
American Journal of Engineering Research (AJER) 2017 

        American Journal of Engineering Research (AJER) 

e-ISSN: 2320-0847  p-ISSN : 2320-0936 

Volume-6, Issue-10, pp-149-155 

www.ajer.org 
Research Paper                                                                                                        Open Access 

 

 
w w w . a j e r . o r g  

 
Page 149 

Numerical Simulation for the Folded Core Sandwich Plates under 

Torsion by Homogenization Method 
 

Duong Pham Tuong Minh 
Faculty of Mechanical Engineering, Thai Nguyen Universityof Technology, Vietnam 

 

ABSTRACT:In this paper, an analytic homogenization model for the torsion problem of folded core sandwich 

plates is presented. It is very difficult to determine the torsion rigidity of these kinds of 3D structures even 

numerically because of the boundary condition effects. Based on the gridwork homogenization model of 

Timoshenko, plate torsion is divided into two beam torsions. The plate torsion curvature is separated into two 

beam torsion rates and the beam torsion rigidities in these two directions are introduced to describe the torsion 

behavior of the orthotropic plates. The proposed analytical homogenization model allows replacing the 3D 

folded core sandwich by a 2D homogenized plate. This model is validated by comparing the results of Abaqus-

3D and H-2D homogenization model, confirming the accuracy and effectiveness of the proposed model. This 

torsion homogenization model can be used not only for corrugated cardboard packaging structures, but also for 

naval and aeronautic composite structures. 
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I. INTRODUCTION 
Sandwich structures have been used over a long time applications where the weight of the member is 

critical, such as packaging, civil, naval, automotive and aerospace industries due to their low mass to stiffness 

ratio and high impact absorption capacity [1]. As designers in the transportation industry strive to reduce fuel 

consumption and improve safety, composite sandwich structures that provide improved stiffness-to-weight ratio, 

are becoming an attractive alternative to metals for mass transport applications. A reduction in structural weight 

of one large component usually triggers positive synergistic effects for other parts of the vehicle. Therefore, 

using composite sandwich structures not only reduces weight, thereby improving fuel economy and increasing 

payload capacity, but also enables the design of aerodynamic, stable vehicles with a low center of gravity [2]. 

Some instances of their applications in daily life are corrugated cardboard panels used for packaging, folded 

core sandwiches used as structural floor and roof panels, metal corrugated roofs, hulks, automotive chassis and 

bumpers. In nature, where mechanical design required to be optimized, sandwich structures are used such as the 

human skull, which is made up of two layers of dense compact bone separated by a “core” of lower density 

material [3]. 

Folded core sandwich is one of the materials most used to make partitions or roofs in construction or 

automobile. The manufacturing process gives three characteristic directions: the machine direction (MD), the 

cross direction (CD), and the thickness direction (ZD). Folded core sandwich plate are produced by a converting 

process in which three or more layers are laminated together. The flat layers are called liners and the folded 

cores are referred to as flutes (Fig. 1). The numerical modelling of this kind of three-dimensional (3D) structures 

is too tedious and CPU time consuming, it will be more efficient to use 2D homogenized equivalent plates. 

Analytic homogenization is an efficient and accurate method, but it is often limited to simple cases. The 

numerical homogenization approach is commonly used for calculating effective rigidities, but this tedious 

procedure should be redone for every new section structure and the boundary conditions on a representative 

volume element are often difficult to define [4]. There are many homogenization models obtained by analytical 

methods [4-6], numerical methods [8, 9] and experimental methods [6, 7]. Many studies have done for tensile, 

bending, in-plane and out-of-plane shear problems, but research on torsion remains a major challenge. 
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Fig. 1. The model of folded core sandwich plate 

 

Timoshenko and Woinowski-Krieger [10] have proposed an expression for bending and torsion 

rigidities for various specific cases, such as reinforced concrete slabs, plywood, corrugated sheets and slabs, 

plywood, corrugated sheets, and plates reinforced by stiffeners. Ugural [11] has also come up with some similar 

formulas for the rigidities of several plates. An interesting application found in the book of Timoshenko and 

Woinowski-Krieger [10] is the torsion model for a gridwork system that allows leading the equivalent 

homogeneous plate. Timoshenko and Woinowski-Krieger proposed separating the plate torsion problem into 

two beam-like torsion problems. A torsion test and an analytical formula for measuring and calculating the 

torsional rigidity of a corrugated cardboard were proposed by Pommier and Poustis [12]; however, Carlson et al. 

[6] has shown that the torsional rigidity is highly dependent on the size of the cardboard, in that a larger sheet is 

more rigid than that given by the formula. In other studies, the torsion stiffness was calculated by integrating 

through the sheet thickness according to the theory of laminate plates. However, it should be noted that this 

theory is only valid for continuous thickness, for sandwich panels with many hollow cavities such as folded core 

plates, it should be considered them as intermittent 3D structures, and therefore theory of laminate plates should 

be adjusted [5]. 

In this paper, based on the theory of anisotropic plates of Timoshenko and Woinowski-Krieger and 

their homogenization model on gridwork system [10],the plate torsion is decomposed into two beam torsions in 

two directions: the plate torsion curvature is separated into two orthogonal beam torsion rates and the beam 

torsion stiffnesses in both directions are used to describe the torsion behavior of the orthotropic plates. These 

beam torsion rigidities can be easily determined analytically by beam theory or by numerical methods using 

finite elements. The results obtained by the H-2D homogenization model are compared with the results obtained 

by the 3D Abaqus model showing the accuracy and effectiveness of the proposed model. 

 

II. TORSION THEORY OF ORTHOTROPIC PLATES AND ANALYTIC 

HOMOGENIZATION MODEL 
In the classic theories of plate, the law of torsion behavior is written as follows: 

xy yx 33 xyM M D     (1) 

whereD33 is the torsional stiffness per unit width of the plate, xyis the torsion curvature: 

xy xy2w,  

 

(2) 

xy x y y x, ,     (3) 

wherew is the transverse displacement of a point A on the mid-surface of the plate, x is the angle of rotation 

from z to x of the normal of the plate at A, y is the angle of rotation fromzto y of the normal [13]. It should be 

noted that we use (2) for thin plates according to theory of Kirchhoff, and for thick plates, we use (3) by theory 

of Mindlin. According to these definitions, we have the following relations: 

x y y x;       (4) 

wherex and y are the angles of rotation around x and y respectively. 

The classic theories of plate return to assuming a single torsion curvature (-2w,xy or x,y+y,x) and a single 

torsion stiffness (D33) for torsion moments (-Mxy=Myx) on the sections in x and y. 

 

 
Fig. 2. The internal forces and moments in an elementary surface of a plate 
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Considering a plate subjected to a vertical distributed load q in the coordinate system in Fig. 2, we have the 

differential equation of equilibrium [10]: 

x xx yx xy y yy xy xyM , M , M , M , q      (5) 

For an orthotropic plate, the three in-plane stresses and the corresponding bending-torsion moments are: 
' '' ' ''
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with

' 3' 3 '' 3 3
yx
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E hE h E h Gh
D ; D ; D ; D

12 12 12 12
     

where the Young modulus Ex and Ey, the shear modulus G, and the Poisson's coefficient xy must be determined 

experimentally. 

Substituting equation (7) into the differential equation of equilibrium (5), we obtain the following equation for 

an orthotropic plate: 

x xxxx 1 xy xxyy y yyyyD w, 2( D 2D )w, D w, q      (8) 

where 2D1 represents the Poisson effect of the bending on the torsion curvature and Dxy is the torsion stiffness of 

the considered plate. 

We note that the distributions of strains and stresses are not necessarily linear through the thickness in the case 

of sandwich plates with cavities such as folded core sandwich plate. Therefore, we cannot use the integration in 

equation (7) to calculate stiffnesses as in the case of laminated plates. 

 

 
Fig. 3. Torsion model of a gridwork system 

 

Timoshenko et al. [10] proposed a homogenization model for the torsion of a gridwork system in order to 

take into account the different torsion stiffnesses according to x and y (Fig. 3). The torsion stiffness of each 

beam was calculated according to the classical beam theory and then distributed uniformly over the intervals (a1 

or b1), respectively: 
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(9) 

where Gjx is the torsion stiffness of each beam along x, Gjy is the torsion stiffness of each beam along y, x,xand 

y,y, represent the torsion rates around x and y, -2w,xyis the torsion curvature, Mxyand Myx are the torsion 

moments per unit length, b1 and a1 are the intervals between two beams along x and y respectively. 

It should be noted that: 1) beam torsion rates in both directions are identical (x,x=w,xy ;y,y=-w,yx) and 

equal to one half of torsion curvature (-2w,xy)of the equivalent plate; 2) the torsion stiffnesses of beams in two 

directions can be very different, but their coupling gives a unique torsion stiffness of the equivalent 

homogenized plate. 

Substituting equation (9) into the differential equation of equilibrium (5), we obtain the following equation 

[10]: 

y y yx x x
xxxx xxyy yyyy

1 1 1 1

Gj E iE i Gj
w, w, w, q

b b a a

 
    
 

 (10) 

whereEx∙ix is the bending rigidity of each beam along x, Ey∙iy is the one along y. 

If we compare equation (10) with equation (8) (with D1=0), the torsion stiffness of the equivalent 

homogenized plate can be obtained: 

y yx x
xy

1 1

Gj GJ1 Gj 1 GJ
D

4 b a 4 b a

   
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  
 (11) 

whereGJx and GJy are the total torsion rigidities of all beams along x and along y respectively. 

We can deduce important conclusions: 1) Torsion stiffnesses in both directions (as beams without 

coupling) are different, which leads to two different internal torsion moments. 2) In the homogenized plate, 

these two torsion rigidities are coupled and give the only torsion rigidity: xy yx 33 xyM M D    . 3) The 

torsion stiffness of the plate is not a simple sum of the rigidities of two beam torsions, a factor of ¼ originated 

from the coupling effect. By using these conclusions, the complex calculation of the torsion stiffness of folded 

core sandwich plates becomes very simple. 

When we impose a torsion angle x (around x) on the gridwork (length L = a along x, width B = b along y), 

we obtain a torsion rate x,x=w,yx=x/L around x and also an equal torsion rate y,y=-w,xy=-x/L around y. Using 

the Clapeyron theorem [15], the work of the external moment is equal to the internal energy of deformation: 

     
L B 2 22 yx

t x x x x y y y xy
0 0 A

GJGJ
M Gj , dx Gj , dy w, dA

B L
  

 
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 
     (12) 

Inthe equivalent homogenized plate, the equation of energy can be written as follows: 

 
2

2

t x xy xy xy xy
A A

M D dA D 2w, dA       (13) 

where (-2w,xy) = xy is the plate torsion curvature, which can be divided into two equal beam torsion rates 

(w,yx=x,xandw,xy=-y,y). By comparing equations (12) and (13), the same formula is obtained for calculating the 

torsion stiffness of the equivalent plate: 

yx
xy

GJ1 GJ
D

4 B L

 
  

 
 (14) 

We note that in the case of Mindlin's theory for thick plates, the torsion curvature in equation (13) is 

replaced by equation (3). 

 

III. CACULATION OF THE TORSION RIGIDITIES FOR FOLDED CORE  

SANDWICH LATES 
For folded core sandwich plates, numerical simulations with beam elements showed that it has two 

very different torsion rigidities on the MD and CD sections. For the CD section of folded core sandwich, the 

torsion around yis considered as the torsion of a beam having a closed thin-walled section composed of several 

cells. The finite element calculations showed that the MD section was an opened section having a very small 
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beam torsion rigidity. Finally, an analytical solution was obtained for this very complicated torsion problem by 

neglecting the torsional stiffness MD [4]: 

CD CDMD
xy

GJ GJGJ1
D

4 B L 4L

 
   

 
 (15) 

 
Fig. 4.Geometry of CD section of folded core sandwich plate 

 

Based on the Bredt torsion theory for the structures having a thin wall section with several closed cells 

[16] and the finite element calculations, it  has been shown that the flow of the shear stress is very low in the 

internal walls when the folded core sandwich is very wide (for example, 50 periods). Thus the section CD can 

be considered as a section with a single closed cell and we have an analytical formula for the torsion rigidity of 

the homogeneous plate [4]: 

 
2 2 24

24
4

a a c c

CD
xy a a c c

a a c c b b

GJ S Lh h G t G t
D l L

ds L L lL G t G t
L

Gt G t G t G t

   


 



 (16) 

where the superscripts a, b, and c correspond to the lower layer, the corrugated core layer and the upper layer 

respectively; G and t are shear modulus and thickness of layers respectively; L and l are the length of the plate 

and the length of one-half of a period of folded core (Fig. 4). 

The length of one-half of a period of folded corecan be defined as following: 

 
2

2

4

b P
l h   (17) 

 

IV. NUMERICAL VALIDATION OF HOMOGENIZATION MODEL 
To validate the proposed homogenization model (H-2D Model), we used a folded core sandwich plate 

of length L = 320 mm, width B = 280 mm, and CD section as shown in Fig. 4 (withh = 4 mm, t
a
 = t

c
 = 0.20 mm, 

t
b
 = 0.15 mmandP = 8 mm). The material properties of each layer are given in Table 1. Hence, it can be easily 

calculated the torsion rigidity of the plate according to equation (16) as D33 = 788.96 Nmm. First, we discretize 

the three layers of the folded core with the S4R shell elements in Abaqus to obtain the Abaqus-3D model; then 

discretize the mid-surface of the folded core sandwich plate by the S4R shell elements associated with 

homogenization model (using the "user's subroutine UGENS" [17]) to obtain the H-2D Model. The comparison 

of the results allows demonstrating the effectiveness and accuracy of the proposed homogenization model. 

 

Table 1. Parameters of the layers forming the folded core sandwich 

 
E11(MPa) E22(MPa) G12(MPa) 12 

Layer a 2372.6 704.2 493.1 0.377 

Layer b 1094.7 856.4 165.9 0.421 

Layer c 2372.6 704.2 493.1 0.377 

 

In two types of simulation (Abaqus-3D and H-2D Model), a rigid plate is attached to one side of the 

folded core sandwich to better apply torque. Calculations by the H-2D model are very fast, while the Abaqus-3D 

calculations take a lot of time. The comparison of the results obtained by the two models as well as the 

percentage error of these results is presented in Table 2. For torsion in MD and CD section, we find that 

Abaqus-3D simulation uses more than 11 times of the CPU time comparing to the H-2D model. The numerical 

results given by the two models are nearly identical. The torsion results in MD and CD sections are slightly 
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different due to the boundary effects. Indeed, if we increase the size of the plate several times, the results will 

give the smaller error. 

 

Table 2. Comparison between Abaqus-3D and H-2D Model for torsion in MD and CD section 

M=1000 Nmm MD Torsion CD Torsion 

Torsion rigidity 

D33=788.96 Nmm 
Torsion angle 1 

(rad) 

CPU Time 

(s) 

Torsion angle 

2 (rad) 

CPU Time 

(s) 

Abaqus-3D 0.17379 52.8 0.1656 53.7 

H-2D Model 0.17368 4.8 0.1623 4.9 

Error (%) 0.06 11 times 1.97 11 times 

 

 
Fig. 5. Displacement and deformation of the folded core sandwich under torsion in MD section 

 

Thedeformation shape and displacement values of the folded core sandwich plate obtained by the 

Abaqus-3D simulations and the H-2D homogenization model are shown in Fig. 5. We see that the Abaqus-3D 

model give the results are very close to the H-2D homogenization model. The comparison shows that the H-2D 

model proposed for folded core composite panels is quite accurate and effective. 

 

V. CONCLUSION 
In this paper, an analytical homogeneous model for folded core sandwich plates in torsion has been 

proposed. The comparison of the results obtained by the Abaqus-3D numerical simulations and the Abaqus-

Ugens 2D model has demonstrated the accuracy and effectiveness of the proposed homogenization model for 

the folded core sandwich plates under torsion. The homogenization model allows to significantly reduce in the 

time required for building a geometry model, the finite element modeling time as well as the computational time 

for the folded core sandwich plates. This model can be easily applied to complex composite panels made of 

different materials, depending on the purpose of use in areas such as packaging, construction, navy, and 

aerospace. 
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