

∂y+
)

y+=0
and  Cfφ = Lcf (

∂Vφ
+

∂y+
)

y+=0
  (6) 

Lcf is a coefficient which results from the adimensionnalisation. 

Conditions to the limits

  At the wall (y+ = 0): T+ = 1, Vx
+ = 0, Vy

+ = 0 et Vφ
+ = 0   (7) 

Away from the wall (y+
 
→ ∞): T+ → 0, Vx

+ → 0, Vy
+ → 0 and Vφ

+ → 0  (8) 

 

b. Case of pure rotary convection 

The appropriate reduced variables are [21, 22]:  

x+ =
x

L
, y+ =

y

L
√Reeω, r+ =

r

L
,  Vx

+ =
Vx

Lω
Reω

1

4,  Vy
+ =

Vy

Lω
Reω

3

4, Vφ
+ =

Vφ

Lω
Reω

1

4  

and T+ =
T−T∞

(
L2ω2

2Cp
)
       (9)       

 
Conditions to the limits

  At the wall (y+ = 0): T+ = 1, Vx
+ = 0, Vy

+ = 0 and Vφ
+ = 0    (10)  

 
 

Away from the wall (y+
 
→ ∞):

 
T+ → 0, Vx

+ → 0 and Vφ
+ → 0  (11)  

 

c. Case of pure forced convection 

The appropriate reduced variables are [10]: 

x+ =
x

L
, y+ =

y

L
√Re∞, φ+ = φ, 𝑟+ =

𝑟

𝐿
, Vx

+ =
Vx

U∞
,  Vy

+ =
Vy

U∞
√Re∞ ,  

Vφ
+ =

Vφ

U∞
, Ue+ =

Ue

U∞
, Uex

+ =
Uex

U∞
 , Ueφ

+ =
Ueφ

U∞
  and  T+ =

T−T∞

Tp−T∞
 (12) 

Conditions to the limits

  At the wall (y+ = 0): T+ = 1, Vx
+ = 0, Vy

+ = 0 and Vφ
+ = 0   (13)     

 
 

Away from the wall (y+
 
→ ∞):

 
T+ → 0, Vx

+ → Uex and Vφ
+ → Ueφ   (14) 

 

d. First case of mixed convection: natural and forced 

Dimensionless reference quantities [23]: 

ΔT = TP − T∞, x+ =
x

L
 , y+ = C1

y

L
, φ+ = φ, r+ =

r

L
, T+ = C5

T

ΔT
 , (15)

 

 Vx
+ = C2

Vx

U∞
, Vy

+ = C3
Vy

U∞
 ,  Vφ

+ = C2
Vφ

U∞
, Ue+ = C4

Ue

U∞
 , Uex

+ = C4
Uex

U∞
  and Ueφ

+ = C4
Ueφ

U∞
   

C1, C2, C3, C4 and C5 are the barycentric coefficients of the mixed convection to manage the predominance. 

Conditions to the limits

  At the wall (y+ = 0): T+ = 1, Vx
+ = 0, Vy

+ = 0 and Vφ
+ = 0  (16) 

Away from the wall (y+
 
→ ∞):

 
T+ → 0, Vx

+ → (
C2

C4
) Uex

+ and Vφ
+ → (

C2

C4
) Ueφ

+   (17)    

 

e. Second case of mixed convection: natural and rotary 
Dimensionless reference quantities [24, 25]: 

ΔT = TP − T∞, x+ =
x

L
 , y+ = C1

y

L
 ,φ+ = φ ,r+ =

r

L
 , Vx

+ = C2
Vx

Lω
 ,Vy

+ = C3
Vy

Lω
 , Vφ

+ = C2
Vφ

Lω
  and 

 T+ =
T−T∞

ΔT
  (18) 

 

Conditions to the limits

  At the wall (y+ = 0): T+ = 1, Vx
+ = 0, Vy

+ = 0 and Vφ
+ = C2r+   (19)

 
 

Away from the wall (y+
 
→ ∞):

 
T+ → 0 , Vx

+ → 0 and Vφ
+ → 0   (20) 

 

f. Third case of mixed convection: forced and rotary 

Dimensionless reference quantities [26]: 

x+ =
x

L
, y+ =

y

L
√Re∞ C1, φ+ = φ, r+ =

r

L
, Vx

+ =
Vx

U∞
C2, Vy

+ =
Vy

U∞
√Re∞ C3, Vφ

+ =
Vφ

U∞
C2 
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Ue+ =
Ue

U∞
C4, Uex

+ =
Uex

U∞
, Ueφ

+ =
Ueφ

U∞
  and T+ =

T−T∞

ΔT
C5 (21) 

 

Conditions to the limits

  At the wall (y+ = 0): T+ = 1, Vx
+ = 0, Vy

+ = 0 and Vφ
+ = C2r+  (22)

 
 

Away from the wall (y+
 
→ ∞):

 
T+ → 0 , Vx

+ → (
C2

C4
) Uex

+ and Vφ
+ → (

C2

C4
) Ueφ

+   (23)  

 

V. METHODOLOGY AND MODELING 

The study field is broken down into N x M x L curvilinear parallelepipeds attached to the body and 

defined by the dimensionless steps Δx+, Δy+and Δφ+. In this case, L and N are fixed in advance (Np, Nm), 

because they are directly related to the body geometric discretization. However, for a given stack indexed by p, 

the thickness of the boundary layer is not known in advance and the index (JMAX)p characterizes the thickness 

and changes a priori from one stack to another. Then, M is thus defined by the relation: 

 

M = ∑ (JMAX)pLxN
p=1  (24) 

 

Calculations are performed at nodes (i+1, j, k), with 1 ≤ i ≤ I M AX, 1 ≤ j ≤ JMAX and 1 ≤ k ≤ KMAX. For 

dimensionless quantities Vx
+, Vy

+, Vφ
+ and T+, authors approximate the partial derivatives as follows, X designating 

one of them and the unknowns being the quantities indexed by i+1.   

authors denote by U, V, W and T the meridian, normal, azimuthal components and the dimensionless temperature. 

After arrangement, the discretized equations can respectively be put in the following form: 

 

AXj+1 + BXj + CXj−1 = Dj, for 2 ≤ j ≤ J max − 1 (25) 

 

The algebraic systems (25) associated with the discretized boundary conditions are solved by the Thomas 

algorithm. As for the dimensionless normal component, it is obtained from the discretization of the continuity 

equation: 

 

Vi+1,j
k =

1

4
[3Vi+1,j+1

k + Vi+1,j−1
k + 2Δy+ (

Ui+1,j
k −Ui,j

k

Δx+
+

3Wi+1,j
k+1 −4Wi+1,j

k +Wi+1,j
k−1

2Δφ+ri+1
+ +

Ui+1,j
k

Δx+
(1 −

ri
+

ri+1
+ ))]   (26) 

 

In the calculations, authors took a precision ε = 10−6 and the convergence criterion within the boundary layer is 

ensured when: 

 

|
|(X)p+1|−|(X)p|

Sup(|(X)p+1|,|(X)p|)
| ≤ ε (27) 

 

(X)p and (X)p+1 are respectively the values of the quantity X at iterations p and p+1. 

 

VI. RESULTS AND DISCUSSION 

Authors validated our calculation code with [27] for the cone case and with [28, 29] for the ellipsoid case in order 

to prove the accuracy of our results and the relative deviation not exceeding 1%. 
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(a): Steady state temperature against y+, x+=1.0 and α=0° 

(b): Numerical values of the heat exchange coefficient, 𝛼𝑒𝜖[0, 𝜋], Pr=1.0 and b/a=0.25 

Figure 2. Comparisons of the steady state temperature and exchange coefficient. 

 

Generally, the growth of the rotation parameter and the opening attenuates the thickness of the thermal 

boundary layer (Figures 3). The reduction in thickness of the dynamic and thermal layers contributes to the 

stability of the entire sensor system and also marks the need to use the profile studied, taking into account the 

following correlations [30]: 

 

θ0 limit = π/2 – (α-1), for the tangential component and α ≤ 45° ;  (28) 

θ0 limit ≥ α+1 , for the normal component. (29) 

 

 
   (a): Dynamic boundary layer, Ω+ = 0.5 and several values of θ0 

(b): Thermal boundary layer, for several values of Ω+. 

(c): Thermal boundary layer, for several values of θ0 and Ω+ = 0.5 

Figure 3. Boundary layer thickness as a function of x+. 
 

There is a zone on the wall of the profile, inert or in motion where the shape and position parameters 

have no influence on the normal component of the velocity, this zone is slippery according to the meridian 

coordinate x+ and the growth of this attenuates the amplitude of the aforementioned component. This point is 

collectively called a privileged point defined in the vicinity of equation φ=90° (figure 4.a). This area could open 

another field of research contributing to the improvement of the performance of aerodynamic profiles, even 

hydrodynamics. The range of use of flattening and opening the body is limited to 90° for a non-tilted body, and 

beyond this value, suction begins, and at 180°, the extent of this latter will cause instability harming the structure. 

The flat angle indicates the absence of the profile and the suction power is of magnitude and ready to give rise to 

turbulence, which represents a danger to the whole system (figures 4.b and 4.c). 
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(a): V+ as a function of φ, for several values of α and x+ 

(b): U+ as a function of y+, for several values of φ, θ0=60° and 180°, x+=0.5 

(c): V+ as a function of y+, for several values of φ, θ0=5°, 60°, 90° and 180°, x+=0.5 

Figure 4. Evolution of the meridian and normal component of the velocity. 

 

The flow would only be stable from 5° to 90°, which demystifies the choice of pattern manufacturers, of 

a current angle being around 60°, given the inclination α ≤ 45° in our case, so that the profile could contribute to 

the straightening of the fluid net passing by this one as rectifier, stabilizer and current channeler towards the sensor 

to the good and ideal optimization of the wind motor operation. 
 

VII. CONCLUSION AND PERSPECTIVE 

Numerous examinations have been carried out through thousands of results derived from various cases, 

from several authors in the field of transfer by external convection, to answer a research question that offers an 

alliance between fundamental and applied research. The existence of the conical or elliptical shape at the entrance 

of wind turbines is not by chance or for aesthetic reasons, but it plays a crucial role in the stability of the whole 

aeromechanical wheel despite the absence of writings on it. In the majority of the cases approached, a parietal 

privileged point is seen on the normal component and this represents another door of investigation to the discovery 

of another scientific knowledge by posing another research question on the independence of a quantity dynamic 

in relation to shape and position parameters, how important and useful as a perspective.  

Finally, this paper will contribute to the theoretical and conceptual aspect of the conical and elliptical 

shape of the wind turbines nose at both industrial and domestic scales. The proposed correlations limiting the 

intensity of the tangential and normal dynamic quantities are conceptually recommended to limit the importance 

of suction and adhesion caused by the particle’s confinement. The coupling two by two of the identified 

convection typology will certainly contribute to the new techno-scientific knowledge responding to the 

improvement of the wind turbine aerodynamic performance. 
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