Applications of Differential Transform Method To Initial Value Problems

Abdallah Habila Ali
Sudan University of Science & Technology, College of Science, Department of Mathematics (Sudan),
Corresponding Author: Abdallah Habila Ali

ABSTRACT: In this article the Differential Transform method is employed for obtaining solutions for initial value problems. This method gives the series of solutions which can be easily converted to exact ones. The differential transform method was successfully applied to initial value problems. The findings of the study has demonstrated that the method is easy, effective and flexible. The results of the differential transform method is in good agreement with those obtained by using the already existing ones. The proposed method is promising to a broad class of linear and nonlinear problems.

Keywords: Differential Transform, Nonlinear, Initial value problems

Date of Submission: 16-12-2017 Date of acceptance: 03-01-2018

I. INTRODUCTION

Nonlinear phenomena have important effects in applied mathematics, physics and related to engineering; many such physical phenomena are modeled in terms of nonlinear differential equations [3,4,10]. A variety of numerical and analytical methods have been developed to obtain accurate approximate and analytic solutions for the problems in the literature [3,7,8,10,11,12]. The classical Taylor’s series method is one of the earliest analytic techniques to many problems, especially ordinary differential equations. However, since it requires a lot of symbolic calculation for the derivatives of functions, it takes a lot of computational time for higher derivatives. Here, we introduce the update version of the Taylor series method which is called the differential transform method (DTM)[4,5]. The (DTM) is the method to determine the coefficients of the Taylor series of the function by solving the induced recursive equation from the given differential equation. The basic idea of the (DTM) was introduced by Zhou [5]. In what follows we introduce a few notations for the (DTM).

II. THE DIFFERENTIAL TRANSFORM METHOD

Suppose that the solution \( u(x; t) \) is analytic at \((X; Y)\), then the solution \( u(x; t) \) can be represented by the Taylor series[1],

\[
 u(x, t) = \sum_{k_1=0}^{\infty} \cdots \sum_{k_n=0}^{\infty} \frac{1}{k_1! \cdots k_n! h^n} \left[ \frac{\partial^{k_1+\cdots+k_n} u(\xi, \tilde{t})}{\partial x^{k_1} \cdots \partial x^{k_n} \partial \xi} \right] 
\]

\[
 \left( \prod_{i=1}^{n} (x_i - \xi_i)^{k_i} \right) (t - \tilde{t})^h 
\]

Definition 1.1

Let us define the \((n + 1)\) dimensional differential transform \( U(\tilde{k}, \tilde{h}) \) by

\[
 U(x, t) = \frac{1}{k_1! \cdots k_n! h^n} \left[ \frac{\partial^{k_1+\cdots+k_n} u(\xi, \tilde{t})}{\partial x^{k_1} \cdots \partial x^{k_n} \partial \xi} \right] 
\]
Definition 1.2
The differential inverse transform of $U(x, t)$ is define by $u(x, t)$ of the form in (1). Thus $u(x, t)$ can be written by:

$$u(x, t) = \sum_{k=0}^{\infty} \sum_{h=0}^{\infty} \sum_{i=1}^{\infty} \prod_{i=1}^{n} (\chi_i - \bar{x})^{k_i} (t - \bar{t})^{h_i}$$ (3)

An arbitrary function $f(x)$ can be expanded in Taylor series about a point $x = 0$ as:

$$f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \left( \frac{d^k f}{dx^k} \right)_{x=0}$$ (4)

The differential inverse transform of $u(x, t)$ is define by:

$$F(x) = \frac{1}{k!} \left( \frac{d^k f(x)}{dx^k} \right)_{x=0}$$ (5)

Then the inverse differential transform is:

$$F(x) = \sum_{k=0}^{\infty} x^k F(k)$$ (6)

3 The fundamental operation of Differential Transformation Method [2]:

(3.1) If $y(x) = g(x) \pm h(x)$ then $Y(k) = G(k) \pm H(k)$

$$F(k) = \frac{1}{k!} \left( \frac{d^k f}{dx^k} \right)_{x=0} = \frac{1}{k!} \left( \frac{d^k y(x)}{dx^k} \right)_{x=0} = \frac{1}{k!} \left( \frac{d^k (g(x) \pm h(x))}{dx^k} \right)_{x=0}$$

$$= \frac{1}{k!} \left( \frac{d^k g(x)}{dx^k} \pm \frac{d^k h(x)}{dx^k} \right)_{x=0} = \frac{1}{k!} \left( \frac{d^k g(x)}{dx^k} \right)_{x=0} \pm \frac{1}{k!} \left( \frac{d^k h(x)}{dx^k} \right)_{x=0}$$

$$= G(x) \pm H(x)$$

(3.2) If $y(x) = a g(x)$ then $Y(k) = a G(x)$.

(3.3) If $y(x) = \frac{d g(x)}{dx}$ then $Y(k) = (k+1)G(k)$.

$$Y(k) = \frac{1}{k!} \left( \frac{d^k y(x)}{dx^k} \right)_{x=0} = \frac{1}{k!} \left( \frac{d^k \left( \frac{d g(x)}{dx} \right)}{dx^k} \right)_{x=0} = \frac{1}{k!} \left( \frac{d^{k+1} g(x)}{dx^{k+1}} \right)_{x=0}$$

$$= \frac{1}{k!} (k+1)! G(k + 1) = (k + 1)G(k)$$

(3.4) If $y(x) = \frac{d^2 g(x)}{dx^2}$ then $Y(k) = (k + 1)(k + 2)G(k + 1)$

(3.5) If $y(x) = \frac{d^m g(x)}{dx^m}$ then $Y(k) = (k + 1)(k + 2) ... (k + m)G(k + m)$

(3.6) If $y(x) = 1$ then $Y(k) = \delta(k)$

(3.7) If $y(x) = x$ then $Y(k) = \delta(k - 1)$

(3.8) If $y(x) = x^m$ then $Y(k) = \delta(k - m) = \begin{cases} 1 & \text{if } k = m \\ 0 & \text{if } k \neq m \end{cases}$

(3.9) If $y(x) = g(x)h(x)$ then $Y(k) = \sum_{m=0}^{k} H(k)G(k - m)$

(3.10) If $y(x) = e^{ax}$ then $Y(k) = \frac{a^k}{k!}$

(3.11) If $y(x) = (1 + x)^m$ then $Y(k) = \frac{m(m-1)(m-2) ... (m-k+1)}{k!}$

(3.12) If $y(x) = \sin(wx + \alpha)$, then $Y(k) = \frac{w^k}{k!} \sin(k\pi + \alpha)$ where $w$ and $\alpha$ are constants.
(3.13) If \( y(x) = \cos(wx + \alpha) \), then \( Y(k) = \frac{w^k}{k!} \cos(k\pi + \alpha) \) where \( w \) and \( \alpha \) are constants.

IV. APPLICATIONS

In this section, we apply the (DTM) to some ordinary differential equations and then to Volterra equation.

4.1 Problem 1

Consider the following initial value problem [6]

\[
\begin{cases}
 x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 \\
 y(1) = \frac{4}{3} \\
 y'(1) = \frac{5}{3}
\end{cases}
\]

By using the transformation \( x = e^t \) the problem is converted to:

\[
\begin{cases}
 \frac{d^2 y}{dt^2} = y + e^{2t} \\
 y(0) = \frac{4}{3} \\
 y'(0) = \frac{5}{3}
\end{cases}
\]

Using the (DTM) we have:

\[
(k + 1)(k + 2)Y(k + 2) = Y(k) + \frac{2^k}{k!}
\]

Thus:

\[
Y(k + 2) = \frac{1}{(k + 1)(k + 2)} \left[ Y(k) + \frac{2^k}{k!} \right]
\]

with the following conditions:

\[
Y(0) = \frac{4}{3}, \quad Y(1) = \frac{5}{3}
\]

when \( k = 0 \) then \( Y(2) = \frac{7}{6} \), when \( k = 1 \rightarrow Y(3) = \frac{11}{18} \) when \( k = 2 \rightarrow Y(4) = \frac{19}{72} \ldots
\]

The solution is:

\[
y(t) = \sum_{k=0}^{\infty} t^k Y(k) = \frac{4}{3} + \frac{5}{3} t + \frac{7}{6} t^2 + \frac{11}{18} t^3 + \frac{47}{216} t^4 \ldots
\]

This can be written as:

\[
y(t) = 1 + t + \frac{2}{3} \frac{t^2}{2!} + \frac{7}{6} \frac{t^3}{3!} + \frac{11}{18} \left( \frac{t^4}{2!} + \frac{8}{24} \frac{t^5}{3!} + \frac{16}{72} t^6 + \frac{1}{3} \left( \frac{t^7}{4!} + \frac{1}{4} \frac{t^8}{5!} + \ldots \right) \right)
\]
\[ y(t) = \sum_{k=0}^{n} t^k Y(k) = 0 + t + t^2 + \frac{1}{2} t^3 + \frac{1}{6} t^4 + \ldots = t \left(1 + t + \frac{t^2}{2} + \frac{t^3}{6} + \ldots \right) = te^t \]  

Therefore the required solution is:  

\[ y(x) = x\ln(x) \]  

For the next problem, we need the following theorem:
4.3 Problem 3

Consider the following initial value problem [6]

\[
\begin{aligned}
    x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y &= x^5 \\
y(1) &= \frac{1}{2} \\
y'(1) &= \frac{3}{2}
\end{aligned}
\]  

(21)

By using the transformation \( x = e^t \) the problem is converted to:

\[
\begin{aligned}
    \frac{d^2y}{dt^2} &= 5 \frac{d^2y}{dx^2} - 6y + e^{5t} \\
y(0) &= \frac{1}{2} \\
y(0) &= \frac{3}{2}
\end{aligned}
\]  

(22)

Using the (DTM) we have:

\[
(k + 1)(k + 2)Y(k + 2) = 5(k + 1)Y(k + 1) - 6Y(k) + \frac{5^k}{k!}
\]  

(23)

Thus:

\[
Y(k + 2) = \frac{1}{(k + 1)(k + 2)} \left( 5(k + 1)Y(k + 1) - 6Y(k) + \frac{5^k}{k!} \right)
\]

with the following conditions:

\[
Y(0) = \frac{1}{2}, \quad Y(1) = \frac{3}{2}
\]

(24)

Consequently:

If \( k = 0 \) then \( Y(2) = \frac{11}{4} \), when \( k = 1 \) \( \rightarrow \) \( Y(3) = \frac{47}{12} \) when \( k = 2 \) \( \rightarrow \) \( Y(4) = \frac{219}{48} \), ...

Thus:

\[
y(t) = \sum_{k=0}^{\infty} t^k U(k) = \frac{1}{2} + \frac{3}{2} t + \frac{11}{4} t^2 + \frac{47}{12} t^3 + \frac{219}{48} t^4 + \cdots
\]

(25)

or

\[
y(t) = \frac{1}{3} \left( 1 + \frac{(2t)^2}{2!} + \frac{(2t)^3}{3!} + \frac{(2t)^4}{4!} + \cdots \right) \\
+ \frac{1}{6} \left( 1 + \frac{(5t)^2}{2!} + \frac{(5t)^3}{3!} + \frac{(5t)^3}{4!} + \cdots \right)
\]

\[
= \frac{1}{3} e^{2t} + \frac{1}{6} e^{5t}
\]

(26)

Therefore the required solution is:
\[ y(x) = \frac{1}{3} x^2 + \frac{1}{6} x^5 \]  

(27)

4.4 Problem 4

Consider the following initial value problem [6]

\[
\begin{align*}
    x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y^2 &= (\ln(x))^3 \\
    y(1) &= 1 \\
    y'(1) &= 2
\end{align*}
\]  

(28)

By using the transformation \( x = e^t \) the problem is converted to:

\[
\begin{align*}
    \frac{d^2 y}{dt^2} &= -2 \frac{dy}{dt} - y^2 + t^3 \\
    y(0) &= 1 \\
    y'(0) &= 2
\end{align*}
\]  

(29)

Using the (DTM) we have:

\[
(k + 1)(k + 2)Y(k + 2) = -2(k + 1)Y(k + 1) - \sum_{m=0}^{k} Y(k)Y(k - m) + 6\delta(k - 3) 
\]  

(30)

Thus:

\[
Y(k + 2) = \frac{1}{(k + 1)(k + 2)} \left( -2(k + 1)Y(k + 1) \right. \\
- \sum_{m=0}^{k} Y(k)Y(k - m) + \delta(k - 3) \left. \right)
\]  

(31)

with the following conditions:

\[ Y(0) = 1 \quad , Y(1) = 2 \]  

(32)

Consequently:

If \( k = 0 \) then \( Y(2) = \frac{-5}{2} \), when \( k = 1 \rightarrow Y(3) = \frac{2}{3} \) when \( k = 2 \rightarrow Y(4) = -\frac{11}{48} \), if when \( k = 2 \rightarrow Y(4) = \frac{37}{360} \).

Thus:

\[
y(t) = \sum_{k=0}^{\infty} t^k U(k) = 1 + 2t - \frac{5}{2} t^2 + \frac{2}{3} t^3 - \frac{11}{48} t^4 + \frac{37}{360} t^5 + \ldots
\]  

(33)

The required solution is:
\[ y(x) = 1 + 2 \ln(x) - \frac{5}{2}(\ln(x))^2 + \frac{2}{3}(\ln(x))^3 - \frac{11}{48}(\ln(x))^4 + \frac{37}{360}(\ln(x))^5 + \cdots \] (35)

V. CONCLUSION

The observations of the present study have shown that the (DTM) is easy to implement and effective. As a result, the conclusion comes through this work, is that the Differential Transform Method can be applied to a wide class of differential equations, due to the efficiency in the application to get the possible results.

REFERENCES