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ABSTRACT : In this paper, by establishing differential delay inequalities, we discuss the exponential ultimate
boundedness of a class of impulsive switched systems with time delays, the sufficient condition of exponential
ultimate boundedness of the system are derived. Finally, an example is given to verify the effectiveness of the
results.
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I. INTRODUCTION

Hybrid Dynamic System(HDS) which is characterized by continuous changes over time and driven by
discrete emergencies, also called Hybrid System(HS). In 1966, H.S. Witsenhausen proposed the earliest
literature on hybrid dynamic system[1]. Since then, scholars at home and abroad have devoted themselves to
relevant research. Switched system can be regarded as a typical hybrid system, consisting of continuous or
discrete subsystems and a logical rule which coordinates switched machines among subsystems.Switched
system has many applications in industry, such as network control, power control, traffic controland process
control[2,3]. In addition to switched system, impulsive system[4,5], also known as impulsive signal, is another
kind of important hybrid system, which includes the jump or reset of instantaneous states. And the concept of
impulse can be understood as a sudden change of some variables at a certain moment during the operation of the
system. The force of such a short, sudden change is considerable. Under the influence of impulse, condition of
the system will change greatly. Moreover, time delay may occur during the course of the establishment of the
switched system. Time delay means that the rate of state change of the system is related to the state of the past
moment. Time-delay phenomenon is very common in practical application, especially actual industrial
production process, such as chemical system, hydraulic system[6,7], and other fields. The universality of time-
delay phenomenon is the reason why timedelay can become the favored research object of many scholars.

In this paper, both time-delay effect and impulsive effect are considered in switched system. So far, the
academic circle studied the switched system has covered a wide range of areas, such as controllability problem,
observability problem, stability problem, robustness problem, stabilization problem, etc.[8-10]. However, there
are few researches on the boundedness of switched system at present. In such cases, it is meaningful to study the
boundedness of switched system and the sufficient conditions for the exponential ultimate boundedness of
impulsive switched system with time delays are derived by using two differential delay inequalities, which are
vital tools in the study of boundedness of delay systems.

1. MODEL AND PRELIMINARIES
For the convenience of proof and derivation, the following symbols are given:
Let O[®, ,,0] represent a family of continuous functions from @, ,to O , |, represents the n-

dimensional identity matrix,  , =[0,0), K={12,....}, 0 , ={1.2,..n}, 0 ={1,2,...,N}. 4., (P) and 4_,,(P)
are the maximum and minimum eigenvalue of a real symmetric matrix P [0 ™", respectively. The symbol
PC[[-7,0],0 "] represents the space of piecewise right continuous [ " -valued functions ¢, which are defined
on [~7,0] with a norm |¢] =sup_,_,., |#(6)| , in which || stands for Euclidean norm.

Consider the following impulsive switched system with time delays:
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X'(t) =R x(t)+ f, (t,x(t-7)), t=t, i, el,
AX=x(t))—x(t) =1 .x(t), keK, Q)
X(t, + &) =y (0), 0 [-7,0].
where the constant z >0 denotes the time delay, and w(0) e PC[[-7,0],0 "] represents the initial
function . I,,R 0™ , {i,} denotes the switching signal o:0, —0 on the basis upon
D, , =[t_,.t,) —i, €0, is a piecewise constant function, represents that the system has switched from the i, ,
-th subsystem to i, -th subsystem at the time t .A piecewise continuous vector-valued function
f:0, x0"—>0" satisfies f, (t,00=0, tell
Meanwhile, theimpulsive moments t. (k eK) that are fixed should satisfy
0<t <t <t, <..<t, <., lim__t =oo.

Obviously, there are N different subsystems in the system (1) showing as follows:
X'(t) =RPx()+ f,(t,x(t—7)), ie0.(2)
For every switched function o,tel ,,t>t,, m denotes the total amount of activations of i-th
subsystem (2) in the period of [t,,t], the symbols ¢; (t,,t)(j €{L2,....m}) denote the j-th continuous duration

and ensuresthat system (1)exists and it is unique as well.

)

of work of the i-th subsystem, the symbol /,(t,,t) denotes the total activation time of the i-th subsystem (2) in
the period of [t,,t], each Lebesgue measure of the sets /;(t,,t) and 7;(t,,t) is represented by «w(¢;(t,,t)) and
o(l;(t),t)) . The continuous part of system (1) can be represented as x'(s)=PBx(s)+ f(s,x(s—7)),

m, . N m; N
selJ, fi 0. txt,where e, (U 4.0 =U L 46D =Tt 1)
The definition of exponential ultimate boundedness which is a slightly modified version of Definition
2.1in [11] is given below.
Definition 2.1.(Exponential Ultimate boundedness)
System (1) is said to be exponentially ultimately bounded if there are positive constants 4, K and M,

such that for any initial value x,,
|X, (tity, %) < Ke™ ) x|+ M;, i ell.

For the discussion of boundedness of delay systems, differential delay inequalities play an important
role. In order to prove the exponentialultimate boundedness for the impulsive switched systems with time delays,
the following two lemmas are introduced.

Lemma 2.2.Let y(t) e0[®, ,,0], k e K, if there exists constants P >0, Q >0, i e such that

y't) <Ry®)+Qy(t-1),
then
y(t) S pke/b’l‘k (t_tk—l), t e @k_l,
y(r), and g, >0 isa root of the equation
Qie_/}"kr +PR _:Bi,k =0.
Proof. It can be proved by Lemma 1 in literature [12] when « =1 with some minor modifications.

Lemma 2.3.Let y(t) ed[D, ,,0], ke K, if there exists constants P <0, Q >0, iel and —-P >Q,
such that

where p, > max

t  —7<r<t,

y'®)<Pyt)+Qyt-7)+J,
then

y(t)gpke*%,k(t*tm) +

where p, > max y(r), y., >0 isaroot of the equation

Qe +PR +y,, =0.
Proof.It can be proved by Lemma 3 in literature [13] when & =1 with some minor modifications.

t g —7<r<t,_;
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11l. BOUNDEDNESS ANALYSIS
In order to proof the exponential ultimate boundedness of system (1), we begin to introduce the
following symbols:

P =2 (AN(PTA, +PA)) +& <0 for ieU, 0{L2,...,}.
P = A (A7 (RTA, +PA))+& 20 for iU, U{x+Lx+2,..,N}.

N

U, =@ifx=N, £,(t,,) =" o(l;(t,,1), £,(t,t) =
Then, we introduce the following assumptions:
(H,) Forany x4, vel", and A, is a symmetric positive definite matrix, there exists nonnegative

(£ (t, 1)).

i=x+1

constants & and & such that
21T (L AV <EU A p+EV A, Tell, t>t,.

(H,) There exists a constant 4, >0 such that

e 7illilto) ) o e—ié., (to.t) '

where y; =inf_ {y . },and y,, >0 satisfies
e +P+y,=0,ieU..
(H;) For any t>t,, there exists a constant %> 0 such that
A0t ) — AL (t, 1)
i t—t,
where A" =max,, {8} A =min_, {»} 4 =B >0 satisfies Ge** +P - =0, i eU,.
(H,) There exists a constant 0 <7 <& such that

sup -9<0, (3)

7 < el ) | e K, 4)

where
= max{],/lmax[Ail(ln + Ik)TAik (I, +1)1} keK.

(Hy) There exists a constant ¢ >1 such that
k-1 N m; 0 (o,
(Hi:l i )[Hi:Hlszleﬂ/ “ I)] <9,

CT LT T e 1+ AT m + A T m) +-+ e +1<6.
Theorem 3.1.Assume that (H,) to (H,) hold, and = <t, —t, , for all k e K. Then the system (1) is
exponentially ultimately bounded.
Proof.Define G(x(t)) = x A; x. By(H,), we have

G'(x(t) < 2x' OA; x'(t)

<2x" (A, [P x(t) + f, (t.x(t-7))]

=x"(RTA, +A, P )x+2fT (t, x(t—7))A, X

< D A (BT A, +P A XA, X
+EXT (t-T)A, X(t—7)+& XA, X

= [ (A (T A, +P A +E,1G()
+&5,6(t-7), ted,,.

It is feasible to suppose that the i-th subsystem is active on[t,,t;)and i €U, since the generality still

exist there. According to Lemma 2.3, there exists a positive constant p, > ér (t,) such that
J

G(x(t) < pe Y +— telt,t). (5)

On the other side,
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G(x(t)) = (x(t) + Ix(t )" A, (x(t) + x(t)
=x" ()0, +1)TA (1, + 1))
< A [AZ (1, + 1) A (1, + 1T (@) A, X(E)]
<mGx(t,))-

Combining with (5), we have
G(x(t)) <mlpe "™ +ﬁ1.
Therefore, we can obtain

G(x(t)) <m[pe 7 +ﬁ], telt, —7,1,].(6)

Suppose that the j-th subsystem is activated on[t;,t,), let| = %

According to (6) and Lemma 2.2, Lemma 2.3, for t €[t,,t,) , we have
[nl[ple*YiJ(lrf*lo) + I]]eﬁj‘z(t’tl)' J cU

~7ia(h-7-%)

Y

Y 4 e,

G(x(t)) < {
nlpe +1]e
By(7), we obtain

G(X(t,)) <my[mlpe 7 + 7],
or

G(x(t) <mlmloe ™ + 1 4]+ 1.
Thus, for t €[t, —7,t,], we have

G(x(V) <, [mLpe 7 + 1762,
or

G(x(t) <mlmlpe” ™ +11e " 411+ 1.
Now do a repetition ofsteps above, using a simple induction, we obtain

WAL N ICRRRO I 1 ) N ) WO
(T 0), te@, ,, keK, jeu,,
GO < ([T el T T e I T e
AT T e

+(1—[::2177i +H::3177i +t+g,+)1 ted, , keK, jeU..
Based on (H,), it is easy to get

k= I M =7 (G (b ) -7
o) < ([T, mAll T I T e >](8)
><[1_[iN=|+11_[rjnizleﬂifij (lovo]"'é'ly te ®k—1' keK.
In the light of(H, ) and (H, ), we have
N M Bl (fo.t) — N ™Al (to.)
Hi:l+l j:le _Hi:HlHj:le )

* N m
<ot ZaXniled _ 2, w0

H:le—[r:.:l e /it ) o H:ﬂHL e Al tot)

1 mj
< e*Lz.zlzjzlfii o) _ e lslo ).

and
(10)

By (8) to (10), for te @, ,, k e K, we have
G(X(1) < 7y..0p o€’ Ve M0 4 51 (11)
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On the basis of(3), we have

A0, 0) = Al (4, ) <=9(t-t), t>t,. (12)

By (4), for te @, ,, k € K, we can derive that

oy
yody <€) <7t - (13)
Substituting (12) and (13) into (11), we can get
G(x() < pe @0 151, ted, |, keK.
That is

J
P -
IX()| < _ 1=Q

mlnisF /q’min (A|)
Thus, the system (1) is exponential ultimately bounded.
Remark.In Theorem 3.1, according to Lemma 2.2 and Lemma 2.3, we derive the boundedness
conditions for a class of systems, including unstable and stable subsystems. Lemma 2.2 and Lemma 2.3 is used
to handle unstable and stable subsystems, respectively. Obviously,for the systemonly containing stable
subsystems, this conclusion still holds.
Corollary 3.2.Assume that (H,) to (H,) hold, and 7 <t, —t, , forall ke K. If J =0 in Lemma 2.3,

then the system (1) is globally exponentially stable.
Proof. It can be proved by Theorem 1 in literature [12] when « =1 with some minor modifications.

ple—(S-'Z)(l-To) +5

Lt>t,.

1IV. EXAMPLE
Example 4.1. Consider a two-dimensional case of system (1). Assume the parameters

-9 0 1 3
Pl: ) Pz: )
5 -9 01

17 (%) = 3-)(%, %), 1=1.2,

g5 _q 0
Ik = 0 e005 _q !

o o1 if 3k

the switching signal o(®, ,) =i, =4 "ke

g signal o(®, ;) =i {2, if 3]k,
the time delay 7=0.15,
the impulsive moments t, :t, =0.3+t_,, t, =0.
Taking & =& =(3-i) and A, = 1,, itis easy to verify that ( H,) holds.
According to
P=2, AP A +PA))+E <0 for ieU, 1{1,2,...,x}.
P=2,A"P A +PA))+E >0for ieU, U {x+Lx+2,..,N}.
Then when i=1,

Af(RTA +RA,)

ERL HE e F
) [_;8 —isj’

A+18 5

then |/1E ~(A(RTA + PlAl))| | 5 1418

‘:(/1+18)2-25:o,

we obtain 4, =-23, 4, =-13.
Thus, 4., (A;*(RTA, +PA))+& =-13+(3-1) =-11<0.
Therefore, we get P, = —11.

A

When i=2, in the same way, we have P, =6.
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Clearly, U, ={}, U, ={2}.
We can get 6<y,, <6.1, 6.2<p, <6.5 where y, and g, are the roots of the equations

2xe™ 11+, =0ande™"*** +6- B, =0, respectively.

Hence, (H, ) holdswhen taking 4, =2, 1, <7.

In fact,
e_71([2j(10vl)_f) < e—6><0.15 _ 04066 < e—2><0.3,

g < 8503 _ 7 0287 < 703,

Furthermore, A" =4, <7, A =4 =2,
1 = max{l, A, [A (1, + 1) A (1, + 1)1}

_ 1 0—1 10 Q0015 _q 0 . 1 0\(1 0 Q0015 _q 0
'maX{l”lma*[(o 1] [(o 1]{ 0 eU'OlS—J] [0 J[[o 1}{ 0 e°'°15—l]]]}

0.03 0
_ 0.03y _ ~0.03
pou = max{l,e"“}=¢e"",

0
£,(t,, 1) <0.15(t—t,), ¢, (t,,t) >0.85(t—t,).
Based on these parameters, we can obtain

= max{L, 4., {e

A0, (L, 1) — AL, (Lt 70, (t,, 1) =20 (t,,t
supkeK u(O t) tj‘* 5(0 ):_19<5Up,>t0 u(O t) t s(O ):—0.65<0.
R ]
That is &> 0.65.
In In e0®
LU —01=5<9.
t, —tH 0 3

Thus, (H;)and (H,) hold.
Then by (H,), we get

1<p < g7i-) _ g01:03 _ 80'03,

1 S 772 S er](tz—tl) — e0.1x0.3 — 90'03,

1< M < e'](tk_l—tk_z) _ eO.le.S _ 80'03.

2 2 2
1 -1.95 1 x2-1.95 1 x(k—-1)-1.95 .
Now take 771=Ee(2k)k ;1 =Ee(2k)k o Ty =1 @ , ke K, &, is a constant,
m; ﬂ.é. (to.1)
(HI 1 ')[Hl I+1H J ]
6503\ K1 ﬁ—l.% ﬁxZ—l.QS (Zil)k(k—l)—l.% 1
< (™) x(e xe XoeeX )><F
.0 (Q+k-1)(k-1) ~ Sk (k1) 5 (k-1)
_ kklil e1.95(k 1)+(2k)k 2 1.95(k-1) _ kkj]_f1 e 2026 < ezkkk—Z(kil) < 851,

HI 1 |)[1_[I I+1H —7.1’.,(t0 t)

1 09D+ (il)k (A+k- 2)(k 1) ~1.95(k-1) 1 J;t;i;kl)-z.%(k-l) 1 5
< Fe = F e <—e",
8 (2+k-1)(k-2) & (k+1)(k-1)
(Zk)k S Les(ke) B 1 220 -L95(k-1) 1
(HI 2 ' - kk—2 € <Ke !

21
1 oxkn1ss
My = €% <-e”,

k k

Asl<ny, ,, 1<%e51.
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[31.
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[5).
[6].
[71.
8].
[9].

[10].

[11].
[12].

[13].

k-1 N v —nly o, k-1 k-1 1
Hence, (Hi:1 ”i)[Hi=|+1Hrjn=1e e t)]+q—[i=277i)+(1_[i:3 )+ +1< ker‘il =e*.

) 1 %—1.95 003 ilk(k—l)—l.QS
Meanwhile, we can getlsEe‘“ <e® ... 1<e®

< e0,03 .

So 6, >0, thatise* >1.

Let §=e%, then§ >1.
Therefore, (H,) holds.
Hence, by Theorem 3.1, the system (1) is exponentially ultimately bounded.
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