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ABSTRACT: The rapid development of wind power industry poses challenges to the operation and maintenance 
of wind power. On-line fault diagnosis is the basis to ensure the normal operation of wind turbines. Traditional 
fault models or signal-driven diagnosis methods cannot solve the problems of threshold design, time series 
dependence of eigenvalues and applicability under multiple working conditions. With the development of 
science and technology, wind farms can record a large amount of wind turbine operation process data in real 
time. Based on these data, this paper proposes a Long short-term Memory network (LSTM) algorithm to solve 
the problem of fan operation fault diagnosis. LSTM is a special neural network algorithm which can fully 
consider the timing dependence of running variables. This paper analyzes the correlation of wind turbine 
operating variables, and using LSTM to establish the cross prediction model and sequential classification model 
respectively, combined with the feature extraction method of sliding window, which can solve the temporal 
correlation problem of sensor sampling data and take into account the high-dimensional characteristics of the 
characteristic values in space. Diagnosis by comparing the actual fan data, this algorithm is better than the 
traditional machine learning algorithms, including K-nearest Neighbor, Decision Tree and Random Forest, for 
the benchmark model of multiple classification problem has obvious advantages, because considering the 
temporal correlation operation variables for the degree of hidden deep fault recognition has prominent 
advantages.
KEYWORDS: Wind turbine fault diagnosis; Long Short-Term Memory; Cross prediction model; Sequential 
classification model
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I. INTRODUCTION 
Wind energy has become the most promising green energy in the 21st century. In order to maintain the 

operational safety and reduce the maintenance cost of wind turbines, wind turbine fault diagnosis technology 
has become a current research hot spot. Scholars at home and abroad have proposed a variety of fault diagnosis 
methods. Xing-Ze Dai [1] used genetic algorithm to optimize the BP neural network, which solved the problem 
that the network is easy to fall into local minima, but the convergence speed of the algorithm is slow and the 
computational efficiency is low. Yolanda Vidal [2] first performed group scaling and feature transformation of 
SCADA measurement data by multiplexed principal component analysis and then a Support Vector Machine 
(SVM) classifier is used to complete the classification. The simulation results show that all the faults studied can 
be detected and classified with an overall accuracy of 98.2%. SVM has better classification ability and 
computational efficiency than BP neural network, but there are still some problems for handling large amount of 
data. Chun-Lin Ye et al [3] proposed a fault diagnosis method based on data mining, firstly screening the fault 
features, then processing the SCADA dataset, and finally classifying the faults, and the experiments show that 
the model has good diagnostic performance and generalization. The random forest algorithm can handle high-
dimensional data, but because wind turbines are an integrated system with coupling between sensors, real-time 
and accurate diagnosis of the cause of faults cannot be achieved. There are special features in the structure of the 
Long Short-Term Memory Network itself, so it has been widely used in dealing with highly time-dependent and 
high-dimensional strong coupling problems. The experimental results of Jing Li et al [4] showed that the LSTM-
based model was able to predict the trend of hot events most accurately, followed by SVM, while the BP neural 
network was relatively poor in prediction. Xing-Yu Qu [5] proposed an RNN-LSTM-based fault diagnosis 
technique for grinding systems, which batches the datasets used in the input LSTM network, extracts their 
correlations in the time dimension, and achieves the classification of faults by comparing the characteristics of 
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different moments before and after. The experimental results show that LSTM has strong classification ability 
for sample data sets with large temporal dependence. In this paper, based on the Long and Short-Term Memory 
Network, we propose a cross LSTM prediction model and a sequential LSTM fault classification model to 
achieve the fault diagnosis of wind turbines with full consideration of the time-dependent characteristics in the 
face of massive data.

II. LONG SHORT-TERM MEMORY(LSTM)
The Long Short-Term Memory (LSTM) was proposed by Hochreiter and Schmidhuber [6] in 1997 and 

was improved and generalized in 2000[7]. It is a special temporal Recurrent Neural Network(RNN) designed with 
input gates, forgetting gates, output gates and cell cells to solve the gradient disappearance problem that exists in 
general Recurrent Neural Network , so LSTM is well suited to handle events with long time series intervals. 
LSTM has been widely used in image semantics and speech recognition [8~10]. In view of its superior timing 
signal processing capability, LSTM has also been gradually tried to be applied to industrial processes in recent 
years. In this paper, we have proposed a fault diagnosis method based on the prediction and classification of 
Long and Short-Term Memory Networks, which can accurately identify faults in wind turbines by fully 
considering the time-dependent characteristics of variables on the basis of using the correlation of variables in 
wind turbines.

In a cell unit of the LSTM, each sigmoid layer (σfunction) is performing the computation of the 
weights, and the forgetting gate ft indicates the degree of forgetting of the information at the previous moment, 
the input gate it indicates the degree of updating of the current information, and the output gate ot indicates the 

degree of output after cell state excitation. The representation of the current information 蠘tc  can be obtained 
after excitation through the tanh layer, which is multiplied with the input gate to determine how much new 
information stays in the current cell state, while the forgetting gate is multiplied with the cell state ct-1 of the 
previous moment to determine how much information is left behind. The cell state ct at moment t is obtained by 
adding the two, and then multiplied with the output gate after excitation through the tanh layer to obtain the 
output ht at moment t. This operation can be understood as compressing or updating some information that 
existed at the previous moment, and later adding information from this moment, using this way to remember 

long-term information (where 蠘tc , ct, ht, and xt denote current information, cell state, output and input, 
respectively). Figure 1 represents the structure, data flow inside the neuron.

Fig.1. Structure diagram of LSTM unit

The intra-neuronal formula is:
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Where, U, W, and b are the weights to be learned.

III. USING LSTM TO PREDICT AND CLASSIFY
Using LSTM network can perform timing prediction and fault classification. The basic idea of LSTM 
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timing prediction is a model that uses the previous value of a sensor to predict the present value of that sensor, 
but wind turbines are an integrated system where the sampled values of all sensors are interrelated and the value 
of a sensor also depends on the values of other associated sensors. Based on this feature, a cross LSTM 
prediction model was proposed in the literature [11], which can predict the future value of one sensor using the 
past values of all the related sensors. Fault classification generally establishes the mapping relationship between 
feature values and corresponding fault categories, but in order to achieve fault diagnosis on the basis of fully 
considering the time-dependent characteristics, this paper also proposes a sequential LSTM fault classification 
model, and the specific structures of the two models are described as follows.

3.1 Cross LSTM prediction model
(1) Suppose that a system collects measurements from t sensors ( )   ，，， , sampling a total of n 
observations, which are filtered and normalized to form a data set x with dimension t*n.
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                                                         (7)
The filtering is used to remove high-frequency noise from the sensor measurements, and normalizing 

the data allows the data to have zero mean and unit variance for a better fit. When making predictions, care 
needs to be taken to normalize the test set using the same normalization parameters as the training set.

(2) The training prediction model ψ. Dividing x into train set and test set, the cross LSTM prediction 
model is shown in Fig. 2. The input x is the sampled values of n sensors at moments t-15 to t-1, and the 
regression value y is the value αt of sensor α at moment t. The network has 15 loop steps and the dimension of 
the input data is n. The network is trained using the Adam optimization algorithm and has four layers: the input 
layer, the LSTM layer, the fully connected layer and the regression layer.

Fig.2. Structure diagram of cross LSTM prediction

(3) Generate the residuals of the test set. As shown in equation 8, the prediction model Ѱ for sensor α is 
constructed by using the training set and then input to the test set testx , the predicted value ˆtestx  of the 
corresponding sensor can be obtained. It should be noted that the test sets have been normalized, so it is also 
necessary to recover their original size. Finally, the difference between testx  and ˆtestx  constitutes the residual 
signal Rα, which contains information about various faults.
ˆ ( )test testx x                                                                              (8)

3.2 Sequential LSTM classification model
In order to fully consider the time-dependent characteristics of variables and achieve real-time fault 

diagnosis, this paper designs a sequential LSTM classification network, as shown in Fig. 3, which has four 
layers, namely, input layer, LSTM layer, fully connected layer and classification layer, the number of cyclic 
steps is the length of the whole sequence 8000, the gradient at each update of the weights is the average gradient 
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of 8000 steps, the output corresponding to each cyclic step is the fault category at that moment, the input 
dimension is the characteristic dimension of the residuals, and the output dimension is the number of categories. 

Fig.3. Structure diagram of sequential LSTM classification

The sequential LSTM classification network uses a stochastic momentum gradient descent optimizer 
for iteration. Compared with the traditional stochastic gradient descent algorithm, the former adds a momentum 
term to the parameter update to reduce the oscillation phenomenon along the most rapid descent path as the 
latter moves toward the optimal direction. The process of its update is as follows:

1 1( ) ( )l l l l lE r     
 
                                                                  (9)
Where θ, l, and α are the weight vector, the number of iterations, and the learning rate, respectively; E(θ) 

and ∇E(θ) are the loss function and the gradients of the loss function , respectively; and r is the contribution of 
the previous step's gradient to the current step.

In addition, a regularization term (10) is added to the loss function E(θ) to reduce overfitting, and the 
regularization function Ω(w) is shown in equation 11.

( ) ( ) ( )RE E w                                                                         (10)
1( )
2

Tw w w 

                                                                          (11)
Where λ and w are the regularization factor and the weight vector, respectively.

IV. USING LSTM FOR FAULT DIAGNOSIS
The first step is the timing prediction. A model is trained to predict the output of a wind turbine at the 

next moment under normal conditions. If a certain fault occurs in the turbine, the predicted value will differ 
from the measured value and show a certain regularity, so that the fault can be judged to have occurred. The 
cross LSTM prediction network performs well in mining the intrinsic connections of variables [12], connected to 
this paper, the cross LSTM model can be used to predict the output of a particular sensor to obtain the difference 
between the true value and the predicted value, as described in Section 3 of this paper.

The second step is to extract the residual features. The fault classification by using the residuals 
directly often does not yield the desired results because this does not take full advantage of the hidden features 
in the multi-sensor data, so the time and frequency domain features of the residual signals can be extracted to 
improve the performance of fault diagnosis. This chapter utilizes a sliding window feature extraction method 
that selects five common time domain features, mean, peak, peak-to-peak, energy, and root mean square 
amplitude, using this method to preserve the time-series dependence of the signal and facilitate real-time fault 
diagnosis. For the residual signal }1 2{ ...R r r r n    ，，，  of sensor α , n is the length of the signal, defining 
Φ as the feature extraction function and y as a certain time-domain feature to be extracted, the length of the 
signal y is n-m+1 and the value of y at moment t is:

( : )t t m ty r r


                                                                           (12)
Where, m is the width of the sliding window.

Table.1. Five feature extraction functions
Time domain features feature extraction function Φ
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Where the left side of the equation is the time domain characteristic of the output and the input is the 
residual signal }.{ 1 2 ..X x x xm ，，，  , with length m.

The third step is using a sequential LSTM for fault separation. The specific procedure of this network 
training can be seen in Section 3, where the cross-entropy loss is chosen as the loss function. All the feature 
signals obtained from the previous step form the matrix }1 2{Y y y yn ，，， , corresponding to the fault label 

}1 2{T t t tn ，，， . The above signals are divided into training and test sets, and after several iterations, a 
classification model Ƴ between T and Y can be built, and then the fault class of the test set can be predicted. 
The flow of this fault diagnosis strategy is shown in Figure 4:

Fig.4. Flowchart of fault diagnosis strategy
V. SIMULATION RESULTS AND COMPARISON

In this paper, three traditional machine learning algorithms, k-nearest Neighbor (KNN) , Decision Tree 
(DT) and Random Forest, are compared with the fault diagnosis strategy designed in this paper. In order to 
measure the performance of the method on different datasets and to verify the generality of the method on a real 
wind turbine data platform, three common metrics, Prec, MDR, and F1-score, are used here to compare the 
performance of each method.
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Where TP, TN stand for True positive, True negative; FP, FN stand for False positive, False negative 

respectively.
In this paper, we use the operational data of a wind turbine blade icing prediction contest, which is the 

data of a certain unit from November 1, 2015 to January 1, 2016 after collecting 26 sensors and normalizing 
them for two months, some of which have uncertain blade status. Some of these data blade state uncertainty. The 
data in the blade state determination of the observation points have 374147, of which the state of normal has 26 
segments a total of 350255 observations, blade icing has 29 segments 23892 observations, segments and 
segments are not continuous between, and the number of observations included are not the same. Generally, the 
fault duration is less and the non-fault duration is longer. To facilitate diagnosis, connect the time segments of 
the same state. There are too many normal state data points, so only the first 6 segments are taken for a total of 
about 120,000 data points, the fault time segments are linked together for more than 20,000, and these two 
segments are named normal and fault.

Table.2. Characteristics of data points
Number of continuous 

observation points under 
fault conditions

0-250 250-500 500-750 750-1000 1000-1300 Total

Number of segments 2 3 3 17 4 29
Number of continuous 

observation points under 
normal conditions

0-8000 8k-16k 16k-24k 24k-32k 32k-48k Total

Number of segments 13 5 3 1 4 36

The process of fault diagnosis is as follows:
(1) Pre-processing. Noise is inevitably mixed into the sensor measurements, so the first step is using a 

low-pass filter to filter out the high-frequency noise from both data segments.
(2) Build predictive models. We divided the pre-processed data into training set and test set. As 

mentioned before in paragraph 4, the training set for building the prediction model should be the data in normal 
state, so we divided normal into two segments, the first 80,000 observations as the training set, and the second 
40,000 or more connected with failure as the test set, with more than 70,000 observations. After the prediction 
model is established, the test set is used as input to generate the predicted values, which are made to differ from 
the actual output values, and then the residual signal is generated. For the convenience of representation, the 
normal state is numbered as 0 and the icing state is numbered as 1. Randomly select 6000 normal state and 6000 
icing state data points forming 3000(0)+3000(1)+3000(0)+3000(1) totaling 12,000 observations to form a signal 
for the next step. Figures 5 shows the trends of the residual signals for the two variables int_tmp, 
environment_tmp in this segment of data.

Fig.5. Residual signal of int_tmp and environment_tmp
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(3) Extracting features. Selected the residual signals of 2 sensors int_tmp, environment_tmp, and 
extracted 5 features for each residual signal, so the size of the data after extracting features is 10*12000.

(4) Fault classification. Divide the above data into training and test sets, which are both 10*6000 in 
size. The trained classification model is used for fault identification in the test set, and the performance of the 
method is evaluated by comparing the true labels of the test set after obtaining the classification labels. The 
following figure shows the performance comparison of four fault diagnosis methods: K-nearest Neighbor, 
Decision Tree, Random Forest, and LSTM predictive classification.

Table.3. Comparison of the four methods
State Indicator KNN DT Forest LSTM

Normal

Prec 99.7 99.7 99.7 99.8

MDR 8.0 6.6 6.7 6.2

F1-score 95.7 96.4 96.4 96.7

Icing

Prec 91.3 93.0 92.8 93.7

MDR 0.3 0.3 0.3 0.2

F1-score 95.3 96.2 96.1 96.5

Average Accuracy 95.5 96.3 96.3 96.6

Here using the three metrics mentioned above to evaluate the performance of the four fault diagnosis 
methods. As shown in Table 3, the diagnostic method corresponding to the bolded numbers is the best 
performer, and it is clear that the advantage of LSTM predictive classification is dominant. However, taken 
together, the differences between the other three methods and the method proposed in this chapter are not 
obvious, and the method proposed in this paper does not have particular advantages in the dichotomous 
problem. The comprehensive simulation results show that LSTM prediction classification is more effective if 
the problem faced is a multi-classification problem. If faced with a dichotomous classification problem, 
traditional machine learning methods can be chosen, but the cross LSTM prediction network performs well in 
mining the intrinsic association of variables, and the residual signal generated after its prediction contains fault 
information, which helps to identify fault classes.

VI. SUMMARY
This paper focuses on a fault diagnosis strategy based on Long Short-Term Memory Network, which 

modifies the training process of LSTM , and proposes two networks with different functions and different 
training methods, namely cross prediction and sequential classification, to diagnose the faults of wind turbines. 
Selected data provided by a wind turbine blade icing prediction, the pre-processed data is divided into training 
set and test set, the test set is used as input to generate the predicted values, which are made to differ from the 
actual output values, and then the residual signal is generatedand , using the extracted features of the residual 
signal for fault classification and comparison with other fault diagnosis methods.

From the simulation results, this approach outperforms traditional machine learning algorithms, 
including K-nearest Neighbor, Decision Tree and Random Forest, in all diagnostic performance on real data 
sets. It has obvious advantages for the multi-classification problem of faults, especially for actuator faults that 
are relatively difficult to diagnose; while in the binary classification problem of whether the blades are iced, 
traditional machine learning algorithms have performed well, so the advantages of the method are not 
particularly obvious, but the performance of traditional machine learning also benefits from the ability of the 
LSTM prediction network to extract fault information. Collectively, it seems that this approach, which considers 
the spatio-temporal correlation of variables, has outstanding advantages for faults with a deeper degree of 
concealment.
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