
American Journal of Engineering Research (AJER) 2021

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

 Volume-10, Issue-6, pp-50-53

 www.ajer.org
Research Paper Open Access

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 50

Equation tree or ABL tree to represent data with high security

Binu C T
Software Test Engineer

Syntrio technologies, technopark, Thiruvananthapuram

ABSTRACT: Data structure is the way to represent data in our system. Data structure are two different types

Linear and nonlinear. If we represent both linear and nonlinear into a tree, linear have one successor but

nonlinear have more than one successor. Tree in data structure is a most important type of nonlinear data
structure in computer science. There are a lot of trees like binary search tree, heap tree, Red black tree etc. The

proposed tree uses linear equation or binomial equation to map the data into a tree. The proposed tree is called

hash tree or equation tree. We can use different equations to represent data in different systems which increase

the security of the system. The time complexity of the proposed algorithm is O (n)

KETWORDS: Tree, Binary search tree, Integrity, Confidentiality, Security

Date of Submission: 25-05-2021 Date of acceptance: 07-06-2021

I. INTRODUCTION
The tree consists of nodes or vertices and edges or lines. Nodes are usually labelled with data or search

key. The top level of the tree is called roots. The predecessor of the node is called parent and next level node is

called siblings. Last nodes are called leaf nodes. Depth of the tree means the length at which we reach the leaf

node.

II. EQUATION TREE OR ABL TREE ALGORITHM

Read the length of the tree n

Read number of equation l

Select linear or binomial equation

Read data

Read the linear or binomial equations

Put 0 to variable in the root equation x

Leaf(v) = MakeTree(v; EmptyTree; EmptyTree)

MakeTree(2, MakeTree(6,MakeTree(15,EmptyTree,EmptyTree),

MakeTree(23,EmptyTree,MakeTree(46,EmptyTree,EmptyTree)))

,

MakeTree(75,MakeTree(9,EmptyTree,MakeTree(98,EmptyTree,EmptyTree)),

MakeTree (data,left,right)

If(data<x)

Root=data

y=put depth to the variable of left equation

if(data<y)

compare data with existing nodes

left(node)=data

z= put depth to the variable of right equation

if(data<y)

compare data with existing nodes

right(node)=data

American Journal of Engineering Research (AJER) 2012

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 51

III. TIME COMPLEXITY
Read the length of the tree n 1
Read number of equation l 1

Select linear or binomial equation 1

Read data 1

Read the linear or binomial equations 1

Put 0 to variable in the root equation x 1

Leaf(v) = MakeTree(v; EmptyTree; EmptyTree) n

MakeTree(2, MakeTree(6,MakeTree(15,EmptyTree,EmptyTree), n

MakeTree(23,EmptyTree,MakeTree(46,EmptyTree,EmptyTree))), n

MakeTree(75,MakeTree(9,EmptyTree,MakeTree(98,EmptyTree,EmptyTree)), n

MakeTree(data,left,right)

If(data<x) 1

Root=data 1

y=put depth to the variable of left equation 1

if(data<y)

compare data with existing nodes 1

left(node)=data

z= put depth to the variable of right equation 1

if(data<y)

compare data with existing nodes 1

right(node)=data 1

 The time complexity of the proposed algorithm is O (n)

Example:

Root equation =5x+3

Left equation=3x+1

Right equation=4x+1

2,6,15,23,46,75,98

Fig.1

The first data is consider as root node and compare with value of equation of root. Here I put the value of the

variable in the equation to 0 (depth of root or node)

Fig2

The equation of left node is considered and got the value 4 and compares with data 6.If it the nearest value then

add it to the tree. Continue the operation like that attain the full tree

American Journal of Engineering Research (AJER) 2012

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 52

Fig3

Fig4

Fig5

American Journal of Engineering Research (AJER) 2012

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 53

Fig6

Fig7

IV. CONCLUSION
The proposed ABL tree algorithm provide high performance and security

REFERENCES
[1] Data Structure ,Algorithm and Applications in C++,Satraj Sahni

Mr. Binu.C.T is a post graduate in Computer Science and Engineering. He have 3 Years’

Experience in Academic field in different Engineering Colleges. He also have 2.3 Years’

experience in software Testing Domain and currently working in Syntrio technologies as

Software Test Engineer

