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Abstract: In this paper we have proposed a new potential of energy for the modelaization of the artery when it is
healthy or pathological. We calculate the elementary invariants, componetits @fauchy stress tensor and
internal pressure of an artery. The geometry of the pathological artery has been given, which allows us through
mathematical calculations to show that those deseases obligate the artery lose its capacity to be incompressible
and to determine an exact solution of the internal pressure from certain boundary conditions. With the
comparaison with two others potentials find in the literature, the simulation of the pressure accordind to three
models allowed us to show how the fibroeimforcement of our potential can be efficient for the regulation of

the blood pressure when the artery is pathological and then to validate our model which verifies also Meredio
relationships.
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l. Introduction

Cardiovascular diseases or diseases of the circulatory system is the leading cause of death in developed
countries. It is for this reason that the study of arterial structures and their prosthetic substitute constitutes an
issue of primary importance for biomedical research [1]. The description of the anisotropic hyperelastic
mechanical behavior of a mechanical cylindrical tube is still useful to better understand the diseases that plague
the cardiovascular system [2]. For thehievement, many kinematics translating the geometries of these arteries
when they are healthy as well as when they are affected by pathologies have been defined. These studies of
many variables and tensors allow many authors to obtain expressionarémitsy stresses and internal pressure
with certain condition[3]. To reach their objective in the case of certain biomechanical models, the authors must
choose on various potential energy functions which allow to realize such work among which we cdrnhguote
polynomial, exponential, power dwgarithmic form [4]. These energy potentials have been established as part
of a phenomenological approach that describes the macroscopic nature of arteries and there are functions of
elementary invariants [3]. Mb®f these mechanical studies have different and diverse objectives. One part of
this is most often concentrated in the analysis of stresses and pressure in incopressible or compressible, isotropic
or anisotropic case [4,5,6] and in an other part thereirteeested to explains and demonstrates that flow
through Venturimeter is comparable to flow through stenotic artery, discarding other complicated physiological
factors [7]. Our contribution here is to propose a new energy potential for the modelirey lnfrttan artery
system when it is healthy or affect by diseases like stenosis or aneurysm. We are interested to know how the
artery behaves at the level stresses and internal pressure for the validation of our potential model when it is
healthy or pathologal. Two reference models are chosen for the comparison with our model. The simulations
of the three models on the level of the pressure will allow us to see how our model behaves in order to validate it
but also to provide better data in the fibrous maaotufre and improvement of vacular prosthetic substitutes.
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Il. Mathematical formulation of the problem

Let’s consider continuous cylindrical hyperelastic tube which is an artery with
stenosis or aneurysm, where a material point occupies the position (R, ©, Z)
before the deformation and the position (r, #, 2) after deformation which is rep-
resented as in [8] by the following kinematic

-r(R,Z):R:I:c?(l—i—cos(%)):—2?r§Z§27r; #=0; z2=2=2. (1)

It follows the gradient tensor of deformation which is difined by:

)‘r‘r‘ 0 ’\'rz
0 0 Azz

where A, = 9r/OR, \g = {(08/90), .. = 82/0Z4 and A,, = Ir/O0Z.
To measure the tranformation we can then introduce the left Cauchy-Green
tensor noted B and defined by:
A‘Er + )‘gz 0 )“J"Z
B = 0 AZ, 0 . (3)
Az 0 AZ,
The adjoint of the tensor B noted B* is given by:
AZ, 0 — A2 A2,
BT = 0 1 0 ; (4)
—ArzAZe 0 (1+A2)AZ,
In addition, to take account of deformations in preferred directions, for example
in the case of a fibrous reinforcement, a unit vector M (M p, Mg, Mz) is intro-
duced representing the fibrous reinforcement in the non-deformed configuration,
which gives us the direction of the fibrous reinforcement in deformed configura-
tion denoted m defined by m = FM.

We can then calculate the first five isotropic or anisotropic elementary invariants
of deformation:

Iy = tr(B) = A3, + A2, + 2;

L =tr(B*) = A2, + A2, + 2;
Iy = det(B) = X2, (5)
ILi=mm=~%4+\},M3 + \2_M%;

I; =m.Bm = [{1 + ,\Zz) v — 2).,.211-1’;5] v AR ME AL M2

where v = Mp + A, Mz.

To verify the incompressible hypothosis which is translated mathematicaly by:

I = 1; (6)

we obtain this following second degree equation with cosine:

%cosz (%) +2 (% + 1) cos (%) + (% + 2) =0. (7)

An equation which always admits two distinet solutions whatever 4 and R be-
cause its discriminant A is always equal to 4 means greater than Zero.

In the general case, we can set the condition § = R with g € [0; %] because
according to our kinematics, § = 0 or g = % is a limit condition for that the
stenosis block the artery or double the arterial radius. The previous condition
of the generalization gives us these two following distinct solutions:

-1+ ifx6<0
02:{ 246 f

11— if£6>0 ®)

oy =—1;
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This general case gives oy as a only good solution of the problem because a5 is
not a good solution of cosine:

[ >3 if£s<0
‘32_{<—5 if£6>0 ©)

So we find our first solution of the study which is Z = +2m.

Remark 1
The analysis of the values of the two distinet solutions shows that there is no

good solution of the cosine function when the deformation of the arterial radius
caused by the desease begins.

So a stenosis artery or an aneurysm artery loses his property of incompressibil-
ity because in this value r = R we mean no deformation.

To characterize the state of stress, that is to say the internal forces brought
into play between the deformed portions of a material in mechanics of con-
tinuous mediums, the Cauchy stress tensor noted T is used. So that in the
compressible and anisotropic case [10,11], it is given by:

. (WiB + (I2Wa + IsW3) 1 — [;WoB™ ]

van (10)
2[Wmem+W; (m®Bm+ Bm @ m)]|;

where 1 represents the identity tensor and the W;(i = 1,2,..,5) are given by
W; = oW/aI; with W an energy function of deformation.

With the hypothesis of the absence of volume forces, the equilibrium equations
are summarized as:

div (T) = 0. (11)
In a eylindrical coordinate system, the equilibrium equations are reduced to:
B (To) 4 Jeee = 0
5(7'21}9) = 0 (12}
L(T,.) =0

where the components of (12) are given by:

r o A LN Wit (T 1) Wy + W]
rr = +2 TTZ Wy + 29 (’T {1 14 /\Ez) _ )‘Tzﬂ.’_rz) w?s]

Ty — 2!, [('\53) Wi+ (Iz - fg";) Wa + [3W,
o +2 [Uwﬂfe}z Wi +2 (A3 Me)” Wy

(13)

T.. — \/L‘,—S [I-I..ﬁ_ + (Ig — I (1 + )\Ez)) W, + fgﬁ-%]
zz = +2 [ﬂ,f% Wy+2 ( 1‘”’% — YA ﬁf’fz) “,5]

7 1 _ | 7P A B Wa] + 29My Wa+ 2y (Mz — Aay) Ws
rz = dzr = - +92 [({1 + ,\Tz) ¥ — )\,.zf',-fz) ﬂfz] Ws

For the purpose of determining an expression of the pressure we can choose the
boundaries conditions studied in [11] by:

Trr(a} =0; Tﬂ"(b) =D (14}
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where p is the internal pressure and ¢ and b two elements of ]0, %R [
The use of relation (12), and the conditions (14) allows us to have:

b .
p=[ Tu-1.0 L. (15)

As the pressure depends only on the second first principal components of the
Cauchy stress tensor which do not depend on the radius r, the caleulations with
all the conditions gives us an exact solution of the pressure which is given by:

p= (Toe — T'r)log (r) + po; (16)
a pressure which is a logarithmic solution where pg is the initial internal blood
pressure.

2.1 Some geometries of arterial deseases

For the simulation of the invariants of our kinematic, we choose R = 0.8mm as
in [9] and 6 = SR, that gives us the following geometries:

107  Artery with stenosis 104 Artery with stenosis
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These three prvious graphics show how the progression of stenosis redwsrésiaheadius.
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These three prvious graphics show how the progression of aneurysm increases
the arteial radius.

3 Rewiew of the literature

In this section we consider two examples of energy functions studied previously.
These energy functions as most of the energy functions find in the biomechanic
literature in the anisotrope and incompressible case are only functions of the
forth first invariants, in the fact I5 is neglected.

3.1 Zidi-Cheref energy potential

We consider here the Zidi-Cheref energy function studied in [12] with an expo-
nential anisotropic contribution for human artery given by:

W= % (Iy —3) + ay (I — 3) + as (g” — 1) + azin (\/E)}Mo [ea’p (k, (I — 1)2) — 1} .

(17)

where u, aq, as, @z, ko and k; are material parameters. that yields us these
following partial derivatives of this energy function:

wi=4s we=E0 W= F (G‘Q 4 \%) D Wa = 2koky (Ts — 1) eap (i (I~ 1)?).

? s (18)

3.2 Diout-Zidi energy potential

Secondly we consider the Diouf-Zidi energy function studied in [1] with an power
anisotropic contribution for also a human artery given hy:

2
W= g (I —3)+a: (I —3) + a2 (17 1) +a (L - 1}3] . (19)

where 1, ay, a> and « are material parameters. that yields us these following
partial derivatives of this energy function:

_ B e HQ1 _ Ha2 1/2 TV, — _ 132
wy=14: Wy =2 wg_zm(;‘a 1); Wa=3a(Li—1)°. (20)
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4 A new energy potential

In this section, we give ourself as an objectif to yield a new energy function
of deformation for the modeling of a healthy or pathological human artery for
un better improvement of the vascular substituts. The novelty is that this new
function will consider at the same time the both anisotrope invariants. So we
define it by:

W= & [(11 —3)4ai(l—3)+a (I;;” _ 1) + asln (VI3)

+ho [exp (k1 (s = 1)) + 8 (eap (k2 (I — 1)) ) = (1+9)
where u, ay, as, as, kg, k1 and ks are material parameters. n is also a positif
material parameters with n < 2.5 and § = 0 respectively § < 0 according to to
case of compression respectively dilatation of the artery.

So when we choose n = 2 and § = =1 in compression or in dilatation, this
previous potential yields us these following partial derivatives:

(21)

Wi=4: We= gt Wh= e (a+ S
Wi = 2koky (Iy — 1) exp (K (I — 1)?) ; (22)

Wy = 48koky (Is — 1) exp (ko (Is — 1)*

As every energy potential, if we consider W = W (11, I3, I3, I4, I5), our function
must verify the Meredio relationships which are:

Wi(3,3,1,1,1)=

Wi(3,3,1,1,1) +2W>(3,3,1,1,1) + W2 (3,3,1,1,1)

Wy(3,3,1,1,1) +2W5(3,3,1,1,1)

0
0; (23)
0.

In this previous system, (23), and (23), are verified. The relationship (23), is
verified with our condition:

1y = —2 (1 +2a, + %) (24)

5 Pressures simulation

In this paragraph we will simulate the pressures from the three energy potential
of different deformations of the artery to see the behavior of our potential com-
pared to the both potential find in the literature. The preesure of our energy
potential is noted Pp in green color.
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Case of an artery with stenosis
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Thisthree previous graphics show a good behavior of our energy function which has a lower increasing
pressure compared to the others two models when the artery is affected by the stenosis. We note that more the
stenosis developp, more the pressures increageddn more the difference is noted between the pressures with
our model which records the lower values followed by that of Didf which is followed also by the Zidi
Cheref which records the highest values.

The simulation show a good efficient of our energy function to modelizetary affected by the stenosis.

Case of an artery with aneurysm
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In the case of an aneurysm, the graphies show a good behavior of our energy
function which has values around the good blood pressure of a healthy artery
when it is affected progressively by the aneurysm.

We note that with a small aneurysm expansion, the Diouf-Zidi model records
the lower decreasing pressure variation followed by that of our model. When
the aneurysm continue to progress, we reach a state where our model records
the smallest pressure variation exactly where the aneurysm is more developped.
And when the artery loses % of its radius, we observe a very strange shape of
the pressure of the Diouf-Zidi model which follows an association of parabola
and peak which ean reach the 320 mmHg while remaining somewhere beyond
our model which follows a slight sinusoidal variations.

Onur different states of aneurysm show that the pressure of the Zidi-Cheref model
registers the smallest values.

A good efficient of our energy function to modelize an artery affected by the
aneurysm is also observed.

6 New potential stresses simulation

Here we simulate the non-zero components of the Cauchy stress tensor in order
to see how our fibrous reinforcement behaves in case of stenosis or aneurysm.
Two stages of stenosis disease and aneurysm disease will be considered.

Case of an artery with stenosis

Sutlenosis stresses of our potential §=0,1*R

Steunosis stresses of our potential 7=0.25*R
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In the case of a stenosis, we find that our energy function has a fibrous rein-
forcement which compresses the artery in all these planes when it is affected by
the stenosis. We have the principal components which have the same origins
with T).. deseribing a sinusoidal ecrest less important than that of T,, and Tpy
desecribing a sinusoidal hollow. the radial-axial component T, also describe a
sinusoidal hollow. We note that the more the stenosis progresses, the more the
crests or hollows become important.

Case of an artery with aneurysm

aneurysm stresses of our potential /=0.1*F
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In the case of an aneurysm, we find also that our energy function has a fibrous
reinforcement which compresses the artery in all these planes when it is affected
by this desease. We have the principal components which have the same origins
and they all describing a sinusoidal erest with Ty more important followed by
than that of T,, and finally by T... The radial-axial component T}, also de-
seribe a sinusoidal crest. We note here that the more the aneurysm progresses,

2023

We defined subsegutly the Cauchy stress tensor in compressible and anisotap& By neglecting the
volume forces and with certain boundary conditiows, have determined the different components of the
Cauchy stress tensor thgive an exact solution of the internal pressure which is logarithmic form.
Two potentials find in theterature and a new potential defined by us whichthadive first invariants
are studied. The simulations show us a good behafidhe pressure obtained by our proprosed potential
compared to the two othewghen the artery is affected by deseases.siimelation also show a compression

all the levels. Our fibrous reinforcement allows to reduce the strong varadtignressure and stresses when the
deseases progress.
Pressure and Cauchy stress tensor components allowed us to highlight thatleltranslate a better
behavior of an artery affected by stenosis or aneurgsoh will be a good tool for the manufacture and
improvement of vascular substitutes.

Outlooks
As perpectives of our learning in biomechanic, this study can be the beginageo§ important
subject in the development of new potentials of deformatdvetter regulate variation of pressure and stresses
when the artery is affectday cardiovascular deseases for the production of the best vascular substitutes.
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