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 Dynamics of a Holling-Tanner Model 
   

Rashi Gupta 
Department of Mathematics, NIT, Raipur (C.G.) 

 

ABSTRACT: In this paper, we have made an attempt to understand the dynamics of a Holling-Tanner model 

with Holling type III functional responses. We have carried out stability analysis of both the non-spatial model 

without diffusive spreading and of the spatial model. Turing and Hopf stability boundaries are found. With the 

help of numerical simulations, we have observed the spatial and spatiotemporal patterns for the model system. 

Non-Turing patterns are examined for some fixed parametric values for the predator populations. 

Keywords:  Reaction diffusion system,  Globally asymptotically stable, Diffusion,  Holling Tanner model. 

 

I. INTRODUCTION 
The study of population dynamics is nearly as old as population ecology, starting with the pioneering 

work of Lotka and Volterra, a simple model of interacting species that still bears their joint names. This was a 

nearly linear model, but the predator-prey version displayed neutrally stable cycles
1,2

. From then on, the 

dynamic relationship between predators and their prey has long been and will continue to be one of dominant 

themes in both ecology and mathematical ecology due to its universal existence and importance
3
. 

In recent years, pattern formation in non-linear complex systems have been one of the central problems 

of the natural, social, technological sciences and ecological systems
4-10

. Particularly, many researchers have 

studied the predator-prey system with reaction-diffusion. The Holling Tanner model describes the dynamics of a 

generalist predator which feeds on its favourite food item as long as it is in abundant supply and grows 

logistically with an intrinsic growth rate and a carrying capacity proportional to the size of the prey. Starting 

with the pioneering work of Segel and Jackson
11

, spatial patterns and aggregated population distribution are 

common in nature and in a variety of spatio-temporal models with local ecological interactions
12,13

. Wolpert
14

 

gave a clear and non-technical description of mechanisms of pattern formation in animals. Chen and Shi
15

 

studied a spatial Holling-Tanner model and proved the global stability of a unique constant equilibrium under a 

simple parameter condition.  

In this paper, we have considered two interacting species, prey and predator for modelling the 

dynamics in spatially distributed population with local diffusion. We have considered a spatial Holling-Tanner 

model with Holling type III functional responses. The characteristic feature of Holling type III functional 

responses is that at low densities of the prey, the predator consumes it less proportionally than is available in the 

environment, relative to the predators' other prey
16

 . We have obtained the conditions for local and global 

stability of the model system in the absence and the presence of diffusion. We also obtained the criteria for 

Turing and Hopf instability. The main objective of this paper is to see the spatial interaction and the selection of 

spatiotemporal patterns. This paper is organized as follows. In section 2, the model system and parameters are 

discussed. The model system is analyzed in the absence as well as in the presence of diffusion in section 3 and 

4. We have discussed the conditions for Turing and Hopf instability in section 5. In section 6, we have discussed 

the numerical simulation results in both one and two dimensional spatial domain. At the end, results are 

discussed in section 7. 
 

II. THE MODEL SYSTEM 

We consider a reaction-diffusion model for prey-predator where at any point ( , )x y and time t , the 

prey ( , , )N x y t and predator ( , , )P x y t populations. The prey population ( , , )N x y t is predated by the 

predator population ( , , )P x y t . The per capita predation rate is described by Holling type III functional 

response. The model system satisfy the following: 
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The parameters , , , , , , , ,
N P

r a D e h s K D D  in model (1) are positive constants. Here, r  is the prey’s 

intrinsic growth rate in the absence of predation, a  is the rate at which prey is feeded by predator and it follows 

Holling type III functional response, D is the half-saturation constants for prey density, e  is the predator’s 

intrinsic growth rate, h  is the number of prey required to support one predator at equilibrium when P  equals 

to /N h , s is the intra-specific competition rate for the predators, K  is the carrying capacity of the 

phytoplankton parameters ,
N

D  and 
P

D  represent the diffusion coefficients of prey and predator, respectively. 

The units of the parameters are as follows. Time T  and length , [0 , ]X Y R  are measured in days ( )d  and 

metres ( )m , respectively. Further, , , , ,r N P e D  are usually measured in mg of dry weight per litre 

[ . / ]m g d w l , the dimension of a  and h is 
1

d


. The dimension of s is 
1

d


. The diffusion coefficients 
N

D  and 

P
D  are measured in 

2 1
[ ]m d


. 

We introduce the following notation in order to bring the system of equations to a non-dimensional form: 

  
1 2

1 22 2
, , , , , , , , , ,

N a P D X Y rh e sK D D
u v t rT x y d d

K rK K L L a r a rL rL
              . 

We obtain the system    

                              

 

2

2

12 2

2 2

2

1 ,

1 ,

u u v
u u d u

t u

v v
v v d v

t u




 


    

 

  
     

  

                                                                           (2) 

with the initial condition 

                                    ( , , 0 ) 0 , ( , , 0 ), ( , )u x y v x y x y   ,                                                                   (3) 

and with the no-flux boundary conditions 

                                                   0 , ( , )
u v

x y
n n

 
   

 
.                                                                     (4) 

 

III. STABILITY ANALYSIS OF THE NON-SPATIAL MODEL SYSTEM 
In this section, we restrict ourselves to the stability analysis of the model system in the absence of 

diffusion in which only the interaction part of the model system are taken into account. We find the non-

negative equilibrium states of the model system and discuss their stability properties with respect to variation of 

several parameters
17,18

. 

 

3.1 Local Stability Analysis 

We analyze model system (2) without diffusion.  In such case, the model system reduces to 

                                    

 

2

2 2

2

1 ,

1 ,

d u u v
u u

d t u

d v v
v v

d t u




 

  


 
   

 

                                                                                            (5)

 
with ( , 0 ) 0 , ( , 0 ) 0 .u x v x   

 The stationary dynamics of system (5) can be analyzed from / / 0du dt dv dt  . Then, we have, 
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                                                                                           (6) 

It can be seen that model system has two non-negative equilibria, namely,
1
(1, 0 )E  and 

* * *
( , )E u v . It may be 

noted that  
*

u  and 
*

v satisfies the following equations: 

                                 

2
* 2 * *

* *

* *

(1 )( )
0 , 0 .

u u v
v v

u u


  

 
      

From Eqs.(6), it is easy to show that the equilibrium point 
1

E  is a saddle point with stable manifold in u-

direction and unstable manifold in v-direction
19

 . In the following theorem we are able to find necessary and 

sufficient conditions for the positive equilibrium 
* * *
( , )E u v to be locally asymptotically stable. The Jacobian 

matrix of model (5) at 
* * *
( , )E u v  is 

                             

2 2

2 2

2

2

* * * 2 *

*

2 * 2 2 *

* *

*

**

( )

( )

u v u u
u

u u
J

v v
v

uu



 

 


 
   

  

 

   
 

 

Following the Routh-Hurwitz criteria, we get, 

                                     

2

2

2 2

2 2

* * * 2 *

* *

*2 * 2

* * * 2 * *

* *

*2 * 2 2 *

( )
,

( )

( )
.

( ) ( )

u v u v
A u v

uu

u v u v v
B u v

uu u

 




  


 


   



   
       

   

                                     (7) 

Theorem 1. The positive equilibrium  
* * *
( , )E u v  is locally  asymptotically stable in  the uv−  plane  if and  

only if the  following inequalities  hold: 0A   and 0B  . 

Remark  1. Let the following inequalities hold 

                                                             
2

* 2
.u                                                                                                 (8) 

Then 0A   and 0B  . It shows that if inequalities in (8) hold, then 
* * *
( , )E u v  is locally asymptotically  

stable in the u − v plane. 

 

3.2 Global Stability Analysis 

In order to study the global behavior of the positive equilibrium 
* * *
( , )E u v , we need the following lemma 

which establishes a region for attraction for model system (5). 

Lemma 2. The set 
1

( , ) : 0 1, 0R u v u v


 
     
 

 is a region of attraction for all solutions initiating in 

the interior of the positive quadrant R . 

Theorem 3. If  

                                            

*

*
0 ,

u
w

v u


 
  

 

                                                                                                   (9) 

                                          

* * 2 *

2 * *

(1 )
4 0 ,

u u u u u
w

u u v u




      
    

   

                                                   (10) 

hold, then 
*

E  is globally asymptotically stable with respect  to all solutions  in the interior of the 

positive quadrant R . 
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IV. STABILITY ANALYSIS OF THE SPATIAL MODEL SYSTEM 
In this section, we study the effect of diffusion on the model system about the interior equilibrium 

point. Instability will occur due to diffusion when a parameter varies slowly in such a way that a stability 

condition is suddenly violated and it can bring about a situation wherein perturbation of a non-zero (finite) 

wavelength starts growing (perturbations of zero wave number are stable when diffusive instability sets in
20,21

 ) . 

Turing instability can occur for the model system because the equation for predator is nonlinear with respect to 

predator population
22

. 

To study the effect of diffusion on the model system (5), we derive conditions for stability analysis in one- and 

two- dimensions cases. 

 

4.1 One-Dimension Case 

After non-dimensionalization of the model system (2) in one dimensional space takes the following form with 

non-zero initial condition and no-flux boundary conditions 

                                 

 

2 2

12 2 2

2

2

2 2

1 ,

1 ,

u u v u
u u d

t u x

v v v
v v d

t u x




 

 
   

  

  
    

  

                                                                            (11) 

                                          ( , 0 ) 0 , ( , 0 ) 0 ,u x v x  for [0 , ]x R . 

To study the effect of diffusion on the model system, we perturb the steady state 
* *

( , )u v by setting 

* *
,u u U v v V    . The linearized form of the Eqs. (11) obtained as: 

                                                  

2

1 1 1 2 1 2

2

2 1 2 2 2 2

,

,

U U
b U b V d

t x

V V
b U b V d

t x

 
  

 

 
  

 

                                                                      (12) 

Where 

                                                  

2 2

2 2

2

2

* * * 2 *

*

1 1 1 2
2 * 2 2 *

* *

*

2 1 2 2 **

( )
, ,

( )

, .

u v u u
b u b

u u

v v
b b v

uu



 

 



    

 

   

                                          (13) 

Thus, the solution of the system  (12)  of the form 

                                                   

0

e x p ( ) ,
n

n n

aU
t ik x

bV






  
   

   
  

where    and  k  are the frequency and wave number respectively. The characteristic equation of the linearized 

system is given by  

                                                
2

1 2
0 ,                                                                                               (14) 

where 

                                              
2

1 1 2
( ) ,A d d k                                                                                          (15) 

                  

2

2

* * * 2 *

4 * * 2

2 1 2 2 1*2 * 2

( )

( )

u v u v
B d d k u d v d k

uu

  
 



    
          

    

,                             (16) 

where A and B are defined in (7). 

From Eqs.(14-16) and using the Routh-Hurwitz criteria, the following theorem follows immediately. 

Theorem 4. (i)The positive equilibrium 
* * *
( , )E u v  is locally asymptotically stable in the presence of diffusion 

if and only if 
1

0   and 
2

0  . 

(ii)If the inequalities in Eq.(8) are satisfied, then the positive equilibrium point 
*

E  is locally asymptotically 

stable in the presence as well as absence of diffusion. 
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(iii)Suppose that inequalities in Eq.(8) are not satisfied, i.e., either A or B is negative or both A and B are 

negative. Then for strictly positive wave-number 0k  , i.e. spatially inhomogeneous perturbations, by 

increasing 
1

d and 
2

d to sufficiently large values, 
1

 and 
2

 can be made positive and hence 
*

E  can be made 

locally asymptotically stable. 

In the following theorem, we are able to show the global stability behavior of the positive equilibrium in the 

presence of diffusion. 

 

Theorem 5. (i) If the equilibrium  
*

E  of model system (5) is globally asymptotically stable, the corresponding 

uniform steady state of model system (12) is also globally asymptotically stable. 

(ii) If the equilibrium 
*

E of system (5) is unstable even then the corresponding uniform steady state of system 

(12) can be made globally asymptotically stable by increasing the diffusion coefficients 
1

d and 
2

d  to a 

sufficiently large value for strictly positive wave-number 0k  . 

4.2 Two-Dimension Case 

In the two-dimensional case the model system can be written as 

                           

 

2 2 2

12 2 2 2

2 2

2

2 2 2

1 ,

1 .

u u v u u
u u d

t u x y

v v v v
v v d

t u x y




 

   
     

    

    
      

     

                                                                  (17) 

We analyze the above model under the following initial and boundary conditions: 

                                    ( , , 0 ) 0 , ( , , 0 ) 0 , ( , ) ,u x y v x y x y                                                                    (18) 

and 

                                    0 , ( , ) , 0 ,
u v

x y t
n n

 
    

 
                                                                             (19) 

where n is the outward normal to  . We state the main result of this section in the following theorem. 

 

Theorem 6. (i) If the equilibrium  
*

E of model system (5) is globally asymptotically stable, the corresponding 

uniform steady state of model system (17) is also globally asymptotically stable. 

(ii) If the equilibrium 
*

E of system (5) is unstable even then the corresponding uniform steady state of system 

(17) can be made globally asymptotically stable by increasing the diffusion coefficients 
1

d  and
2

d  to a 

sufficiently large value for strictly positive wave-number 0k  . 

 

V. TURING AND HOPF INSTABILITY 
The Turing instability occurs if at least one of the roots of the above (14) has a positive root or positive real part 

or in other words, R e( ) 0  for some 0k  . Irrespective of the sign of
1

 and 
2

 , the diffusion-driven 

instability occurs when  
2

2
( ) 0 .k   Hence the condition for diffusive instability is given by  

                   

2

2

* * * 2 *

2 4 * * 2

1 2 2 1*2 * 2

( )
( ) 0 .

( )

u v u v
H k d d k u d v d k B

uu

  




    
           

    

             (20) 

H  is a quadratic in 
2

k and the graph of 
2

( )y H k  is a parabola.  The minimum  of  
2

( )y H k  occurs at 

2 2

c r
k k , where  

                  

 

2

2

* * 2

2 * *

2 12 *
2 *

1 2

1 ( )
1 0 .

2
c r

v u
k d u v d

d d u
u

  




  
   

        
   

  

                                         (21) 

Consequently, the condition for diffusive instability is 
2

( )
c r

H k .Therefore 
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 

2

2

2

* * 2

* *

2 12 *
2 *

1 2

1 ( )
1 .

4

v u
d u v d B

d d u
u

 




  
   

       
   

  

                                           (22) 

Now, consider the set of parameter values 0 .1 2 , 0 .8, 0 .1, 0 .0 3 .        We obtain
*

0 .1 8 2 7u   

and 
*

0 .2 1 3 7v  . For the set of parameter values 

1 2
0 .1 2 , 0 .8 , 0 .1, 0 .0 3, 0 .0 1, 3,d d         the corresponding critical value is 

2 2
( , ( ) ) ( 7 .0 6 8 , 1 .2 7 6 )

c r c r
k H k   . The graph of 

2
( )H k  vs 

2
k  has been plotted for different values of 

2
d in 

Fig.1. For all values of 
2

k  lying in the range (0 .0 2 8,1 4 .1 7 0 ) ,the system (2) is unstable. The region under the 

curve for which 
2

( ) 0H k 
 
is known as Turing instability region.    

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The graph of the function 
2

( )H k
 
vs 

2
k  for 0 .1 2 , 0 .8, 0 .1, 0 .0 3        

and 1
0 .0 1d   for different values of  

2
3, 5 , 7 .d   

 

The Turing bifurcation occurs when Im ( ( )) 0k  and R e( ( )) 0k   at 0 ,
T T

k k k  is the critical wave 

number. If   is considered as a bifurcation parameter, then its critical value equals to  

                                             

2

1 1 1 1

1

4
,

2
T

B B R C

R


  


                                                                                    (23)               

 

where 

2
*

1

1 *

1 2

,
( )

v d
R

u d d

 
   

 

 

2

2

2

* * *

2 2 2

2 * 1 1 1 1 1 1 2* * *
*

1 22 * 2

1 2

2
2

,
( )( )

v v v
b d d b d

v u u u
B v

d du

   
 




 

  


 

2 2 2

2

* * * 2 * 2 2 2 2 * 2 * 2

* * 1 1 1 1 1 2 1 1 1 2

1 22 * 2

1 2

( )

( )( )

u v u b v d b d v d b v d
C u v

d du

    




   
  



. 

The Hopf bifurcation occurs when Im ( ( )) 0k  and R e( ( )) 0k   at 0k  . The critical value of the 

bifurcation parameter   is 

                                 

2

2

* * * 2

* * *

2 * 2

*

( )

( )
.

H

u v u
u u v

u

v









 
  

 
 

                                                                                (24) 

At the Hopf bifurcation threshold, the temporal symmetry of the system is broken and gives rise to uniform 

oscillations in space and periodic oscillations in time with the frequency 
H

w and wavelength 
H

 : 

                       

2 2 2

2 2

2 * * * * 2

* * *

2 * 2 2 * 2

2 ( )
,

( ) ( )
H

v u v u
w v u v

u u

   
 

 


   

 
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VI. NUMERICAL SIMULATIONS 
In this section we perform numerical simulations to illustrate the results obtained in previous sections. 

For this purpose we have plotted the time series, spatiotemporal patterns and snapshots for one dimensional 

cases and two dimensional cases. The dynamics of the model system (2) is studied with the help of numerical 

simulation. The step lengths x and t of the numerical grid are chosen sufficiently small so that the results 

are numerically stable. The temporal dynamics is studied by observing the effect of time on space vs. density 

plot of prey and predator populations. Spatiotemporal chaos is generated as a result of breaking the homogeneity 

and the formation of a non-stationary irregular spatial pattern when the local kinetics of the system is oscillatory 

for a wide class of initial conditions. In the absence of any spatial gradient, period-doubling bifurcations serve as 

the generating mechanism for chaos in these model systems. For the numerical integration of the model system, 

we have used the Runge-Kutta fourth-order procedure on the MATLAB 7.0 platform. To investigate the 

spatiotemporal dynamics of the model system (2), we solved it numerically using semi implicit (in time) finite 

difference method. Application of the finite difference method gives rise to a sparse, banded linear system of 

algebraic equations. The resulting linear system is solved by using the GMRES algorithm for the two-

dimensional case. 
Consider the set of parameter values  

                                       
0 .1 2 , 0 .8, 0 .1, 0 .0 3      

                                                                    (25) 

for the model system (5). With the above set of parameters, we note that the positive equilibrium 
*

E  exists, and 

it is given by 
* *

( , ) (0 .1 8 2 7 , 0 .2 1 3 7 )u v  . We choose the same set of parameters as in (25) for the model 

system (2) with initial condition  

                                        

*

1 2

*

( , 0 ) ( )( ) ,

( , 0 ) ,

u x u x x x x

v x v

   



                                                                          (26) 

where 
* *

( , )u v  is the nontrivial state for the coexistence of prey and predator population and  

8

1 2
1 0 , 1 2 0 0 , 2 8 0 0x x


    is the parameter affecting the system dynamics. In order to avoid numerical 

artifacts we checked the sensitivity of the results to the choice of the time and space steps and their values were 

chosen sufficiently small.  
In Figure 2, we have presented the time series of the model system (2) for the fixed set of parameters values (23) 

with initial condition (24). By increasing the time 2 0 0 , 5 0 0 , 7 0 0t  , the system shows from stable to limit 

cycle behavior. Figure 3 shows the spatiotemporal evolution of predator density for the system. Finally Figure 4 

shows the snapshots of predator density for increasing values of diffusion coefficient 
2

d  to observe the 

irregular patchy non-Turing spatial distribution of predator population. 

 

 
Figure 2.  Time series for the model system (2) at the fixed set of parameters values 

1 2
0 .1 2 , 0 .8 , 0 .1, 0 .0 3, 0 .0 0 0 1, 0 .0 0 1d d          with t   (a) 200 (b) 500 (c) 700. 
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Figure 3.  Spatiotemporal patterns of predator density for the model system  (2) at fixed set of parameters 

values 
1

0 .1 2 , 0 .8 , 0 .1, 0 .0 3, 0 .0 0 0 1,d        with 
2

d = (a) 0.01 (b) 0.1 

(c) 1 (d) 10. 

 

 
Figure 4.  Snapshots of predator populations with parameters values 

1
0 .1 2 , 0 .8 , 0 .1, 0 .0 3, 0 .0 0 1d         and 

2
d = (a) 1 (b) 10 (c) 15 (d) 20 . 

 

VII.  DISCUSSION AND CONCLUSION 
In this paper, we have considered a minimal model of predator-prey interaction with holling type-III 

functional responses. The dynamics of the Holling-Tanner predator-prey model is quite interesting for its 

mathematical properties and for its efficacy in describing real ecological systems such as lynx and hare and 

sparrow and sparrow hawk. The characteristic feature of Holling type III functional responses is that at low 

densities of the prey, the predator consumes it less proportionally than is available in the environment, relative 

to the predators' other prey . Collings
23

 have used the Holling-Tanner model to study the population interaction 
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between the predacious mite Metaseiulus occidentalis (Nesbitt) and its spider mite prey Tetranychus mcdanieli 

(McGregor). Recently, a modification of the Holling-Tanner model by invoking the ratio-dependent functional 

response is suggested by Haque and Li
24

. 

We have investigated the model both analytically and numerically. We have studied the reaction-

diffusion model in both one and two dimensions and investigated its stability. The nontrivial equilibrium state 
*

E  of predator-prey coexistence is locally as well as globally asymptotically stable under a fixed region of 

attraction when certain conditions are satisfied. We also obtained the conditions for Turing instability in terms 

of parameters. For a fixed set of parameter values (25), we obtained the region of Turing instability. We have 

plotted the time series, spatiotemporal patterns and snapshots of the model system (2). We found that for 

increasing value of time t = 200,500,700, the system shows from stable to limit cycle behavior. For increasing 

the value of 
2

d , we have plotted the snapshots which shows the irregular patchy non-Turing spatial distribution 

of predator evolved for two dimensional cases. 
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