
American Journal of Engineering Research (AJER) 2022 

        American Journal of Engineering Research (AJER) 

e-ISSN: 2320-0847  p-ISSN : 2320-0936 

  Volume-11, Issue-08, pp-01-10 

  www.ajer.org 
Research Paper                                                                                                        Open Access 

 

 

w w w . a j e r . o r g  Page 1 

Performance Evaluation of IEEE 802.11 for UAV-based 

Wireless Sensor Networks in NS-3 
 

Md. Abubakar Siddik, Md. Rajiul Islam, Md. Mahafujur Rahman, Zannatul 

Ferdous, Sumonto Sarker, Most. Anju Ara Hasi and Jakia Akter Nitu  
Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and 

Technology University, Dinajpur, Bangladesh 
 

ABSTRACT : Unmanned Aerial Vehicle (UAV) has extreme potential to change the future wireless sensor 

network (WSN). The most efficient, high-performance, urgent and fastest data collection are achieved in WSN 

through the UAV because UAV provides an energy-efficient short-range communication with good connectivity. 

However, UAV-based WSN performances is influenced by different system parameters. To investigate this issue, 

it is necessary to analyses the effects of system parameters on the UAV-based WSN performance. In this paper, 

we design a NS-3 script for UAV-based WSN according to the hierarchical manner of TCP/IP model. We 

configure all layers by using NS-3 model objects and set and modify the values used by objects to investigate the 

effects of system parameters (access mechanism, UAV trajectory pattern, UAV velocity, number of sensors, and 

sensor traffic generation rate) on throughput, and average delay. The simulation results show that the RTS/CTS 

access mechanism provides better performance than the basic data access mechanism and the mobility model 

which has been prescribed shows higher performance than the random mobility model. Moreover, the results 

indicate that higher velocity of UAV degrades the system performance in terms of throughput and delay. Our 

design procedure represents a good guideline for new NS-3 users to design and modify script and results greatly 

benefit the network design and management. 
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I. INTRODUCTION 

In the era of advanced technology, unmanned aerial vehicle (UAV known as drone) has become a popular 

term for enhancing communication technologies as well as for boosting different development and manufacture 

efforts at a rapid rate [1], [2]. It is widely using in the military, environmental monitoring, industrial, agriculture, 

surveillance and critical remote area monitoring [3] – [6]. Conversely, the wireless sensor network (WSN) has 

made an increasing attention for the researchers, industries and governments [7]. The WSN has also wide range 

applications such as real time monitoring, health care, surveillance, environmental monitoring, and agriculture [8] 

– [10]. At presents, UAV is used in the WSN data collection which increases the WSN performance in addition 

for the emergency and critical situation UAV-based WSN determined a promising solution for communication 

networks [11]. Moreover the UAV-based WSN has some unique characteristics compared to VANET and 

MANET [12] that have created some challenges such as UAV path and velocity planning, nodes density, sensor 

nodes transmission policy, positioning of UAV and sensor nodes, hidden node problem, UAV altitude, channel 

modelling, traffic generation rate and security [13], [14]. The performance of UAV-based WSN depends on these 

challenges. So, it is an urgent needs to evaluate the UAV-based WSN performance in terms of different system 

parameters.  

In this paper, we evaluate the impacts of UAV path and velocity, number of sensor nodes, access 

mechanism and traffic generation rates. Figure 1 shows a UAV-based WSN where the sensor nodes are distributed 

on the ground like a grid position. The UAV is visiting this area from the ground-based control station. The 

connection between the nodes and UAV is only possible when the distance between them is within their signal 
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transmission range. The UAV continuously moving from Position A to B so the UAV coverage range also 

continuously shift and it covers new nodes from time to time. Due to the movement of the UAV, it is very difficult 

to make a connection between the UAV and the sensor nodes. Again, when the number of nodes is increased 

within the UAV coverage range there needs an effective congestion control mechanism. Because congestion of 

multiple nodes during data transmission degrades the network performance [15]. To mitigate this difficulty IEEE 

802.11a standard is used. IEEE 802.11a is a CSMA/CA for MAC protocol where the frequency is 5 GHz, an 

orthogonal frequency division multiplexing (OFDM) for physical interface and a distributed coordination function 

(DCF) MAC function [16]. The DCF includes two access mechanisms one is two-way handshaking access 

mechanism also known as a basic access mechanism and another is four-way handshaking mechanism known as 

Request to Send, Clear to Send (RTS/CTS) access mechanism. A four-way handshaking access mechanism avoids 

the hidden terminal problem and enhances the network performance [17]. In the basic access mechanism, the 

nodes turn into active mode and take a random backoff number after receiving a beacon signal from UAV. When 

one node backoff is reduced to zero it waits for distributed interframe space (DIFS) time and then senses the 

channel. If the channel is still clear the node sends the data to the UAV. The UAV is replied by an ACK to the 

sending node after the short inter-frame space (SIFS) time. Others nodes then again take the random backoff and 

repeat this data transmission technique [15]. The basic access mechanism is not capable to reduce the hidden 

nodes problem. Hidden nodes problem occurs when the multiple nodes can’t hear each other within the UAV 

coverage range [18]. The RTS/CTS mechanism effectively solves the hidden nodes problem by sending an RTS 

frame to the UAV. When the UAV broadcasts a CTS frame to the nodes. All of the nodes receive the CTS frame 

and check whether its own frame or not. Then only the successful node sends his data. Again, appropriate route 

selection of UAV is an important challenge in UAV-based WSN. To evaluate the UAV-based WSN performance 

in terms of UAV route we are used Gauss Markov and random direction 2D mobility model. Where, the Gauss 

Markov mobility model calculates the velocity and direction of UAV by the time stem and only one tuning 

parameter called𝛼 [19], [20]. When𝛼 = 1, the new speed and direction of UAV is identical. Conversely, the 

random direction 2D mobility model provides random UAV direction of UAV with a constant velocity. Here, 

when the UAV reaches at the boundary, it pauses and selects a new direction. In Figure 2 it’s shown that a random 

direction two dimensional mobility model. In this figure, the drone moves in a forward direction with a constant 

speed until reach the boundary. After reach the boundary the drone take a new direction pattern. The details design 

of the mobility model has given in to the system design section. We conduct the network simulator-3for the system 

design which is a power simulation tool for real time system [21]. 

The performance analyses of UAV-based WSN are attractive interests to the researchers which are 

described as follows. Sun et al. [22] have analyzed the slotted CSMA/CA performance in the UAV-based WSN. 

They have considered the beacon frame, velocity of UAV, nodes density, and the number of packets for evaluating 

the network throughput and the remaining number of packets of the nodes. Again, Shuhang Liu et al. [23] have 

analyzed the UAV-assisted WSN data collection where the entire area is divided into multiple small cells and 

used a single UAV or multiple UAVs to cover all the cells. They have considered the number of cells and evaluate 

the single and multiple UAVs impacts on the node capacity. S. Sotheara et al. [24] have proposed a priority-based 

contention window adjustment scheme protocol based on two optimized frames called Priority-based Optimized 

Frame (POFS) and Circularly Optimized Frame (COFS). Here, data will be transmitted at first from the rear 

position higher priority nodes to the UAV. However, this protocol reduces the packet loss but the frequent 

calculation of the contention window drains energy and time of the network. Moreover, they did not consider the 

velocity and trajectory of the UAV. Again, S. Say et al. [25] have introduced a partnership-based data forwarding 

model where nearly positioned nodes make a partnership, and if one node fails to send data then it sends its 

remainder data to the partner and then the partner will send his data. However, these models significantly reduce 

the packet loss and huge delay which improve the performance of the network but in the dense network the 

performance degrades. In [26], has designed an easy MAC protocol for UAV-based WSN data collection. This 

protocol is based on some frames transmission before the actual data transmission. Although, this protocol ensures 

a fair chance for every node and the success rate is 100 nevertheless. This protocol has considered the hidden node 

problem but did not define the UAV route appropriately. Obviously, [24] – [27] proposed channel access 

mechanisms enhances the network performance. But they did not show the impacts of velocity and trajectory of 

UAV and traffic generation rates.  

In this paper, we develop a NS-3 script for a UAV-based WLAN in NS-3 which consists of an access 

point (AP) node acts as a UAV and a number of STA nodes act as sensors forming a one-hop star topology. We 

assume that each node of the network uses IEEE 802.11a standard specifications as MAC and PHY layer, TCP/IP 

protocol stack as network and transport layer and on off application and packet sink application as application 

layer. Moreover, we set and modify the attributes of different layer objects to investigate the effects of system 
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parameters (access mechanism, number of sensors, UAV trajectory pattern, UAV velocity, and sensor traffic 

generation rate) on throughput, and average delay. Most of the previous works focus on the investigation of the 

effects of system parameters on performance but, to the best of our knowledge, none of the research work has 

described the design procedure of NS-3 script in accordance with the instructions of TCP/IP model to their 

manuscript. 

The rest of the paper is organized as follows: The configuration of UAV-based WSN based on TCP/IP 

network model in NS-3 is described in details in Section II. Section III derives the expression of throughput and 

average delay based on flow monitor attributes of NS-3. The effects of system parameters on throughput and 

average delay are presented in Section IV. Finally, Section V concludes the work and gives the future work 

outlines. 

II. SYSTEM CONFIGURATION IN NS-3 

In this section, we outlet the configuration of UAV-based wireless sensor networks based on TCP/IP 

network model in NS-3 and the measurement process of performance metrics using C++ language. Moreover, we 

present the hierarchical design procedure of WLAN in NS-3 and also highlight how the attributes or parameters 

of different NS-3 models or classes can modify to design a new configuration of a network. The NS-3 is a well-

organized and maintained, flexible and simple architecture, easy and accessible documentation, fully open source, 

and widely used in academic and research as a network simulation tool and it has high accuracy and speedy 

execution capability to run NS-3 scripts. NS-3 provides different types of helper API, container API and core API 

to design a complete communication system. The container API performs a number of identical actions to groups 

of objects and the core API performs a particular task for a NS-3 model. The helper API is used to write and read 

NS-3 script easier. We first include the necessary namespaces and header files at top of the NS-3 script. The rest 

of the part of the NS-3 script is described as follows: 

A. Physical Topology Configuration 

In this work, we consider a UAV-based WSN consists of an UAV that acts as an AP node and a number 

of identical STA nodes in a star topology to evaluate the performance in terms of throughput and delay. In order 

to create an AP node and a number of STA nodes, we take two objects of NodeContainer class, named as apNode, 

staNode, and use create () function which takes the number of AP nodes and number of STA nodes as a parameter. 

To assign positions and to set mobility pattern to the AP and STA nodes, we take two objects of MobilityHelper 

class, named as apMobility, staMobility, and use SetPositionAllocator () and SetMobilityModel () functions. The 

NS-3 provides different position allocators and mobility models to describe the network topology properly. Each 

position allocators and mobility models can set position and mobility pattern to the nodes according to a set of 

attributes. Finally, the defined properties of position allocator and mobility model are assigned to AP and STA 

nodes by using Install () function which takes apNode and staNode objects as a parameters, respectively. In this 

work, we consider ConstantPositionMobilityModel class as a mobility model for STA and either 

GaussMarkovMobilityModel or RandomDirection2dMobilityModel are used as a mobility model for UAV. 

  
(a) Gauss Markov mobility model (b) Random direction 2d mobility model 

Figure 1: PHY topology of UAV-based WSN generated in NS-3 
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B. Network Device Configuration 

The NetDevice class of NS-3 provides objects as network interface card of actual computer for Ethernet, 

WiFi, Bluetooth, etc. In this paper, we consider WifiNetDevice class to design IEEE 802.11-based WLAN. The 

WifiHelper class is used to create WifiNetDevice objects for each node which is the interface between network 

layers to data link layer. The common properties of WifiNetDevice like remote station manager and PHY standard 

for both AP and STA nodes are assigned by using SetRemoteStationManager () and SetStandard () functions 

through WifiHelper class object named wifi. To configure differentiable properties of WifiNetDevice for AP and 

STA nodes, we create two objects of NetDeviceContainer class, named as apNetDevice and staNetDevice. Finally, 

WifiNetDevice for AP and STA nodes is configured by using wifi object and Install () function which takes 

WifiPhyHelper object, WifiMacHelper object and NodeContainer object as a parameters. In this work, to show 

the effects of access mechanism, we modify the RtsCtsThreshold attribute value using SetRemoteStationManager 

() function.  

C. PHY Layer Configuration 

In order to configure WifiPhy model as the PHY layer, we take an object of YansWifiPhyHelper class, 

named as wifiPhy, because both type of nodes (AP and STA) use same PHY layer. Moreover, we also assign error 

model to the PHY layer object by using SetErrorRateModel () function. Then we take an object of 

YansWifiChannelHelper class, named as wifiChannel, to configure the channel for both AP and STA nodes. The 

AddPropagationLoss () functions is used to set propagation loss model to the channel object and finally, this 

channel is assigned to PHY layer through SetChannel () function. 

D. MAC Layer Configuration 

To configure MAC layer model for the AP and STA nodes, we take into account two objects of 

WifiMacHelper class, named as apWifiMac, staWifiMac, because AP and STA nodes need different configurations 

to communicate with each other. The NS-3 offers three types of MAC model like ApWifiMac, StaWifiMac and 

AdhocWifiMac. To set ApWifiMac model as the MAC layer of AP node, we use SetType () function and assign 

different MAC parameters values as attributes to change the configuration as we needed. Similarly, configuration 

of MAC layer of STA nodes is performed by using StaWifiMac class and SetType () function. 

E. Network and Transport Layer Configuration 
To configure network and transport layer of AP and STA nodes, we consider an object of 

InternetStackHelper class, named as internetStack, because both AP and STA nodes use same network and 

transport layer protocols. We set all default configurations of network and transport layer to apNode, 

staNodeobjects by using Install () function. InternetStackHelper class aggregates IP/TCP/UDP functionality viz. 

ArpL3Protocol, Ipv4L3Protocol, Ipv6L3Protocol, Icmpv4L4Protocol, Icmpv6L4Protocol, UdpL4Protocol, 

TrafficControlLayer, PacketSocketFactory, Ipv4 routing, Ipv6 routing, by default, to each node. Finally, we finish 

the network layer configuration process after the end of the IP address set and assign procedure. In order to assign 

IP address to each network device of AP and STA nodes (apNetDevice and staNetDevice), we create an object of 

Ipv4AddressHelper class, named as ipAddr. We use SetBase () and Assign () functions to set IP address for AP 

and STA nodes and to assign this IP address through two objects of Ipv4InterfaceContainer class, named as 

apNodeInterface and staNodeInterface. 

F. Application Layer Configuration  

To configure application layer, we need application container where the protocols of application layer 

are installed. We take two objects of ApplicationContainer class, named as apApplication and staApplication. NS-

3 offers different types of applications by defining different application class. In this work, we use 

OnOffApplication class as the application of STA nodes and PacketSink class as the application of AP node. 

Socket address (IP address of network layer protocol and port number of transport layer protocol) and transport 

layer protocol of the node are needed to configure an application. We take two objects of InetSocketAddress class, 

named as apAddress and staAddress, which contain the socket address of AP and STA nodes. Then, we consider 

an object of PacketSinkHelper class, named as apSink, and after that, SetAttribute () function is used to define the 

attributes of the packet sink application. Finally, Install () function is used to install the PacketSink application 

into the AP node. Similarly, we take an object of OnOffHelper class, named as staOnOff, and SetAttribute () and 

Install () functions are used to configure the OnOffApplication to each STA nodes. Finally, we initialize the start 

and stop time of the applications of AP and STA nodes by using Start () and Stop () functions of 
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ApplicationContainer class. The traffic generation rate of a node can modified by changing the value of DataRate 

attribute. In this work, to show the effects of traffic generation rate, we use three values of DaraRate attributes: 

0.5 Mbps, 3Mbps and 6 Mbps. 

 

Figure 2: Communication architecture of UAV-based WSN in NS-3 

 

G. Simulation Setup 

The Simulation class of NS-3 executes the simulation events and control the virtual time. In this work, 

we use three static functions of Simulation class to execute our designed NS-3 script for simulationTime time. The 

Run () function runs the simulation and will be continued until at least one of the three events occurs: (a) no events 

are present anymore, (b) user called Stop () function, and (c) user called Stop () function with a stop time and the 

expiration time of the next event to be processed is greater than or equal to the stop time. The Destroy () function 

is typically called at the end of a simulation to avoid false-positive reports by a leak checker. After this method 

has been called, it is actually possible to restart a new simulation. The Stop () function tells the Simulator class 

the calling event should be the last one executed. It takes the simulationTime as a function parameter. 

H. Animation Setup 

The NS-3 has two ways to provide animation, namely using the PyViz method or the NetAnim method. 

In this paper, we use NetAnim to display the topology of the network and animate the packet flow between nodes. 

The NetAnim also provides useful features such as tables to display meta-data of packets. To trace the file 

generated during simulation, we use an object of AnimationInterface class, named as animation. 

AnimationInterface class traces the statistics for each flow and exports in XML format. 

I. Event Monitoring and Data Collection 

The NS-3 supports many event monitoring model like ASCII trace, PCAP and flow monitor. In this work, 

we use flow monitor model to measure the performance of network protocols. The flow monitor is a flexible event 

monitoring model and it uses probes to track the packets  le el at ta  exchanged by the nodes and the packets are 

divided according to the flow they belong to, where each flow is defined as the packets with same (protocol, source 

IP address, source port number, destination IP address, destination port number) tuple. Flow monitor collects the 

statistics for each flow and exports in XML format. To enable the flow monitor, we take an object of 
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FlowMonitorHelper class, named as monitor and use InstallAll () function. The data produced during simulation 

is traced by FlowMonitor class and flow monitor model stores this data in a map according to flow id using 

variables: timeFirstTxPacket, timeLastTxPacket, timeFirstRxPacket, timeLastRxPacket, delaySum, jitterSum, 

txBytes, rxBytes, txPackets, rxPackets, timesForwarded, bytesDropped, packetsDropped, etc. We manipulate this 

data and measure the throughput and average delay according to the definition defined in Section IV. After 

calculating performance metrics, we create a CSV file and write the value of performance metrics to the file using 

ofstream class of C++.  

III. PERFORMANCE METRICS 

In this section, we outline how the principal performance metrics, viz. throughput, and average delay, are 

determined from flow monitor attributes.  

A. Throughput 

The throughput of a STA node or a flow is defined as the number of bits of the STA node successfully 

received by AP node in unit time.  Throughput is measured in bits per second (bps). Tht throughput of the network 

is the summation of laa indi udula STA node throughput. Thertfort, if eht numbtr of STA nodts in eht ntework 

is 𝑛, eht ehroughpue of eht ntework is txprtsstd ls: 

Throughput =  ∑ Throughput of flow i

𝑛

𝑖=1

=  ∑
Received bytes of flow i

Simulation time

𝑛

𝑖=1

 

(1) 

 =  ∑
𝑖−> 𝑠𝑒𝑐𝑜𝑛𝑑. 𝑟𝑥𝐵𝑦𝑡𝑒𝑠 ×  8

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒

𝑛

𝑖=1

 

 

B. Average Delay 

The l trlgt dtaly is defined as the rleio of the sum of all end-to-end delays for all received packets lnd 

eoela numbtr of rtcti td plcktes. Tht l trlgt dtaly is measured in seconds (stc). Thertfort, if eht numbtr of 

STA nodts in eht ntework is 𝑛, eht l trlgt dtaly is txprtsstd ls: 

 

Average delay = ∑
Sum of packet delay of flow i

Received packets of flow i

𝑛

𝑖=1

=  ∑
𝑖−> 𝑠𝑒𝑐𝑜𝑛𝑑. 𝑑𝑒𝑙𝑎𝑦𝑆𝑢𝑚. 𝐺𝑒𝑡𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑖−> 𝑠𝑒𝑐𝑜𝑛𝑑. 𝑟𝑥𝑃𝑎𝑐𝑘𝑒𝑡𝑠

𝑛

𝑖=1

 
(2) 

 

IV. SIMULATION RESULTS 

In this section, we evaluate the effects system parameters viz. number of nodes, access mechanism, node 

velocity, mobility model and traffic generation rate, on performance metrics of one-hope star topology structure 

in a UAV-based WSN under the IEEE 802.11a standard. The simulation experiments were conducted using NS-

3 (version 3.30). In the simulation experiments, we considered three network scenarios (indexed by 1, 2 and 3) 

that are used to investigate the effects of five system parameters. The simulation experiment consists of an AP 

node and a number of STA nodes that adopt all default configurations defined in NS-3 under IEEE 802.11a 

standard except few attributes which are given in Table 1.   

A. Impact of Number of Sensors and Access Mechanism 

In order to investigate the impact of number of sensors and access mechanism on the throughput and average 

delay, we consider a network scenario that contains up to 60 sensors where traffic generation rate of each node is 

6 Mbps and a UAV that moves according to Gauss Markov mobility model with 50 m/s velocity. The network 

operates with either basic or RTS/CTS access mechanism while other parameters are same as general scenario. 

The impact of sensor density varies from 0 to 60 and access mechanism (either basic or RTS/CTS) on the 

throughput and average delay are illustrated in Figure 3.The result in Figure 3 (a) shows that the throughput 

exponentially increases up to 20 sensors for both access mechanism. This is because the collision probability 

increases slowly compared to transmission probability with the number of sensors increasing within a certain 

range. It is observed that the throughput gradually decreases as the number of sensors increases after 20 sensors 

because with the number of sensors further increasing, the collision probability increases dramatically. The result 
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also shows that the RTS/CTS access mechanism achieves better throughput compared to basic access mechanism. 

This is due to the fact that the increasing rate of collision probability of the basic access mechanism is more than 

the RTS/CTS access mechanism for dense network. The Figure 3 (b) shows that the average delay exponentially 

increases as the number of sensors increases for both access mechanism. This is because the collision probability 

increases with the increase of number of sensors and thus increase of access delay. The result also shows that the 

basic access mechanism suffer from higher average delay compared to the RTS/CTS access mechanism. This is 

due to the fact that the increasing rate of collision probability of the basic access mechanism is more than the 

RTS/CTS access mechanism for dense network. 

 

Fig.3. Impact of number of sensors and access mechanism on (a) throughput and (b) average delay 

Table1.  Simulation attributes 

Configuration Attributes Values 

General 

 

Mobility model for STA nodes ConstantPositionMobilityModel 

Remote station manager  ConstantRateWifiManager 

Data mode and control mode OfdmRate12Mbps 

Wifi channel YansWifiChannel 

Propagation loss model RangePropagationLossModel 

Wifi PHY YansWifiPhy 

Error rate model YansErrorRateModel 

Wifi MAC for AP node ApWifiMac 

Wifi MAC for STA nodes StaWifiMac 

Number of AP nodes 1 

Simulation time 30 sec 

Event monitoring model FlowMonitor 

Animation model NetAnim 

Scenario 1 

RTS threshold {0, 65535} 

Number of STA nodes [1,60] 

Scenario 2 
Mobility model for AP node 

GaussMarkovMobilityModel 

RandomDirection2dMobilityModel 

Number of STA nodes [1,60] 

Scenario 3 

Traffic rate  {0.5, 3.0, 6.0} Mbps 

Velocity [1,70] m/s 
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B. Impact of Number of Sensors and UAV Trajectory Pattern 

 In order to investigate the impact of number of sensors and UAV trajectory pattern on the throughput 

and average delay, we consider a network scenario that contains up to 60 sensors where traffic generation rate of 

each node is 6 Mbps and a UAV that moves according to either Gauss Markov mobility model or random direction 

2d mobility model with 50 m/s velocity. The network operates with RTS/CTS access mechanism while other 

parameters are same as general scenario. The impact of number of sensors varies from 0 to 60 and mobility model 

(either Gauss Markov or random direction 2d) on the throughput and average delay are illustrated in Figure 4. The 

result in Figure 4 (a) shows that the throughput exponentially increases up to 20 sensors for both Gauss Markov 

mobility model and random direction 2d mobility model. This is because the collision probability increases slowly 

compared to transmission probability with the number of sensors increasing within a certain range. It is observed 

that the throughput gradually decreases as the number of sensors increases after 20 sensors because with the 

number of sensors further increasing, the collision probability increases dramatically. The result also shows that 

the Gauss Markov mobility model provides a slightly better result compare to the random direction 2D mobility 

model in the dense network. This is because the Gauss Markov mobility model provides users with defining 

appropriate trajectory patterns. So every node within the UAV coverage area gets an equal chance to send their 

packets. In contrast, the random direction 2D mobility model does not provide an appropriate user define route 

pattern. It takes a random trajectory. As a result, some nodes get more chances to send their packets whether 

other nodes deprive of sending their packets. The Figure 4 (b) shows that the average delay exponentially 

increases as the number of sensors increases for both Gauss Markov mobility model and random direction 2d 

mobility model. This is because the collision probability increases with the increase of number of sensors and thus 

increase of access delay. The result also shows that the random mobility model shows slightly higher average 

delay than the Gauss Markov mobility model due to the exact route pattern of the Gauss Markov mobility model. 

 

Fig.4. Impact of number of sensors and UAV trajectory pattern on (a) throughput and (b) average delay 

 

C. Impact of UAV Velocity and Sensor Traffic Generation Rate 

In order to investigate the impact of UAV velocity and sensor traffic generation rate on the throughput and average 

delay, we consider a network scenario that contains 25 sensors and a UAV that moves according to Gauss Markov 

mobility model. The network operates with RTS/CTS access mechanism while other parameters are same as 

general scenario. The impact of UAV velocity varies from 0 m/s to 70 m/s and sensor traffic generation rate (either 

0.5 Mbps, 3 Mbps or 6 Mbps) on the throughput and average delay are illustrated in Figure 5. The result in Figure 

5 (a) shows that the throughput of nodes increases with increasing the UAV velocity up to 10 m/s for 3 and 

6 Mbps traffic generation rate and 30 m/s for 0.5 Mbps then it starts to decrease slowly This is because, when 

the UAV speed is too high the residence time is less as consequence nodes are failing to send all packets. 
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Conversely, when the UAV velocity is too low it does not collect all nodes packets within the limited simulation 

time as a result throughput is also lower at the low velocity. Besides, the throughput of nodes is slightly higher 

for higher traffic generation rate. The Figure 5 (b) shows that the average delay of nodes becomes stable as the 

velocity of the UAV increases. This is because with the velocity of UAV increasing the distance between UAV 

and nodes within the coverage area remains constant. Moreover, nodes with higher traffic generation rates suffer 

from more delays than lower traffic generation rate nodes. Due to increases in the traffic generation rate traffic 

load of the nodes increases but the service rate remain unchanged as a result more queuing delay raised in the 

node’s queue consequently average delay of the nodes increases. 

 

 

Fig. 5. Impact of UAV velocity and sensor traffic generation rate on (a) throughput and (b) average delay 

 

V. CONCLUSION 

In this paper, we designed a NS-3 script to investigate the effects of system parameters on throughput 

and average delay for UAV-based WSN in NS-3 and organized it according to a TCP/IP model. The determination 

of throughput and average delay in context of NS-3 attributes is also discussed in this work. Unlike the previous 

related works, this hierarchical design procedure of UAV-based WSN in NS-3 provides a complete guideline for 

new user of NS-3. Moreover, we investigated the effects of system parameters (access mechanism, number of 

sensors, UAV trajectory pattern, UAV velocity, and sensor traffic generation rate) on throughput, and average 

delay. The simulation results show that the combination of RTS/CTS data collection technique and effective Gauss 

Markov mobility model enhance the performance of UAV-based wireless sensor network. We believe that the 

simulation results would assist the protocol developers to design effective and efficient protocols and to select 

optimal value of different system parameters to enhance the performance. In future, we will explore the effects of 

different system parameters on both DCF and EDCA mechanisms in UAV-based WSN. 
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