American Journal of Engineering Research (AJER)2022American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-11, Issue-05, pp-184-191www.ajer.orgReview PaperOpen Access

Analysis of Delay Factors for The Implementation of Road and Bridge Projects in The Department of Public Works and Spatial Planning in South Kalimantan Province

M. Yasin Toyib¹, Henry Wardhana²

^{1, 2}Study Program Magister of Civil engineering, Lambung Mangkurat University Corresponding Author: M. Yasin Toyib

ABSTRACT : There are various obstacles to implementing road and bridge projects in South Kalimantan Province. Common obstacles in project implementation relate to lack of resources (material, labor, and funds), inadequate work equipment, design changes, and various other problems. These multiple obstacles then resulted in several projects experiencing delays. Delays in project completion can result in project cost overruns and result not being achieved. This study aims to determine the index value and obtain the dominant factor causing delays in road and bridge projects at the PUPR Office of South Kalimantan Province. The method used is distributing questionnaires related to the sub-factors that affect the delay in road and bridge projects in 2020. The respondents in this study were parties directly involved in the project in question, with 83 respondents. After the respondents filled out the questionnaire, the data was then tabulated and scored using index and variance analysis. The questionnaire consists of 41 sub-factors spread over each of the 7 factors. Based on the analysis results, 17 dominant sub-factors and 2 most dominant sub-factors are causing delays. The most dominant subfactors then project site. These dominant factors then prioritize which has the highest average index value based on the type of delay, and then mitigation is prepared to minimize project delays. The steps taken to minimize project delays include reviewing the time schedule and RAB and conducting coordination meetings.

KEYWORDS: delay factor, road project, bridge project, index, and variance analysis

Date of Submission: xx-xx-xxxx

Date of acceptance: xx-xx-xxxx

I. INTRODUCTION

Road and bridge construction is positively correlated to the economic growth of a region, where better transportation facilities and infrastructure will accelerate the rate of economic development of a region, strengthen unity and integrity and affect almost all aspects of life. In the implementation of road and bridge projects, there are various obstacles/problems. Problems in project implementation are generally related to lack of resources (material, labor, and funds), inadequate work equipment, design changes, and various other problems.

These problems resulted in delays in the project completion schedule. Delay in project completion will impact project cost overruns, and results (output) will not be achieved. Because of the magnitude of the impact, there is a need for project risk management. Project risk management means systematically identifying the types, amounts, and sources of risk during the project cycle and preparing appropriate responses to deal with these risks (Rani, 2016).

In this study, researchers suggested that the Covid-19 pandemic might also be one of the factors causing delays in the completion of road and bridge projects at the PUPR Office of South Kalimantan Province in 2020. As a result of the Covid-19 pandemic, the government imposed a Large-Scale Social Restrictions (PSBB) policy. As a result, there are restrictions on transportation and mobilization in several areas with high/medium risk zones. So, from several factors causing delays in project completion, it is hoped that the most dominant sub-factors in influencing the construction project delays understudy can be identified. The purpose of this study was to determine the index value of each of the factors causing delays in road and bridge projects at the PUPR Service of South Kalimantan Province in 2020 and determine the dominant factors causing delays in road and bridge construction projects in South Kalimantan Province which were the most dominant in 2020.

II. LITERATURE REVIEW

According to Rani (2016), a project is carried out with limited time and resources to achieve the specified final result. In addition, a construction project is a series of interrelated activities to achieve specific goals (building/construction) within a particular time, cost, and quality constraints. Every project activity in achieving its goals and objectives has several factors that influence the success of a project, namely economic, technical and human factors. These three factors influence each other and are related (Soeharto, 1995).

In achieving the goals of a project, some limitations must be met, namely cost (budget), schedule (time), and quality (performance) that have been determined. These three limitations are essential parameters for project organizers who are often associated with project targets, where these three constraints are often referred to as three constraints (triple constraints).

According to Ervianto (2004) there is a relationship between the parties involved in a project, which is generally distinguished by functional relationships and formal working relationships. Functionally there are 3 parties who play a critical role in a construction project, namely the project owner, the consultant, and the contractor. Project delays can be seen in two ways: aspects that are affected and factors that influence or are the cause. Several factors that influence the delay of the project are delays in labor, materials, design, equipment, planning and implementation, financing, social environment, community, and managerial.

According to Lewis and Atherley (1996), project delays are often a source of disputes and demands between the owner and the contractor. So the value will be costly both in terms of the contractor and the owner. The delay in implementation of the project also has an impact in the form of losses for all parties involved in the project.

In projects that are already experiencing delays, risks that impact implementation has occurred. The risk that occurs is a problem (Hairiyah, 2018). This happens because of the inadequate risk management made. Therefore, it is necessary to propose strategic recommendations for accelerating construction projects based on experience. Before determining the risk response, it is necessary first to know the cause of the occurrence of the risk (Yuliana and Gawit, 2017). The causes of these risks were obtained from the results of interviews. The risk response is also categorized based on the cost and time aspects.

This study analyzes the factors that cause project delays from literature studies and previous research. However, the problems also occur in the project within the Provincial PUPR Office of South Kalimantan in 2020. The author wants to analyze whether the Corona Virus Disease 2019 (Covid-19) pandemic is one of the factors causing the project to experience delays in completing work. Due to the COVID-19 pandemic, the government imposed Large-Scale Social Restrictions (PSBB) to accelerate the handling of COVID-19. The implementation of PSBB is carried out during the most extended incubation period (14 days). If there is still evidence of spread in the form of new cases, it can be extended within 14 days since the discovery of the last case. The PSBB policy by the Regional Government in the form of closing access to and from entering certain areas and restrictions on public transportation has impacted the availability and limited mobility of labor and construction materials.

The stages in the statistical analysis method used in the study include validity testing, data analysis theory, sampling theory, measurement scale, theory of data types and sources, and non-parametric.

III. RESEARCH METHODS

This research was carried out in several stages. These stages consist of a preliminary study, data collection, questionnaire instrument testing, index and variance analysis, descriptive analysis, strategy development, and concluding.

3.1 Preliminary Study

This research begins by formulating the problem and research title supported by all literature reviews. Furthermore, in implementing this research, the researcher conducted a preliminary study of some literature and previous research related to project management and the factors that cause delays in project implementation, especially road and bridge projects.

3.2 Data Collection

In this study, the research object is a project or work at the Public Works and Spatial Planning Office of South Kalimantan Province, which experienced delays in implementing work in the 2020 fiscal year.

- 1. Primary data is data obtained directly through interviews with experts, observations, and the results of filling out questionnaires distributed to respondents.
- 2. Secondary data is data obtained indirectly. Secondary data is obtained through literature studies or previous research, road and bridge project data such as RAB, contract data, documentation, time schedule, physical reports, etc.

Page 185

In addition, the data will also be determined using a Likert that shows the level of influence of each factor according to the respondent. The data were collected, tabulated, scored, and analyzed using index analysis and variance. The index value and variance of each subfactor can be known using the index. The greater the index value, the greater the influence of the subfactor on project delays. Index values are not only used for subfactors but can also be used to determine factor index values.

3.3 Testing the Questionnaire Instrument

Before analyzing the data, it is necessary to test its validity and reliability of the data. Validity shows the extent to which the scores/values/measurements are obtained to state the results of the measurements/observations to be measured after the data is declared valid and reliable.

3.4 Index and Variance Analysis

Next, an analysis will be carried out to determine the dominant factor as the cause of project delays. After that, weighting was also carried out on each scale of affirmation of respondents' answers of -100, -50, 0, +50, and +100. In addition, the data will also be determined using a Likert that shows the level of influence of each factor according to the respondent. The data were collected, tabulated, scored, and analyzed using index analysis and variants. Because the maximum index value is 100 and the answer scoring category is 5 (five) categories, then to present the results of the dominant factors as the cause of delays in the implementation of work by using guidelines for interpreting the factors causing delays in the implementation of work.

3.5 Descriptive Analysis

Descriptive analysis is used to reveal and provide an overview of everything related to the respondent. In addition, the opinion of respondents related to the object of research is also used as a material for discussing the results of the study's quantitative analysis.

3.6 Conclusion Drawing

Conclusions are drawn up based on data analysis and discussions carried out previously. The conclusions obtained must follow the study's objectives and not out of the limitations of the problem.

IV. DISCUSSION OF RESEARCH RESULTS

4.1 Research Objects

There are 5 (five) pieces of work that experience delays in the implementation of work, including the following.

- 1. Construction of the Aranio Bridge
- 2. Construction of the Sei Jelai-Batu Ampar Bridge
- 3. Construction of the Highest Roads and Bridges-Kodeco 58
- 4. Construction of the Termunih River Bridge II
- 5. Construction of the Kusan River Bridge II

4.2 Research Respondents

The four elements of the respondents are detailed in the recapitulation of the number of research samples described in Table 1.

No	Element	Number
1	Service User (Department of PUPR Kalsel)	4
2	Service Provider (Contractor)	33
3	Consultant Supervisor	22
4	Consultant Planning	24
	Total	83

4.3 Test The Validity and Reability of The Data

The following are the results of the validity and reliability testing calculation using the help of software statistics IBM SPSS Statistics 20.

No.	Factors and Sub Factors Causing Work Lateness	Correlation Value
\mathbf{X}_1	Labor	
X11	Lack of availability of labor	0,659
X ₁₂	Lack of expertise and skills and work motivation of workers who are directly in the field (site))	0,425
X ₁₃	Inadequate number of workers /according to the activities in the field	0,765

No.	Factors and Sub Factors Causing Work Lateness	Correlation Value	
X_{14}	Lack of discipline in the workforce	0,421	
X15	Low labor productivity	0,698	
X16	Work accidents in the workforce	0,592	
\mathbf{X}_2	Equipment		
X_{21}	Delay in the provision of heavy equipment	0,723	
X ₂₂	Damage to heavy equipment during project implementation	0,328	
X ₂₃	Lack of experience of mechanics/operators operating the use of high- tech tools in the field (site)	0,726	
X ₂₄	Low quality of equipment	0,690	
X ₂₅	Lack of equipment	0.755	
X3	Materials	.,	
X31	Scarcity of materials needed	0,660	
X ₃₂	Delays in material delivery to the project site	0,367	
X32 X33	Material damage in storage	0,495	
X34	Change/change material	0,601	
X34 X35	Poor material quality	0,617	
X ₃₅	Information and Communication	0,017	
X4 X41	Poor communication between contractors, sub-contractors, consultants, and owners	0,795	
X42	Poor communication within the contractor team	0.872	
X43	Changes in design before project implementation	0,266	
X44	The occurrence of design changes during project implementation	0,580	
X45	Design errors	0.703	
X46	Slow approval of working drawings	0,883	
X40 X47	Delays in making decisions by owners	0,848	
X5			
X ₅₁	Locations that are difficult to reach	0,801	
X ₅₂	The conditions and environment of the project site turns out to be inconsistent with expectations	0,858	
X ₅₃	Insufficient material storage place	0,233	
X54	Bad weather at the project site	0,627	
X54 X55	Work area	0,725	
X6	Project management	0,725	
X ₆₁	Lack of control of work in the field	0,453	
X ₆₁ X ₆₂	Work permit approval process rambling	0,829	
X ₆₂ X ₆₃	Late payment by the contractor	0,512	
X ₆₃ X ₆₄	Cont inexperienced contractor	0,779	
X ₆₄ X ₆₅	Poor supervision of work on the project	0,779	
X ₆₅	application of construction methods during implementation	0,858	
X ₆₆ X ₆₇	Late payments by the owner	0,566	
X ₆₇ X ₆₈	There is a lot of additional work	0,669	
X68 X69	Work planning	0,809	
07		0,829	
X ₇	Incidents that Unexpected	0.500	
X ₇₁	Riot	0,596	
X ₇₂ X ₇₃	Natural disaster Worker's strike	0,529	
	Worker's strike	0.607	

The following are the results of calculating the average score for each sub-factor and the value of the reliability test variance contained in Table 3.

No.	Factors and Sub-Factors Causing Work Lateness	\overline{x}	σ_i^2
\mathbf{X}_{1}	Workforce		
X ₁₁	Lack of workforce availability	4,49	0,351
X ₁₂	Lack of expertise and skills and work motivation of workers who are directly in the field (site)	4,18	0,565
X ₁₃	Total workforce inadequate work/according to activities in the field	4,40	0,608
X_{14}	Lack of workforce discipline	4,29	0,354
X15	Low labor productivity	4,17	0,581
X16	Work accidents in the workforce	3,76	0,746
\mathbf{X}_2	Equipment		
X ₂₁	Delay in providing heavy equipment	4,46	0,471
X ₂₂	Damage to heavy equipment during project implementation	4,29	0,452
X ₂₃	Lack of experience of mechanics/operators operating the use of high- tech equipment in the field	4,06	0,691
X_{24}	Low quality of equipment	3,81	0,377
X ₂₅	Lack of equipment	4,13	0,482

Table 3. Variant Calculation Results for Reliability Test

No.	Factors and Sub-Factors Causing Work Lateness	\overline{x}	σ_i^2
X_3	Material		
X ₃₁	Scarcity of required material	4,51	0,594
X ₃₂	Delay in material delivery to the project site	4,63	0,237
X33	Damage to forged materials t storage	3,69	0,462
X34	Material change/change	3,67	0,881
X35	Poor material quality	3,95	0,681
X_4	Information and Communication		
X ₄₁	Poor communication between contractors, sub-contractors, consultants, and owners	4,30	0,725
X_{42}	Poor communication within the contractor team	4,17	0,557
X43	Design changes occurred before project implementation	3,99	1,232
X_{44}	Design changes occurred during project implementation	4,53	0,325
X45	Design errors	4,58	0,491
X46	Slow approval of drawings work	4,18	0,565
X47	Owner's delay in making decisions	4,33	0,637
X_5	Characteristics of Project Location		-
X51	The location that is difficult to reach	4,34	0,738
X52	The conditions and environment of the project site are not as expected	4,20	0,433
X53	Insufficient material storage area	3,84	1,061
X54	Bad weather at the project site	4,40	0,316
X55	Area	4,53	0,594
X ₆	Project management		
X ₆₁	Lack of work control in the field	4,24	0,697
X ₆₂	Winded work permit approval process	4,00	0,561
X ₆₃	Late payments by contractors	3,82	0,565
X ₆₄	Contractors	4,18	0,857
X ₆₅	Poor supervision of work on the project	4,25	0,825
X ₆₆	Improper application of construction methods during implementation	4,59	0,611
X ₆	Project Management		
X ₆₇	Late payment by the owner	3,66	0,397
X ₆₈	There is a lot of additional work	3,96	0,596
X ₆₉	Work planning	4,22	0,489
X_7	Events Unexpected		
X ₇₁	Riot	4,05	0,876
X ₇₂	Natural disaster	4,72	0,252
X ₇₃	Worker's strike	4,11	0,561
X ₇₄	For projects located in the red zone	4,27	0,441
σ_t^2	Number of Sub Factors Stoppage	386.1	55

4.4 Data Analysis Index and Variance

The ranking of sub-factors causing delays in overall work implementation based on the index and variance values is presented in Table 4.

	Table 4. Index value and variance of sub-factors causing project delays					
No.	Sub-Factor	Indeks	Variant	Ranking		
Labor Fact	tor (X ₁)					
X11	Lack of availability of manpower	74,70	4.989,17	8		
X ₁₂	Lack of expertise and skills as well as work motivation of workers who are directly in the field (site)	59,04	3.046,38	22		
X ₁₃	Inadequate number of workers/according to activities in the field	69,88	4.340,78	10		
X14	Lack of workforce discipline	64,46	3.664,77	15		
X15	Low labor productivity	58,43	2.981,19	25		
X16	Work accidents on workers	37,95	1.184,15	38		
	Equipment fa	actor (X ₂)				
X ₂₁	Delay in the provision of heavy equipment	72,89	4.740,76	9		
X ₂₂	Damage to heavy equipment during project implementation	64,46	3.664,87	16		
X ₂₃	Lack of experience of mechanics/operators operating the use of high-tech tools in the field (site)	53,01	2.426,19	29		
X ₂₄	Low quality of equipment	40,96	1.352,88	37		
X ₂₅	Lack of equipment	56,63	2.789,70	27		
	Material fac	tors (X ₃)				
X ₃₁	Scarcity of required material	75,30	5.073,67	7		
X ₃₂	Delay in material delivery to project site	81,33	5.954,68	2		
X ₃₃	Damage to material in the storage area	34,34	951,38	39		
X ₃₄	Substitution/change of material	33,73	915,52	40		

Table 4. Index value and variance of sub-factors causing project delays

No.	Sub-Factor	Indeks	Variant	Ranking
X35	Poor material quality	47,59	1.928,23	34
	Information and Commu	nication Factors (2	X4)	
X ₄₁	Poor communication between contractors, sub- contractors, consultants, and owners	65,06	3.737,41	14
X42	Poor communication within the contractor team	58,43	2.981,16	26
X ₄₃	The occurrence of design changes before project implementation	49,40	2.088,41	32
X ₄₄	The occurrence of design changes during project implementation	76,51	5.244,03	5
X45	Design errors	78,92	5.593,92	4
X46	Slow approval of working drawings	59,04	3.046,38	23
X47	Owner's delay in making decisions	66,27	3.883,96	13
	Factors Characteristics	of Project Sites (X	5)	
X ₅₁	Project locations that are difficult to reach	66,87	3.958,44	12
X ₅₂	The conditions and environment of the project site are not according to the assumption	60,24	3.178,78	21
X ₅₃	Storage area material insufficient	42,17	1.487,80	35
X ₅₄	Bad weather at the project site	69,88	4.340,49	11
X55	Work area	76,51	5.244,30	6
	Project Manageme	nt Factors (X ₆)		
X ₆₁	Lack of control work in the field	62,05	3.383,13	19
X ₆₂	Winded work permit approval process	50,00	2.142,37	31
X ₆₃	Late payments by contractors	40,96	1.397,11	36
X ₆₄	Less experienced contractors	59,04	3.046,67	24
X ₆₅	Poor supervision of work in the project	62,65	3.452,69	18
X ₆₆	Application of construction methods during implementation	79,52	5.683,24	3
X ₆₇	Late payments by the owner	33,13	879,46	41
X ₆₈	There are a number of additional jobs	48,19	1.980,65	33
X ₆₉	Work planning	60,84	3.246,15	20
	Events Fact	ors (X ₇)	·	•
X ₇₁	Riots	52,41	2.368,23	30
X ₇₂	Natural disasters	86,14	6.710,59	1
X ₇₃	Workers' strike	55,42	2.665,72	28
X ₇₄	Temporary suspension of work on projects located in the red zone	63,25	3.522,45	17

4.5 Analysis of The Causes of Delay

From the questionnaire data that was analyzed using index and variance analysis, a total of 19 dominant sub-factors caused project implementation delays. Of the 19 sub-factors, 2 are very dominant sub-factors, and 17 other sub-factors are dominant. One of them is the lack of workforce availability (X11) which is the most dominant sub-factor in this study due to the PSBB due to covid-19. Problems in the form of delays in the provision of heavy equipment (X21), delays in material delivery to the project site (X32), and temporary termination of project work located in the red zone (X74) are included in the dominant sub-factors causing delays in work implementation.

4.6 Mitigation of Causes of Delays in Work Implementation

The matrix of the relationship between sub-factors causing delays in work implementation and types of delays has been summarized in Table 5.

Table 5. Matrix of Relationships between Sub-Factors Causing Project Delays and Types of Project Delays

		Types of Delays		
No	Sub-Factors	ED	NED	CD
X ₇₂	Natural disasters	86,14		
X ₃₂	Delay in material delivery to project site		81,33	
X ₆₆	Improper application of construction methods during implementation		79,52	
X45	Design error			78,92
X55	Insufficient work area		76,51	

	AVERAGE	78,01	71,91	68,28	
X ₆₁	Lack of control over overwork in the field			62,05	
X ₆₅	Poor supervision of work on the project			62,65	
X ₇₄	Temporary suspension of projects located in the red zone			63,25	
X ₁₄	Lack of workforce discipline		64,46		
X ₂₂	Damage to heavy equipment during project implementation		64,46		
X ₄₁	Poor communication between contractors, sub- contractors, consultants, and owners		65,06		
X47	Owner's delay in making decisions			66,27	
X ₅₁	Hard-to-reach project locations		66,87		
X ₅₄	Bad weather at the project site	69,88			
INO	Sub-Factors —	ED	NED	CD	
No		Types of Delays			
X ₁₃	Inadequate number of workers/according to activities in the field		69,88		
X ₂₁	Delay in providing heavy equipment		72,89		
X11	Lack of labor availability		74,70		
X ₃₁	Scarcity of required materials		75,30		
X ₄₄	There was a change in the design during the implementation of the project.			76,5	

The sub-factor with the highest average index value will be prioritized for handling in this study. The priority of handling in question is in the form of preparation of mitigation of the sub-factors causing delays in the implementation of work in each type of delay. So, the preparation of mitigating the causes of delays in work implementation will prioritize the causes of Excusable Delay (ED) delays. The type of delay is Excusable Delay (ED), where the cause of the delay is not the negligence of any party. The force majeure/natural disaster in question is flooding in this study.

Meanwhile, the sub-factors cause the delay in the form of bad weather at the project site, which means that there is high rainfall over a long period of time at the location. The projects that experienced delays in the category of Excusable Delay (ED) in this study were compensated in the form of an extension of the implementation period provided by the KPA. The implementation period can be extended at least equal to the time when the contract is terminated due to force majeure. In this case, the Excusable Delay (ED) delay is caused by flooding and bad weather at the project site.

V. CONCLUSION

From the research that has been done, the following conclusions can be drawn:

- 1. The index and variance values for each of the sub-factors causing delays in the implementation of road and bridge projects within the Department of Public Works and Spatial Planning of South Kalimantan Province in the Highways Sector in 2020 were obtained
- 2. Of the 41 (forty-one) sub-factors causing delays in the implementation of road and bridge projects within the Department of Public Works and Spatial Planning of the Province of South Kalimantan in the Highways Sector in 2020, 17 dominant sub-factors and 2 most dominant sub-factors were obtained.
- 3. Mitigation that can be done to minimize delays in road and bridge construction projects within the South Kalimantan Provincial Public Works and Spatial Planning Department, the Highways Sector, is prioritized, which has the highest index value based on the type of delay category. In this study, the priority is the type of Excusable Delay (ED) delay, namely the sub-factor of natural disasters and bad weather at the project site.

Suggestion

Researchers can give that for future research are:

1. Further research is needed regarding the effect of the COVID-19 pandemic on the sub-factors causing delays in road and bridge projects in the 2021 years.

2. Because in this study, the approach to minimizing the delay factor is only based on the type of excusable delay. Further research can develop an approach to minimize the delay factor based on other delay types, namely non-excusable delay, and compensable delay.

REFERENCES

- [1]. Department of Public Works and Spatial Planning of South Kalimantan Province. 2021. Data on Physical Activities in the Highways Sector for Fiscal Year 2020. Banjarbaru.
- [2]. Ervianto, Wulfram I., 2004. Construction Project Management Application Theory. Yogyakarta: Andi.
- [3]. Hairiyah. 2018. Analysis of Delay in Implementation of Work on Construction Projects in the Irrigation Sector. Thesis. Banjarbaru: Lambung Mangkurat University.
- [4]. Lewis, TM, and Atherley, BA 1996. Analysis of Construction Delays. The Organization and Management of Construction: Managing the Construction Project and Managing Risk, Vol 2, Eds DA Langford & A. Retik, London: E & FN Spon, pp 60-71.
- [5]. Rani, HA. 2016. Construction Project Management. Yogyakarta: Depublish.
- [6]. Suharto, Faith. 1995. Project Management: From Conceptual to Operational. Jakarta: Erlangga.
- Yuliana, C., and Gawit H. 2017. Risk Management in Multilevel Projects in Banjarmasin. Journal of Technical Info, Volume 18 Number 2 December 2017 (255-270).

M. Yasin Toyib. "Analysis of Delay Factors for The Implementation of Road and Bridge Projects in The Department of Public Works and Spatial Planning in South Kalimantan Province." *American Journal of Engineering Research (AJER)*, vol. 11(05), 2022, pp. 184-191.

www.ajer.org