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ABSTRACT:

The increasing fast extension, advancement and complexity of the modern power system require that, a highly
reliable and effective power system protection scheme is installed for fast operation in protecting the
transmission line at occurrence of fault. Fault diagnosis is a major area of investigation for power system and
intelligent system applications. To protect the power system transmission line, fast and accurate detection,
classification and location of point of these faults is imperative. Transmission line fault location requires both
power system model information and field data captured at different substations. This research presents a novel
Time-Frequency (S-Transform) approach for the detection, classification and location of fault in Onitsha —
Alaoji 330kV power system transmission using MatLab/Simulink. This discretized technique is an expansion of
Wavelet transform method and is based on a moving and scalable localizing Gaussian window. The results was
compared with IEEE 14 Bus transmission line network.
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I INTRODUCTION

In recent years, with fast extension of the power system, the research of an automatic and reliable
technique for protection system has aroused widespread attention. It is well known that transmission lines are an
important part in a power system and the faults of a transmission line will cause disturbance and endanger the
security of the whole system. Therefore, detecting, classifying, locating and isolating the faults in time are the
main tasks of transmission system protection. When a sudden change, such as a fault or a disturbance occurs on
a transmission line, a traveling wave will be generated, and it will propagate at nearly the speed of light. It is a
significant amount of work to characterize and locating the transients by only using the original records. There
are many techniques that can be employed for extracting and analyzing the nature of the traveling wave before
and fault occurrence. Stockwell transform (S — Transform) is one of the powerful tools in extracting and
analyzing the features of traveling wave, its application on fault detection is presented in this dissertation. This
research describes the S — Transform technique use for detection of fault based on sampling of the fault voltage
and current transients at the relay point. Normally the fault generated current and voltage transients contain long
duration low frequency components and short duration high frequency components, the information contained
in these signals are employed by S — Transform (S-T) for the purpose of line protection [1], [2].

1. METHODOLOGY
Block Diagram and the flowchart of the Procedure for fault detection on the Onitsha — Alaoji 330kV
Transmission Line located on the Nigeria 58-Bus Network using Time — Frequency method is shown on figure
1.0 and 2.0 respectively.
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Modeling of the 330kV Owerri-Orlu Transmission
Line using Matlab/Simulink
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Figure 1.0: Block diagram of the methodological procedure

Flowchart of the Procedure for fault detection on the Transmission Line using Time — Frequency method
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Figure 2.0: Flowb-h_aﬁ diagram for the faﬁit_défection procedure

The figures 1.0 and 2.0 illustrate the respective methodological and implementation process of fault detection on
the power system transmission line using Time — Frequency (S — Transform) technique. Here Izs and Iy are
relay set current and discretized S — Transform current respectively.

(1) Extraction of the three — phase voltage and current signals from the Matlab/Simulink model of 330kV
transmission line

According to Sadiku and Alexandra, 2006, three — phase voltage and current signals of the transmission line are

represented by equations 1.1 to 1.6.

v, =V, sin(6 + @) (1.2)
vp = V, sin(6 + @) (1.2)
ve =V, sin(8 + 0) (1.3)
i, =I,sin(6 + @) (1.4)
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i, = I,sin(8 + @) (1.5)
ic =1,sin(6 + @) (1.6)

V,(n) = E[Va + Vb(n)eizTTt + Vc(n)e_jblﬂ] 1.7)

I,(n) = %[ia+ ip(me~ + i.(ne N ] (1.8)
Equation (3.7) and (3.8) is the discretization equation used for the determination of discontinuous three — phase
voltage and current signal from the transmission line [3].

(1) Fault detection on the power system transmission line using Time — Frequency technique.
Time — Frequency analysis technique is a powerful tool for fault detection, classification and location for
protection of the transmission line. It is an invertible Time — Frequency (S — Transform) analytical technique
that comprises a combination of Short Time Fourier Transform (STFT) and Wavelet Transform (WT).
Thus, a mathematical expression derived from Short Time Fourier Transform (STFT) and Wavelet Transform
(WT) to solve the problem of limitations of STFT applications.
S — Transform has an advantage in the sense that, it provides multi-resolution analysis while retaining the
absolute phase of each frequency.
This is one of reasons why it has been chosen in the field of electrical engineering for fault diagnosis in time
series.
The following expressions is the Time — Frequency (S-Transform) for a continuous signal (voltage or current
signal) x(t);

|f| —fz(‘[—t)z

SttH = [ x(® {a—ﬂ_ﬂ}.e( 2a? ).e(—mfﬂ d(1.9)

Where fis the frequency, t is the time, T is the parameter that controls the position of Gaussian window on the t-
axis and a is a control factor of time and frequency resolution of the transform. The lower a means higher time
resolution and lower frequency and vice versa.
A suitable value of a lies between theranges of 0.2 < a < 1.
Considering the discrete version of the continuous S-Transform (DST) (equation 1.9), the following expression
describes the DST.
—2m2m2a2
SG,n) = INLX(m+n).eT 2z ). el2mmi(1 10)
Where, j=1...... N-1,n=0,1..N-1
But, j and n indicates the time samples and frequency step respectively.
X(m + n) can be obtained in a straight forward manner from equation 3.9 below.

X(m) = ~ INZ3x(k) . ez (L12)

Where,n=0, 1...,N-1

Also, the Fourier spectrum of the Gaussian window at a specific n (frequency) is called a voice Gaussian and for
the frequency f; (n,), the voice can be obtained as;

S(G,n;) = A(j,n,). ed®0Gn1) (1.12)
Where the pick value of the voice is
max(S(j,n,)) = max (A(j,n,)) (1.13)
And

. _ imag (S(j,ny))
d)(]' 1’11) = atan {real (S(j,nl))} (1'14)

Then, the energy E of the signal is obtained from S — Transform as
E = {abs(S(,n;))}? (1.15)
The energy signal obtained from S - Transform is used to detect and classify the fault on the transmission line

[4].

(111) Modeling the Discretization Equation

Equations 1.7 and 1.8 are modeled using MATLAB/SIMULINK block to obtain Figures 3.0 and 4.0.

However, the input ports figures 3.0 and 4.0 are connected to output signal port of the voltage — current
Matlab/Simulink measurement block to extract the continuous phase voltage and current signals as input signals
into the system. They processes the signals in-line their modeled mathematical derivations to obtain the
discontinuous output voltage (Vp) and current (Ip) as their discrete version.
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Figure 5.0: Voltage and Current Subsystem
Figure 5.0 is the Matlab/Simulink subsystem of figures 3.0 and 4.0.
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(1V) Modeling the Discretized Time — Frequency Equation

Figures 6.0 and 7.0 are the Matlab/Simulink models of equation 1.10 for voltage and current signals
respectively. The input port of figure 6.0 is connected to the output port of figure 3.0, while the input port of
figure 7.0 is connected to the output port of figure 4.0 for extraction of the discretized voltage and current

signals respectively.

Sum of
Elements

5(,0) (3 - TRANSFORM OF
THE VOLTAGE SIGNAL)

Sin) (3 TRANSFORM OF

I}
_’I

THE CURRENT SIGNAL)
E X I

Sum of

I_' Elements3

Figure 7.0: Discrete S -Transform Computation Model for Current Signal

(V) Computation of the Discrete Energy Signal of the three-phase voltage and current
The discrete energy signal of the voltage and current signals is the signal that show the magnitude, severity,
frequency of fault occurred on the line.

E, (ENERGY OF THE
VOLTAGE SIGNAL (v))

e

Figure 8.0: Discrete S -Transform Energy Signal Computation Model for Voltage and Current Signal

ul
5(j,n) (S - TRANSFORM OF
THE VOLTAGE SIGNAL)

h

The magnitude of the energy signal of voltage can only be greater than that of current when there is no
fault on the network. If the magnitude of the energy signal output of voltage is greater than that of current after
fault simulations, it shows that the energy equation of 1.15 is wrong. However, the magnitude of energy signal
of voltage is expected to be less than that of current when fault occurs on the network. This is because,
according the standard electric circuit or network theories, when fault occurs on an electric circuit, the voltage
magnitude decreases while the current increases, hence magnitude of energy signal of current during faulty
condition is greater than that of voltage [4], [5].
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(VI) Computation of the discrete three — phase voltage and current signals
The computation of the discrete three — phase pre-fault and fault voltage and current signals is achieved using
figures 3.9 and 3.10 respectively. Their values computed are shown in table 4.3 and 4.4 respectively.

(V) Compute the Time — Frequency discrete three — phase voltage and current signals

Time — Frequency discrete three — phase pre-fault and fault voltage and current signal for single phase to
ground, double phase to ground, phase to phase and three — phase faults are computed using figures 3.0 and 4.0.
Their values are shown on table 1.0 and 2.0 respectively.

Also, figure 8.0 which represent the computation model for computing the energy signal of the voltage and
current of the transmission line for pre-fault and fault conditions. The energy signal equation 1.15 represents the
fault signal of parameter and carries fault frequency component of the parameter [5] [6].

=
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Figure 9.0: Complete Discrete S -Transform Model for the Computation Voltage and Current Signal Conditions

Figure 9.0 is a subsystem containing the Matlab/Simulink model for computing discrete values of pre-fault and
fault voltage and current. It also contains the S — Transform fault detection and Energy models for voltage and
current signals.

The inputs of the S — Transform fault detection model is connected to the matlab/Simulink voltage — current
measurement block for the extract of the phase voltage and current signals. Each of the models in the S —
Transform fault detection system is linked to the input signals. They compute their voltage and current signal
values and gives results. Their results are tabulated accordingly in chapter four.

(V1) RESULTS AND DISCUSSIONS

Results obtained through simulation of the Nigeria 58 — Bus Network with Onitsha — Alaoji 330KV
transmission line as a case study.

This chapter discusses the result obtained using the methodology in chapter three. The following results were
obtained when the complete system of Time -Frequency (S — Transform) model is simulated.
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Figure 10: Three Phase Pre-fault Voltage Waveform
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Figure 11: Three Phase Pre-fault Current Waveform

A - GFAULT VOLTAGE WAVEFORM

15
Va
—\Vb
,;"'\ f\ N Ve
Al 1 / i
1 I I |
= \ I [ [
= | Il [ [
o i | [ [ 4
° I ! Il
g \ [ [ [
'E | | | " \I \
& ~ |/—‘r\Jr/7\ﬁ_ 1/
-1 T AR TR AT
r | "ol i
o i | [I | 1l
o] | | | |
s RERNERREN
(I j
z | | P
| L |/ ‘\,""‘
-1.5
0 500 1000 1500 2000 2500

Time (msecs)

Figure 12: Three Phase A — G fault Voltage Waveform
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Figure 13: Three Phase A — G fault Current Waveform
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Figure 14: Three Phase AB — G fault Voltage Waveform
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Figure 15: Three Phase AB — G fault Current Waveform

A -B FAULT VOLTAGE WAVEFORM

15
Va
—Ww
AN -‘ =
M |
2 o5l ¥l| 7 Al
2 05 | |
B ERNANARTAYENE:
= { / /
SN Vi
= 1 { i \ 1
g |V A / 1
o] | } ; i
3 05 ! | ‘V‘ \-/ L‘ £
- "s \ “”'w
MYAVRY Y
% 500 1000 1500 2000 2500
Time (msecs)

Figure 16: Three Phase A — B fault Voltage Waveform
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Figure
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Figure 19: Three Phase ABC fault Current Waveform
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The faults that occurred on the transmission line were occurred and cleared at same time (480msecs) and
(1800msecs) respectively, except at three phase (ABC) fault when at 1480msecs the voltage magnitudes of the

lines increased from 0.0 to 0.5 and decreased back to 0.00 at 1500msecs.

Table 1: Three phase Pre-fault and fault Voltage and Current for the symmetrical and unsymmetrical

faults

SN |y, Ve |V I Iy I Fault

Conditions
1| 10000 | 10000 | 10000 | 00150 | 00150 | 00150 | NoFault
2 | 00001 | 10000 | 15000 | 12800 | 00150 | 00150 | A-G
3 | 00010 | 00110 | 12500 | 13800 | -L5000 | 00000 | AB-G
4 | 05000 | 05000 | 1.0000 | 13500 | -13800 | 00000 | A-B
5 | 00000 | 00000 | 00000 | 13500 | -15000 | 11500 |  ABC

Table 1.0 shows the pre-fault, fault voltage and current magnitude of the case study transmission line obtain

when the line is simulated for No fault, A — G, AB — G, A — B and ABC fault conditions.

Figures 20 to 29 represent the pre-fault voltage waveform of No fault, A — G, AB — G, A — B and ABC fault

conditions.
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Figure 20: Time and Frequency Domain Onitsha — Alaoji 330kV Transmission Line Pre-fault Current
Waveform

Signal processing method is divided into time domain, frequency domain and time-frequency domain methods.
In terms of frequency, low frequencies (high scales) whereas high frequencies (low scales) correspond to a
detailed information of a hidden pattern in the signal (that usually lasts a relatively short time). At higher
frequency we have low and poor frequency resolution or window or short time interval and large time
resolution, but at lower frequency we have high and better frequency resolution or window or large time interval
and lower time resolution [8]
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Figure 21: Time and Frequency Domain Onitsha — Alaoji Transmission Line Pre-fault VVoltage Waveform
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Figure 23: Time and Frequency Domain Onitsha — Alaoji Transmission Line Pre-fault Energy of Voltage
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Figure 24: Time and Frequency Domain Onitsha — Alaoji Transmission Line Pre-fault S-Transform
Current Waveform
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Table 2: Time & Frequency Domain Pre-fault VVoltage and Current Computation at No Fault Condition

S/N | S-Transform Parameters | Time—-Domain (mpu) | Frequency - Domain [mpu)
1 Ve 6300 2.80e5
2 Ip 2100 7.80e4
3 Ey 2.30e35 10.00e36
4 E 2.60e34 14.00e35
5 §-Ty 4.80e17 16.20e18
6 s-T, 1.40e17 4.80e18
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Signals in time — domain (T) are dependent on time interval taken for such signals to occur. But frequency -
domain (s) is dependent on number of spectrum and its magnitude.

According to Mohammed (2013), time and frequency domain signals are the most signals in practice and that in
many applications of signal processing, the frequency content of the signals contains the most relevant and
discrete information. Thus various mathematical transform are used to analyses those signal processes. The
transmission line contains the high frequency of current and voltage waves including other parameters like
reactance, resistance, capacitance, admittance and conductance which are all used for analyses of the waveform.
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Figure 26: Time and Frequency Domain Onitsha — Alaoji Transmission Line ABC-G Fault Current
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Figure 27: Time and Frequency Domain Onitsha — Alaoji Transmission Line ABC-G Fault Voltage
Waveform
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Figure 29: Time and Frequency Domain Onitsha — Alaoji Transmission Line S — Transform ABC-G Fault
Voltage Waveform
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Table 3: Time & Frequency Domain fault Voltage and Current Computation at Three Phase (ABC) Fault
Condition

§/N| §=Transform Parameters | Time=Damain (mpu] | Frequency = Domain [mpu)
1 Vi 030 180
2 3 1.00 300.00
3 E 13.50e25 3.00e27
4 £ 4.00e34 3.30e36
3 §Ty 0.00 0.00
6 T 200e17 7.20e12

(V) Comparative Analysis between the Results of the Application of the Nigeria 58-Bus Case Study Model
& |IEEE 14 — Bus System Network

In this section, comparison between the results of the simulation of the Onitsha — Alaoji 330 kV case study

transmission line and the IEEE 14 - Bus transmission line is performed.
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Figure 32: IEEE 14 — Bus System Network Transmission Line
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Figure 39: IEEE Single Line Three Phase AB — G fault Voltage Waveform
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American Journal of Engineering Research (AJER) 2022

4| Scopes - [EEE 14-BUS A - B Fault Voltage - a X

File Teols View Simulation Debug Desktop Window Help ¥ | & X
8- 6OP® 3w E-|FE- BOEO
IEEE 14-BUS A - B Fault Voltage

+1

0 0.01 0.0 0.0 0.0 005 00 0.07 0.08 0.09 0.1
Figure 41: IEEE Single Line Three Phase A - B fault Voltage Waveform
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Table 4: IEEE 14 — Bus System Three phase Pre-fault and fault Voltage and Current for the symmetrical

and unsymmetrical faults
N v Loy | ! b ! Fault

Conditions

1 | 06200 | 07000 | 06200 | 0.5800 | 05700 | 06000 | NoFault

2 | 01500 | 07000 | 0.8000 | 08200 | 0.5700 | 06100 | A-G

3 | 06000 | 0.6000 | 0.6200 | 09000 | 12000 | 06000 | AB-G

4 | 06200 | 08000 | 06200 | 13000 | 06000 | 03300 | A-B

5 | 06000 | 05000 | 0.2300 | 03500 | 0.3400 | 13800 ABC
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Figure 44: Three Phase ABC fault Current Waveform
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Figure 45: Three Phase ABC fault Current Waveform
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Figure 46: Three Phase ABC fault Current Waveform
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Figure 47: Three Phase ABC fault Current Waveform
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Figure 48: Three Phase ABC fault Current Waveform
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Figure 49: Three Phase ABC fault Current Waveform
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Table 5: IEEE 14 - Bus Network Time & Frequency Domain Pre-fault VVoltage and Current Computation

at No Fault Condition

§/N | §=Transform Parameters | Time=Domain (mpu] | Frequency - Domain |mpu)
1 Vp 1.00 350
2 b 029 2.00e-7
3 Ey 93326 1.00228
4 £ 6.22e27 6.80:29
5 §Ty 264513 200215
] 5T 3.50¢13 12.00e15
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Figure 50: Three Phase ABC fault Current Waveform
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Figure 51: Three Phase ABC fault Current Waveform
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Figure 52: Three Phase ABC fault Current Waveform
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Figure 53: Three Phase ABC fault Current Waveform
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Figure 54: Three Phase ABC fault Current Waveform
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Figure 55: Three Phase ABC fault Current Waveform
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Tima domain S-Transform Fraquency domain S-Transform
A0 Enargy of Current Ml Energy of Currant
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Table 6: Time & Frequency Domain Fault Voltage and Current Computation at Three Phase Fault

Condition

S/N| §-Transform Parameters | Time=Domain (mpu) | Frequency - Domain [mpu)
1 Vp 0.10e-9 2.00e-7

2 b 100 1

3 E 2.4035¢10 1.00e12

4 E‘ 128327 14.00e28

5 5T, 0.40ct 6.50c6

§ s, 35013 160014

The large magnitude of S — Transform Energy component E, or E; is due to fault on the line and explains the
greater effect of fault or severity of fault on the transmission line equipment.

Comparing the energy obtained from the Nigerian line and that of IEEE, the energy of the IEEE components is
larger than that of Nigerian Network.
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Table 7: Comparative Result of Time & Frequency Domain Pre-fault VVoltage and Current Computation
for Nigerian 58 — Bus and IEEE 14 — Bus Networks Respectively

Time - Domain (mpu) | Frequency-Domain (mpu)

/N | S-Transform Parameters | Nigeria-P; | IEEE-P; | Nigeria-P; | IEEE-P;

1 Vp 6300 1.00 2.80e5 350

2 Ip 2100 0.2e-9 7.80e4 2.00e-7

3 Ev 2.30e35 | 9.33e26 | 10.00e36 7.00e28

4 Ei 2.60e34 | 6.22e27 | 14.00e35 6.80e29

5 §-Tv 4.80e17 | 2.645e13 | 16.20e18 2.00e15

6 5Ti 1.40e17 | 3.50e13 | 4.80el8 12.00e15

Nigeria 58 -Bus Vs IEEE 14 - Bus Networks S - Transform
Prefault Condition Results
in Time (T) & Frequency (F) Domain

1E+37

8E+36
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BE+36
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2E436
W |EEE - PF

Vp Ip Ev Ei 5Tv 5Ti

1 2 3 4 5 6

Figure 56: Histogram showing the Difference in Pre-fault VVoltage & Current Magnitude for Nigeria 58
Bus and IEEE 14 — Bus Networks

Considering table 7 and figure 56, it is observed that, the magnitude of energy of pre-fault voltage for Nigeria
network is larger than that of current in the same Nigeria network in time and frequency domain. But, for the
IEEE network, the energy of the current magnitude is larger than that of the voltage in the same time and
frequency domain.

Table 8: Comparative Result of Time & Frequency Domain Fault Voltage and Current Computation for
Nigerian 58 — Bus and IEEE 14 — Bus Networks Respectively

S/N | S-TransformParameters | Time - Domain (mpu) | Frequency—Domain (mpu)

Nigeria IEEE Nigeria IEEE

1 \p 0.30 0.10e-9 7.80 2.00e-7

2 Ip 7.00 1.00 300.00 110

3 Ev 13.50e25 | 2.4035e10| 3.00e27 1.00e12

4 Ei 4,00e34 | 1.283e27 | 3.50e36 14,00e28

5 5-Tv 0.00 0.40e4 0.00 6.50e6

6 S-Ti 2.00e17 | 3.50el13 | 7.20e18 16.00e14
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Figure 57: Histogram showing the Difference in Three Phase Fault Voltage & Current Magnitude for

Nigeria 58 Bus and IEEE 14 — Bus Networks

Considering table 8 and figure 57, it is observed that, the magnitude of phase current, energy of three phase fault
current and S — Transform of current signals for Nigeria and the IEEE networks are all far larger or greater than
that of voltage in the both networks in time and frequency domain.

This means that, the Nigeria 58 — Bus Network containing the case study Onitsha — Alaoji 330KV transmission
line connected to the S — Transform fault detection model is well modeled and was able to detect, give accurate
and correct results corresponding to the standard electric circuit characteristics [9].
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