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ABSTRACT : The Inventory Routing Problem (IRP) deals with routing and inventory costs at the same time. 
This problem comes from the context of a Vendor Managed Inventory (VMI) system in which the vendor is 

responsible for managing the customer's inventory. It is the combination of transportation and inventory 

management problems, which correspond to the higher costs in a logistics operation This problem belongs to 

the class of NP-Hard problems, so this study proposes a hybrid heuristic for the problem. The inventory 
problem was modeled as a maximum flow problem at minimum cost and to solve it we used the Network Simplex 

algorithm. For the routing problem we used Random Variable Neighborhood Descent and to escape from the 

optimal locations we used Simulated Annealing. IRP variant considering several periods and several vehicles. 

Each iteration of the metaheuristic is divided into two stages: the first is modifying the position of one or more 

customers attended by the vehicles and periods, and a second step that solves a Maximum Flow at Minimum 

Cost problem, to optimally assign the load volumes transported to each customer in each vehicle in each period. 

Then, this approach is tested in classical instances for this IRP variant, obtaining results that prove the 

efficiency of the algorithm The algorithm surpassed some results of the literature and in no moment was above 

2% of them.  
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I. INTRODUCTION 

The Inventory Routing Problem (IRP) refers to the distribution of a specific product, from a specific 

Distribution Center (DC), which meets a several costumers within a previous planning. The costumer consumes 

the product with a determined tax and has a maximum storage capacity. The products distribution is done by the 

company’s fleet, being heterogeneous (different capacities) or homogeneous (same capacity) then. The different 

costs of transportation and storage is the supplier’s responsibility, and the main goal is to minimize both this 

costs during the whole planning, aiming to have no delivery breaks. 

This problem is known as a NP-hardness problem and some authors have proposed several solutions 

such as: the Exact Method developed by Archetti et al. (2007); the Heuristic one developed by ALNS and 
proposed by Coelho et al. (2012b); to heterogeneous fleet, there are the Branch and Cut Exact Algorithms of 

Adulyasak et al. (2013a) e Coelho e Laporte (2013b). Coelho et al. (2014), in his work, makes a detailed 

revision about the algorithmic aspects of IRP. 

The first heuristics to the IRP used to have many approximations and to consider some factors, such as 

the work of Dror et al. (1985), who considered the transportations costs to solve the problem. Nowadays, the 

problem has approached with more developed algorithms that search for high quality results; these 

metaheuristics have the capacity to flee from optimum locals and clever searches in the solution space. 

Coelho (2012b) proposed a metaheuristic to the IRP, MIRP, IRPT and MIRPT. The author uses 

Random Variable Neighborhood Descent (RVND) and when the algorithm finds the optimum local and the 

improvements movements have not been allowed it is used the Simulated Annealing (SA) as a solution’s 

acceptance criterion. The author uses neighborhood research, being 12 of them. 
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Archetti et al. (2012) proposed a hybrid heuristic to the IRP using a Tabu Search (TS) metaheuristic 

with other two MIPs to the ML’s and OU’s politics. The author named HAIR (Hybrid Approach to Inventory 

Routing) the metaheuristic. The first MIP receive the TS’ results then the MIP runs the route changing among 

the periods do not altering the routes, but only its specific period. The second MIP removes and inserts the 

costumers into the routes. 
Peres et al. (2017) introduces a new hybrid metaheuristic in literature to the Multi-Product Multi-

Vehicle Inventory (MMIRPT), which has based in the neighborhood searches to the routing problem and in the 

network simplex algorithm to the transportation problem. Inspired by Coelho et al. (2012b) the proposed 

algorithm also used the RVND and SA as a criterion to accept solutions, aiming to flee from optimum locals 

when a better solution is found during the research, however it was not tested in instances. The proposed 

metaheuristic in this paper is inspired by Peres’ work, who researched about the maximum optimal maximum 

flow algorithm with a minimum cost to the storage problem. 

This paper is organized as follows: a brief introduction to the theme with context, motivation and goal. 

The Section 2 details the approached problem. In Section 3 it is described the heuristic used in this paper. The 

Section 4 presents the computational experiments’ results. Finally, in Section 5 there are the last conclusions 

and suggestions for future research. 
 

II. INVENTORY ROUTING PROBLEM FORMING 

The IRP can be formulating as follows: a complete graph and non-oriented G = (V, E) so that the set of 

vertexes and the set of arcs are defined as V = {0, ..., n} and E = {(i, j) ∈ V, i ≠ j}, respectively. The vertex 0 

belonged to V is the Distribution Center (DC) and    = V \ 0 show the costumers. The arcs (i, j) ∈ V have a cost 

    > 0. The problem regards decisions in a horizon T = {0, ..., p}. The costumer i demands   
 ,    ∈  , has a 

storage maintenance cost    and a storage capacity   , DC has the storage   . When t = 0, it can exist, for the 

costumer, an initial storage defined by   
    ∈     Considering the DC has a sufficient storage to comply de 

costumers’ demand along T, and the DC must choose which period t will be complied the demand of the 

costumer i to a quantity   
  . The fleet can be heterogeneous or homogeneous of k vehicles, K={1,...,k}, and its 

capacity    is available in DC, in this research it has considered only 1 vehicle. Each vehicle k does a single 

route in each period t, visiting a specific number of costumers. The variables are described as bellow: 
 

Table I: Sets and indexes of the Model. 

SETS SETS INDEXES 

DC V i=0 

Nodes     i, j 

Vehicles  K K 

Periods T T 

 

Table II: Parameters of the Model. 

PARAMETERS DESCRIPTION 

   Storage Cost per unit of costumer i 

    Cost of the Edge i, j 

  
  Demand of the costumer i in the period t 

   Storage Capacity of the costumer c 

   Transportation Capacity of the vehicle k 

 

Table III: Variables of the Model. 

VARIABLES DESCRIPTION DOMAIN 

   
   1 if the arc (i, j) is coursed in the period t by the vehicle k; 0, otherwise {0;1} 

  
   1 if the costumer i be visited by the vehicle k in the period t; 0, otherwise {0;1} 

  
  Storage Level of the costumer i at the end of the period t    
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   Transportated Quantity to costumer i in the period t by the vehicle k    

   
   Flow to j from i in the period t    

 

The IRP aims to minimize the whole costs of transportation and storage, assuming the following restrictions: 

 The storage   
  of DC must be lower or greater than   . 

 The storage   
  of the costumer i must be lower or greater than   . 

 The quantity delivered by the vehicle k in the period cannot exceed the quantity   . 

 Each vehicle must start and finish its route by the storage area. 

 Each vehicle must do only one route by period and the number of routes cannot overcome de fleet’s 
availability. 

 Each costumer c must be visited by only one vehicle in each period. 

 

The IRP based in Coelho (2012a) could be formulated as a model of PLIMB with the Maximum Level 

(ML) politic, as described below: 

 

        
    

  ∈   ∈   

       
  

  ∈    ∈    ∈        ∈  
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The Function (1) aims to minimize DC’s storage cost, costumer’s storage cost and transportation’s total 

cost. The equations (2) and (3) make a balancing of DC’s and Costumers’ storages, ensuring the attendance of 

the demand i in the period t. The inequations (4) and (5) secure that the quantity delivered to the costumer i in 

the period t will not overcome its available capacity. The inequation (6) ensure the total transported by the 

vehicle k will not exceed its own capacity. The inequation (7) decide which costumers will be visited in the 
period t. The equations (8) and (9) ensure the continuity of the vehicles’ flow. The restriction (10) certifies all 

the vehicles to leave from DC. In (11), it has ensured all costumers for being visited by only one vehicle in t. 

The restrictions (12) and (13) ensure the non-competition for subtour. The inequation (14) secures the non-

negativity of the variables in storages and transportation quantity decision. Finally, the restriction (15) forces the 

route decision and visiting variables and not the costumers to be binary ones 

 

III. HEURISTIC USED IN THIS RESEARCH 

There are two subproblems settled in IRP’s, the vehicles routing and the storage management; the 

routing one will be discussed by the searches in a set of possible solutions. The local search consists of finding 

new neighbor solutions aiming to improve the value of the objective function. These neighbor solutions are 

generated by movements, each kind of them is considered a neighbor structure. Beside this, we also have the 

neighborhood search, which consists in making a several movements with the same local search’s goal (to 

improve the objective function). In Routing Multi-Vehicle Problems, there are inter-route neighborhoods 
(movements among different routes) and intra-route ones (movements into the same route). The Table 4 contain 

some indexes do not presented before but used in the description of the investigated neighborhoods’ structures. 

 

Table IV: Neighborhood structures’ indexes. 

INDEXES DESCRIPTION 

    Position of the vehicle k in the period t 

   Vehicle associated with    and      

   Vehicle associated with    and      

   Period associated with    and      

   Period associated with    and      

     Position associated with    and    

     Position associated with    and    

    First arc        of the vehicle   in the period to be removed 

      Second arc          of the vehicle   in the period to be removed 

  

 INSERT (         ):  The neighborhood Insert consists in a inserting movement of a costumer  , in a 

specific position    ,  in the route of the vehicle  , in the period     
 RANDOM INSERT (         ): Similar to Insert, Random Insert consists in a random inserting movement 

of a costumer  , in a specific position    ,  in the route of the vehicle  , in the period  . The Figure 1 
illustrates an example of “Insert” or “Random Insert”. 
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Fig.1. – Example of the neighborhood structure of Insert or Random Insert. Source: Authors (2021). 

 

 REMOVE (       ): This neighborhood is just a reverse movement of Insert, so that instead of inserting it 

removes costumers from the route, considering the position Pos of the route of the vehicles k in the period t. 

The Figure 2 illustrates the example of “Remove”. 

 

 
Fig.2. – Example of the neighborhood structure of Remove. Source: Authors (2021). 

 

 SHIFT (       ): This Neighborhood is intra-route and its movement is changing the position of two 
costumers always changing the position from the position Pos to the position Pos+1, route of the vehicle k 

in the period t. The whole neighborhood could be tested. The Figure 3 illustrates the example of “Shift”. 

 

 
Fig.3. – Example of “Shift” neighborhood. Source: Authors (2021). 

 

 SWAP (                          In this neighborhood the movements are done by changing the 

positions among the costumers, from the costumer in      in the route of    in the period     to the 

costumer in      in the route of    in the period   . This neighborhood was investigated completely. The 

Figure 4 contains an example of “Swap”. 

DC DC 

DC DC 

DC DC 
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Fig.4. – Example of the Swap Neighborhood Structure. Source: Authors (2021). 

 

 RELOCATE (                        :  This neighborhood structure removes a costumer from the 

position      in the route    in the period    and inserts it to the position       ,  in the route    in the 

period   . The neighborhood can be whole coursed as only one. The Figure 5 illustrates an example of 

“Relocate”.     

 

 
Fig.5. – Example of the Relocate Neighborhood Structure. Source: Authors (2021). 

 

 2OPT (              :  This is an intra-route neighborhood and its movement selects two arcs of the route k 

of the period t to be removed and inserts two new ones in their places; changing the position of the 

costumers involved in the process. In other words, selecting the arc (i, j) and the arc (i′, j′) to be replaced by 

the new arcs (i, i′) e (j, j′). The Figure 6 illustrates an example of the “2opt”. 

 

DC DC 

Route 1 Route 2 

Route 1 Route 2 

DC DC 
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Fig.6. – Example of the “2opt” Neighborhood Structure. Source: Authors (2021). 

 

Modeling the Minimum-Cost Maximum-Flow  

The subproblem of Storage management was studied as a Minimum-Cost Maximum-Flow problem 

along the periods. This problem consists in defining the greatest possible value that can be sent from a node to 

another in a network with the lowest possible price. By this way, considering the Graph G (N, E) the application 

of the IRP problem and a graph G (N, E), In which there are two groups of edges, the intermediate edges are 

represented by the variable   
   (visiting costumer decision). The edges and its costs and storage costs are 

considered with any or not any edges (same costumer’s storage from a period to another one). There are also 

two groups of vertexes, in this case, the intermediate ones would be the vehicles k used in the specific period’s 

route and its capacity. The other group of vertexes are the costumer, who have the ability to receive flow and 

demand. The problem presents the following characteristics: 

 
 Maximum Capacity Flow either in arcs or in nodes (vehicles and costumers); 

 Minimum Demand Product in the graph’s nodes (costumers); 

 Cost per unit of flow sent in the arc from each node to another (storages from a period to another); 

 

The algorithm used to solve this problem was the Network Simplex, its mathematical definition, 

already adapted to IRP, is described bellow: 
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        ∈  ,   ∈         ∈   (23) 

 

Regarding the original problem, these changes are the Objective Function, which aims to minimize for 

maximize and portion sizes changing, in the script restrictions and vehicles’ flow conservation that cease to 

exist. The Function (16) aims to maximize the flow for the costumers (vertexes) minimizing the storages cost 
that were the edges ones, which is the edge of the costumer i in the period t for the same costumer i in the period 

t +1.  The restrictions (17), (18), (19), (20), (21), (22), (23) have the same functions as the original problem’s 

restrictions, being, respectively, (2), (3), (4), (5), (6), (7), (8). The Figure 7 illustrates an example the Minimum-

Cost Maximum-Flow illustration for the IRP. 

DC DC 
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Fig.7. – Minimum-Cost Maximum-Flow illustration for the IRP. Source: Authors (2021). 

 

Random Variable Neighborhood Descent and Simulated Annealing  

Mladenovic e Hansen (1997) in their studies proposed an algorithm named Variable Neighborhood 

Descent (VND), it consists in doing the neighborhood sequence (inter-route and intra-soute). Inspired in VND, 

the researcher Subramanian (2012) proposed the VND variation named Random Variable Neighborhood 

Descent (RVND). The proposed version for Subramanian (2012) uses a random number to order the 

neighborhoods for being ran. In the case of the chosen random neighborhood being successful, the local 

searches have performed in the changed routes, the neighborhood is removed from the routes local list 

otherwise. 

Let               }  a set of neighborhoods structure, when a neighborhood structure does not 

succeed in improving the solution, the algorithm randomly chooses a new neighbor structure, which belongs to 
the same set and successively. The Table 5 contains the algorithm. 

 

Table V: Algorithm RVND. Source: Adapted from Silva Junior (2013). 

Algorithm RVND 

 Input:               

 Output:   

1 Start 

2 Let   the number of neighborhoods; 

3 Let    the neighborhood structure list; 

4     shuffle (    

DC 

DC 
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5 K  + 1; 

6 While    do 

7            

8 Search for the best neighbor   ∈      (    
9 If               then 

10         
11 K   1; 

12 Otherwise 

13 K  K  + 1; 

14 End 

15 End 

16 End 

17 Return s; 

18 End 
 

The Simulated Annealing used in this research aims to improve the obtained solutions by RNVD and 

trying to leave optimum local for finding optimum global ones, towards this propose the SA accept random 

movements according to the algorithm’s temperature. The efficiency of this metaheuristic is associated to the 

random movements accepted by the algorithm, considering the acceptance criterions and the local’s search 

procedure.  

 

Table VI: Algorithm RVND. Source: Adapted from Silva Junior (2013). 

ALGORITHM SIMULATED ANNEALING 

 Input: Cooling Parameters 

 Output: Inviability  

1 Start 

2       ; 

3 S  RVND search the routing neighbors + NS; 

4 While T >      do; 
5 While equilibrium condition do: 

6       Choose random solution    ∈       

7       If                  then 

8               accepts the solution 

9           RVND searches in routing neighborhoods + NS; 

10       Otherwise 

11       Accept                          
   

  

12       End 

13       End-while 

14 End-while 

15 Return S 
 

IV. COMPUTATIONAL RESULTS 

To all the tests it was used the Julia programming language to codify the algorithm and the Atom 

(computer). The tests ran in a computer with the following characteristics: Intel® Core™ 2 i5, 2.2 GHz, 8 GB of 

main memory, and its operational system was Windows 10 64-bit. 

To the initial tests and the validation of the algorithm it was applied a test to the models with existing 
instances on the literature available in the work of Coelho et al. (2012a) aiming to investigate the consistence 

and the algorithm’s performance (available instances in: http://www.leandro-coelho.com/instances). By the end, 

it was compared the generated results between the exact algorithms of Coelho et al. (2012a) and the heuristic 

algorithm of Archetti et al. (2012). It was applied the algorithm to some great instances, in which the exact 

algorithm existed in the literature does not have a good performance. It was tested 24 instances being all of them 

with only 1 vehicle 10 with 50 to 100 customers and 4 vehicles to 200 customers. 
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Table VII: Comparison between the Exact Algorithm in the literature and the presented Algorithm. 

INSTANCE COSTUMER 
EXACT 

SOLUTION 

LOWER 

BOUND 

ALG. 

PROP. 

SE-ALG. 

PROP 

LB- ALG. 

PROP 

abs1n50.dat 50 30189.40 30189.40 30,487.53 0.99% 0.99% 

abs2n50.dat 50 29790.00 29790.00 30,042.30 0.85% 0.85% 

abs3n50.dat 50 29790.90 29790.90 29,958.23 0.56% 0.56% 

abs4n50.dat 50 31518.30 31518.30 31,905.32 1.23% 1.23% 

abs5n50.dat 50 29240.40 29240.40 29,420.32 0.62% 0.62% 

abs6n50.dat 50 31903.10 31903.10 32,001.26 0.31% 0.31% 

abs7n50.dat 50 29734.50 29734.50 30,051.49 1.07% 1.07% 

abs8n50.dat 50 25954.20 25954.20 26,424.74 1.81% 1.81% 

abs9n50.dat 50 30192.90 30192.90 30,345.23 0.50% 0.50% 

abs10n50.dat 50 31338.20 31338.20 31,389.63 0.16% 0.16% 

abs1n100.dat 100 57459.20 57212.70 57,578.28 0.21% 0.64% 

abs2n100.dat 100 53510.10 53076.40 53,836.45 0.61% 1.43% 

abs3n100.dat 100 58505.10 58183.40 58,752.38 0.42% 0.98% 

abs4n100.dat 100 51554.20 51511.00 52,233.66 1.32% 1.40% 

abs5n100.dat 100 57976.50 57867.70 58,620.51 1.11% 1.30% 

abs6n100.dat 100 55087.80 54843.00 55,490.16 0.73% 1.18% 

abs7n100.dat 100 56076.90 55712.90 56,294.44 0.39% 1.04% 

abs8n100.dat 100 56057.10 54729.00 55,325.11 -1.31% 1.09% 

abs9n100.dat 100 59425.90 58086.80 59,043.44 -0.64% 1.65% 

abs10n100.dat 100 56588.30 56034.30 57,057.90 0.83% 1.83% 

abs1n200.dat 200 136337.00 109774.00 111,588.65 -18.15% 1.65% 

abs2n200.dat 200 141543.00 111501.00 112,818.42 -20.29% 1.18% 

abs3n200.dat 200 123147.00 106760.00 108,208.07 -12.13% 1.36% 

abs4n200.dat 200 129615.00 107705.00 109,422.99 -15.58% 1.60% 

Table 7. Comparison between the Exact Algorithm in the literature and the presented Algorithm. 

 

Table VIII: Comparison between the literature’s heuristic results and the presented algorithm’s results. 

INSTANCE COSTUMER HAIR ALG. PROP. HAIR - ALG. PROP. 

abs1n50.dat 50 30,225.36 30,487.53 0.87% 

abs2n50.dat 50 29,856.26 30,042.30 0.62% 

abs3n50.dat 50 29,904.15 29,958.23 0.18% 

abs4n50.dat 50 31,677.87 31,905.32 0.72% 

abs5n50.dat 50 29,400.33 29,420.32 0.07% 

abs6n50.dat 50 31,946.33 32,001.26 0.17% 

abs7n50.dat 50 29,768.03 30,051.49 0.95% 

abs8n50.dat 50 26,521.96 26,424.74 -0.37% 

abs9n50.dat 50 30,283.90 30,345.23 0.20% 

abs10n50.dat 50 31,397.84 31,389.63 -0.03% 

abs1n100.dat 100 57,721.23 57,578.28 -0.25% 

abs2n100.dat 100 53,432.80 53,836.45 0.76% 

abs3n100.dat 100 58,598.93 58,752.38 0.26% 

abs4n100.dat 100 52,030.59 52,233.66 0.39% 
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abs5n100.dat 100 58,258.92 58,620.51 0.62% 

abs6n100.dat 100 55,280.01 55,490.16 0.38% 

abs7n100.dat 100 56,398.19 56,294.44 -0.18% 

abs8n100.dat 100 55,384.47 55,325.11 -0.11% 

abs9n100.dat 100 58,729.94 59,043.44 0.53% 

abs10n100.dat 100 56,644.22 57,057.90 0.73% 

abs1n200.dat 200 110,790.39 111,588.65 0.72% 

abs2n200.dat 200 112,401.98 112,818.42 0.37% 

abs3n200.dat 200 108,119.61 108,208.07 0.08% 

abs4n200.dat 200 109,309.48 109,422.99 0.10% 

Table 8. Comparison between the literature’s heuristic results and the presented algorithm’s results. 

 

V. CONCLUSION 

By this research, it has developed a hybrid heuristic method to solve an inventory routing problem. The 
method consists in a hybrid algorithm based in a neighborhood search for solving the transportation subproblem, 

to the other subproblem, the storage one, it was modeled as a Minimum-Cost Maximum-Flow and it was used 

the Network Simplex (NS) algorithm to solve it. For fleeing the optimum locals, it was applied the Simulated 

Annealing heuristic, which during the initial search phase uses a procedure RVND. 

It was used seven neighborhood structures being six of them PRV and TSP ones. To evaluate the 

algorithm’s performance, it has done computational tests with the literature’s instances of 6 periods and from 50 

to 200 costumers. 

The results presented the efficiency of the method developed, once that, by just a few experiments, the 

method was six times better than the best literature’s result and 5 times greater than the heuristic result. Future 

works may include the incorporation of more neighborhood structures aiming to improve the algorithm’s 

efficiency. Adapt the heuristic to some variations of the IRP, such as PR, MMIRP, etc. Besides that, doing tests 

with another Minimum-Cost Maximum-Flow algorithms aiming to improve its efficiency. 
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