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Abstract- Power systems experience stress due to growing load demands and this has resulted to the
implementation of reactive power injection to ensure a stable and efficient power network. To cushion this effect,
this paper proposed the use of Flexible Alternating Current Transmission Systems (FACTS) technology amongst
other technologies for reactive power compensation, and presents the use of Static Var Compensator (SVC) as
the FACTS device for improvement of the power factor and power quality. Port Harcourt Town 132/33/11 kV
substation modelled in Electrical Transient Analyzer Program (ETAP 19.0) software, was used for this analysis.
Through the simulation of this network, the voltage profile evaluation through the Newton-Raphson load flow
analysis method (LFA) was examined to evaluate the performance of the SVC device. The analysis results were
verified and compared with permissible values included in the IEC standards. The simulation results showed the
efficiency of SVC device in improving the voltage profile.
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l. INTRODUCTION

One of the common problems in power systems is reactive power compensation. FACTS devices contribute
reactive power to the power network, improving the voltage stability of the network. [1]. Due to the high demand
for energy, reactive power compensation aids in preventing power system overloading and collapse [2,3].
Conventional methods, such as synchronous condenser systems, have been proven effective in the past for
improving power factor and supplying reactive power [4,5]. However, FACTS devices have been shown to be a
more dynamic and effective tool in addressing power system instability issues, and it is able to both generate and
absorb reactive power [6].

The FACTS devices are power electronic-based systems that provide improved controllability, flexibility, and
reliability over the power network and have a number of benefits, including increasing the capacity of the
transmission line, reducing transmission and distribution losses, amplifying adaptability, harmonic extenuation,
and heightening the dynamic and static stability of the power system [7-9]. For various technologies, FACTS
devices can be categorized as follows: [9]

. Shunt connected,

° series connected,

° series-series connected,
° series-shunt connected

The Static Var Compensator (SVC) is the FACTS device employed in this study for reactive power compensation,
and Newton-Raphson power flow iterative technique was utilized for the load flow analysis because of its quick
convergence rate and high accuracy when compared to other solution algorithms.
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1. MATERIALS AND METHOD

Modeling of Static Var Compensator (SVC)

One of the several FACTS devices known as SVC serves as an injector or absorber of static reactive power and
is connected in parallel to the distribution network nodes. SVC is made up of a parallel combination of regulated
inductors, thyristor valves, switches, and capacitor banks. It functions similarly to a variable parallel reactance
that may be converted into a highly responsive device by adjusting the thyristors' firing angle [11,12].

Fig. 1: Circuit model of SVC

Figure 1 depicts the equivalent circuit of the SVC. The following can be used to express the equivalent reactance
to control inductor via a thyristor:
_ nX],
Xy = 2(m—-a)+sin(2a) (1)
You may determine the parallel configuration of thyristor-controlled inductors and capacitors' SVC equivalent

reactance by:
nXcXy,

XLeq = X.2(m-a)+sin(2a))-wX @)

c L
The firing angle of the thyristors is indicated by o, and Xc represents the parallel capacitor reactance. Taking into
account SVC equivalent susceptance, which is a result of the thyristors' firing angle, as shown in (3):

_ Xy Xc(2(m—-a)+sin(2a))
Beq = TXcXL 3)

The firing angle of the thyristors is a continuous function of the susceptance of SVC, unlike the capacitor,
according to (3) [11].

Injection or absorbing of reactive power by SVC using (4) is calculated:

Qsve = _VzBeq 4

In (4), V is the voltage of the node that SVC is installed.

Substation Modelling

The Port Harcourt Town 132/33kV substation gets power from Afam transmission station through a 132kV
double circuit transmission line connected to the national grid at Alaoji-Afam transmission station. The substation
consists of:

. A 132kV bus bar connected with a power source (an external grid)- a reference bus;
. 60MVA, 45MVA, and 30MVA (2) 132/33kV power transformers

. 15 MVA (3) 33/11kV power transformers.

. Six 33kV feeders, and six 11kV feeders feeding injection substations in the zone.

The base-case network employed for this investigation was modelled using the Electrical Transient Analyzer
Program software, as shown in Fig. 2. (ETAP 19.0). The Port Harcourt Electricity Distribution Company (PHED)
and Transmission Company of Nigeria (TCN) provided the pertinent data that was used for this research's
modeling and simulation.
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Fig. 2: The Single Line Diagram of Port Harcourt Town 132/33kV Substation

1. RESULTS AND DISCUSSION

Load Flow Study- Without SVC Compensation

The load flow analysis (LFA) is a method that is frequently used for power system design and operation
[13]. While conducting power system analyses, a number of studies have employed the Newton-Raphson power
flow solution technique to do LFA [36-38]. Using the ETAP software's built-in Newton-Raphson power flow
solution technique, a load flow study of the modeled substation was conducted. The LFA was conducted at this
point in order to test the substation equipment loadings and performance under the conditions of maximum
loading, without the involvement of the FACTS device (SVC). Tables 1 and 2 present the findings. It is evident
from the load flow figures that the Port Harcourt Town 132/33kV substation is experiencing difficulties, including
a poor voltage profile and heavily loaded transformers. The condition of the transformers after the LFA is
explained in Table 1, which demonstrates that the transformers are overloaded in accordance with the power
system regulation as indicated in the IEC standard 60354 requirements [14]. The IEC standard states that
continuous loading of oil-immersed transformers above the threshold of 80% will shorten their useful lifetime.
The findings indicate that, in comparison to T1 and T2, which are overloaded, transformers T3, T4, T5, T6, and
T7 are in a better loading state.

Table 1. LFA results of the transformers — without SVC compensation

MILE ONE SPARE OLD DIOBU TRANSAMADI RESIDENTU

Equipment Ratings % Loading

Transformer T1 30 MVA (132/33)kV 97.8
Transformer T2 45 MVA (132/33)kV 97.8
Transformer T3 60 MVA (132/33)kV 36

Transformer T4 30 MVA (132/33)kV 58.8
Transformer T5 15 MVA (33/11)kV 50.7
Transformer T6 15 MVA (33/11)kV 56.4
Transformer T7 15 MVA (33/11)kV 55.9
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Table 2. LFA results of the bus bars — without SVC compensation

Equipment Rated Value (kV) Recorded Voltage (%)

Busl 132 100

Bus2 33 92.75
Bus3 33 97.47
Bus4 33 95.51
Bus5 11 89.53
Bus6 11 92.03
Bus7 11 92.05

Table 2 shows the LFA results of the bus bars which are not very promising. The provisions of the IEC
standard indicate a +6% tolerance for voltage drop. As observed from the table, Bus 2, Bus 5, Bus 6 and Bus 7
violated the voltage drop limit and Bus 5 is observed to be the most overloaded bus bar in the system. Hence, this
study proposes the overloaded buses to be the point of coupling for the FACTS device (SVC) and for the injection
of reactive power into the network.
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Fig. 3: LFA of the base-case network without SVC

Load flow study — With SVC (150 MVar)

Fig. 4 shows the installation of SVC at the weak buses; Bus 2, Bus 5, Bus 6 and Bus 7 and the results of the LFA
were noted during the maximum load scenario. Tables 3 and 4 present the LFA results for the transformers and
bus bars after the reactive power compensation using SVC.

Table 3. LFA results of the transformers — with SVC

Equipment Ratings % Loading
Transformer T1 30 MVA (132/33)kV 74.5
Transformer T2 45 MVA (132/33)kV 745
Transformer T3 60 MVA (132/33)kV 31.3
Transformer T4 30 MVA (132/33)kV 50.5
Transformer T5 15 MVA (33/11)kV 53.2
Transformer T6 15 MVA (33/11)kV 61.4
Transformer T7 15 MVA (33/11)kV 60.9

Table 4. LFA results of the bus bars — with SVC

Equipment Rated Value (kV) Recorded Voltage (%)

Busl 132 100

Bus2 33 98.95
Bus3 33 99.66
Bus4 33 99.67
Bus5 11 99.79
Bus6 11 96.04
Bus7 11 96.06
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Fig. 4: LFA of the base-case network with SVC compensation

Table 5: Results of Load Flow and Losses without SVC

SIN ID kW Flow KVar Fow Amp flow %PF %L oading KW Losses KVar Losses
1 T1 46280 46501.9 287 70.54 218.7 398.4 17930
2 T2 69419.9 69752.9 430.4 70.54 218.7 597.7 26895
3 T3 17931 12072.5 94.55 82.95 36 21.63 973.2
4 T4 13882.1 10885.9 77.16 78.69 58.8 28.81 1296.4
5 T5 4944.5 3407.1 127.5 82.34 40 17.69 353.7
6 T6 6952.5 4814.6 154.9 82.21 56.4 26.1 522.1
7 T7 6900.8 4774.8 153.7 82.23 55.9 25.7 514
8 Total Losses | 1.116 48.484
Table 6: Results of Load Flow and Losses with SVC
SIN 1D kW Flow KVar Fow Amp flow %PF %L oading KW Losses KVar Losses
1 Tl 63656.2 15215.5 286.3 97.26 218.2 396.5 17844
2 T2 95484.3 22823.2 429.4 97.26 218.2 594.8 26766.1
3 T3 18744.3 1512.2 82.25 99.68 31.3 16.37 736.6
4 T4 15113.1 898.5 66.22 99.82 50.5 21.22 954.8
5 T5 6817.3 4697.5 149.7 82.34 55.2 24.38 487.7
6 T6 7574.1 5245.1 161.7 82.21 61.4 28.44 568.7
7 T7 7517.8 5201.8 160.4 82.23 60.9 28 560
8 Total Losses | 1.11 47.918
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RECORDED VOLTAGE WITH AND WITHOUT SVC
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After the installation of SVC, as demonstrated in tables 1 and 2, a certain improvement was seen (Tables
3 and 4) in terms of overloaded transformers; T1 and T2 which are the weak buses. Transformers T1 and T2,
which were previously 97.8% loaded (without SVC adjustment), are now at 74.5% in Table 3, which represents
an increase of around 23.3% in the recorded value. Table 4 displays the results of the voltage profile of the bus
bars following the installation of SVC at the weak buses. The newly recorded voltage of 98.95% with SVC
compensation as compared with voltage value (without compensation) of 92.75% showing 6.2% improvement
for Bus 2, newly recorded voltage of 99.79% with SVC compensation as compared with voltage (without
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compensation) of 89.53% showing 10.26% improvement for Bus 5, newly recorded voltage of 96.04% with SVC
compensation as compared with voltage value (without compensation) of 92.03% showing 4.01% improvement
for Bus 6, newly recorded voltage of 96.06% with SVC compensation as compared with voltage value (without
compensation) of 92.05% showing 4.01% improvement for Bus 7. Fig. 5 shows the chart for % bus loading with
and without SVC. From the chart, the effect of SVC is clearly seen in the reduction of the % loading of the
transformers thereby increasing the life span of the transformers. Figure 6 shows the voltage profile with and
without SVC. Table 5 and 6 shows the impact of SVC in terms of % power factor, kW flow and losses. The chart
shows voltage profile improvement when SVC was connected to the network.

v CONCLUSION
The Load Flow Analysis (LFA) is crucial for the operation of the current power system and for planning
for the future. In this investigation, the base case network for load flow investigations was modeled using ETAP
19.0. The simulation was run under a peak-load scenario using the software's inbuilt Newton-Raphson power
flow approach. The LFA results revealed the weak buses and overloaded transformers. By lowering their
percentage loadings to a significant number and strengthening the weak buses, the SVC approach improved the
overloaded transformers and produced a better voltage profile
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