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ABSTRACT: Particle swarm optimization (PSO) is a metaheuristic optimization algorithm that has been used 

to solve complex optimization problems. The Interior Point Methods (IPMs) are now believed to be the most 

robust numerical optimization algorithms for solving large-scale nonlinear optimization problems. To overcome 

the shortcomings of PSO, we proposed the Primal-Dual Asynchronous Particle Swarm Optimization (pdAPSO) 

algorithm. The Primal Dual provides a better balance between exploration and exploitation, preventing the 

particles from experiencing premature convergence and been trapped in local minima easily and so producing 

better results. We compared the performance of pdAPSO with 9 states of the art PSO algorithms using 13 

benchmark functions. Our proposed algorithm has very high mean dependability. Also, pdAPSO have a better 

convergence speed compared to the other 9 algorithms. For instance, on Rosenbrock function, the mean FEs of 

8938, 6786, 10,080, 9607, 11,680, 9287, 23,940, 6269 and 6198 are required by PSO-LDIW, CLPSO, pPSA, 

PSOrank, OLPSO-G, ELPSO, APSO-VI, DNSPSO and MSLPSO respectively to get to the global optima.  

However, pdAPSO only use 2124 respectively which shows that pdAPSO have the fastest convergence speed. In 

summary, pdPSO and pdAPSO uses the lowest number of FEs to arrive at acceptable solutions for all the 13 

benchmark functions.  

Keywords: Asynchronous Particle Swarm Optimization (A-PSO), Swarm Robots, Interior Point Method, 

Primal-Dual, gbest, and lbest. 

 

I. INTRODUCTION  
In Venayagomoorthy et al [1], the authors described PSO as is a stochastic population based algorithm 

that operates on the optimization of a candidate solution (or particle) centered to optimize a directed 

performance measure [2]. The first PSO algorithm was proposed by Kennedy and Eberhart [3] was based on the 

social behavior exemplified by a flock of bird, a school of fish, and herds of animals. The algorithm uses a set of 

candidates called particles that undergo gradual changes through collaboration and contest among the particles 

from one generation to the other.  PSO have been used to solve non-differentiable [4], non-linear [5], and non-

convex engineering problems [6].   

Abraham, Konar and Das [7] opined that PSO is theoretically straightforward and does not require any 

sophisticated computation. PSO uses a few parameters, which have minimal influence on the results unlike any 

other optimization algorithms. This property also applies to the initial generation of the algorithm. The 

randomness of the initial generation will not affect the output produced. Despite these advantages, PSO faces 

similar shortcomings as other optimization algorithms. Specifically, PSO algorithm suffers from premature 

convergence, inability to solve dynamic optimization problems, the tendency of particles to be trapped in the 

local minima and partial optimism (i.e., which degrades the regulation of its speed and direction).  

Hypothetically, particle swarm optimization (PSO) is an appropriate tool for addressing many 

optimisation problem in different fields of human endeavour. Notwithstanding the optimal convergence rate of 

PSO, the algorithm is not able to efficiently handle dynamic optimization jobs which is very crucial in some 

fields such as stock market prediction, crude oil price prediction, swarm robotics and space project. This 

explains the unfavourable inadequacies that led to the recent drifts of development new variants of PSO 

algorithms for solving complex tasks. It has become the custom to develop hybrid PSO heuristic algorithms to 

tackle the weaknesses of some existing variants of PSO. The idea behind the development of pdAPSO is to 
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improve the performance of PSO in solving global optimization problems through the hybridization of APSO 

and Primal Dual algorithms. In this study, we proposed a fusion of Asynchronous PSO with Primal-Dual 

Interior-Point method to resolve those common issues relevant to PSO algorithm. Two key components of this 

implementation are the explorative capacity of PSO, and the exploitative capability of the Primal-Dual Interior-

Point algorithm. On the one hand, exploration is key in searching (i.e., traversing the search landscape) to 

provide reliable approximation values of the global optimal [8]. On the other, exploitation is critical to focusing 

the search on the ideal solutions resulting from exploration to produce more refined results [9].  

The state-of-the-art Interior-Point algorithm has gained popularity as the most preferred approach for 

providing solution to large-scale linear programming problems [10]. They are however limited due to their 

inability to solve problems that are unstable in nature. This is because contemporary Interior-Point algorithms 

are not able to cope with the increasing need of the large number of constraints. Efforts to increase the 

efficiency of the Interior-Point algorithm have led to the development of another variant of this algorithm that 

can handle unstable linear programming problems. These algorithms lower the number of work per iteration by 

using small number of constraints thereby reducing the computational processing time drastically [11]. 

 

II. REVIEW OF RELEVANT WORK 
New variants of the PSO algorithm can be developed by fusing it with an already tested approaches 

which have been successfully applied to solve complex optimization problems. Academicians and researchers 

have improved the performance of PSO by integrating into it the basics of other famous methods. Some 

researchers have also made efforts to increase the performance of popular evolutionary algorithms like Genetic 

Algorithm, Ant Colony and Differential Evolution, etc. by infusing the position and velocity update equations of 

the PSO. The purpose of the integration is to make PSO overcome some of its setbacks like premature 

convergence, particles been trapped in the local minima, and partial optimization.  

Robinson et al. [12] developed the GA-PSO and PSO-GA and used them to solve a specific 

electromagnetic application problem of projection antenna. The results of their experiments revealed that the 

PSO-GA hybrid algorithm performs better than the GA-PSO, standard PSO only and GA only. He proposed the 

hybridization of GA and Hill Climbing algorithm the same year and used it to solve unconstrained global 

optimization problems [13]. Conradie, Miikkulainen, and Aldrich [14], developed the symbiotic neuro memetic 

evolution (SMNE) algorithm when they hybridized PSO and ‘symbiotic genetic algorithm’ and used it for 

neural network control devices in a corroboration learning context. Grimaldi et al. [15] developed the genetical 

swarm optimization (GSO) by hybridizing PSO and GA. They later went ahead and used their algorithm to 

solve combinatorial optimization problems. The presented different hybridization approaches [16]. They 

authenticated the genuineness of GSO using different multimodal benchmark problems and applied it in 

different domain as demonstrated by the authors in Gandelli et al. [17], Grimaccia et al. [18] and Gandelli et al. 

[19]. Hendtlass [20] proposed the Swarm Differential Evolution Algorithm (SDEA) where PSO swarm acts as 

the population for Differential Evolution (DE) algorithm, and the DE is carried out over some generations. After 

the DE have performed its part in the optimization, the resulting population is then optimized by PSO. Talbi and 

Batauche [21] developed the DEPSO algorithm and used it to solve problem in the field of medical image 

processing. In Hao et al. [22] introduced another variant of DEPSO where some probability distribution rules 

are used any of PSO or DE to produce the best solution. Omran et al. [23] developed a Bare Bones Differential 

Evolution (BBDE) algorithm which used the idea of barebones PSO and self-adaptive DE approaches. They 

used their algorithm to solve image categorization problem. Jose et al. [24] developed another variant of DEPSO 

algorithm that uses the differential modification systems of DE to update the velocities of particles in the swarm. 

Zhang et al. [25] proposed the DE-PSO algorithm that uses three unconventional updating approaches. Liu et al. 

[26] developed the PSO-DE algorithm that combines DE with PSO and uses the DE to update the former best 

positions of PSO particles to make them escape local magnetizers thereby avoiding inertia in the population. 

Capanio et al. [27] proposed a Superfit Memetic Differential Evolution (SFMDE) algorithm which is a hybrid of 

DE, PSO, Nelder Mead algorithm and Rosenbrock algorithm. The algorithm was used to solve some standard 

benchmark and engineering problems.  

The researchers in Xu and Gu [28] developed the particle swarm optimization with prior crossover 

differential evolution (PSOPDE). Pant et al. [29] reported a DE-PSO algorithm that uses DE for the initial 

optimization process and then moved on to the PSO segment if DE fails to satisfy the optimum conditions. 

Khamsawang et al. [30] introduced another hybrid algorithm name PSO-DE that centres on standard PSO and 

DE. They used their algorithm to solve economic dispatch (ED) problem having constraints. Shelokar et al. [31] 

developed PSO with Ant Colony Optimization (PSACO) algorithm. The algorithm has two phases. The PSO is 

employed in the first phase and the result of the optimization is feed into ACO for the second phase of the 

optimization. In Hendtlass and Randall [32], ACO was integrated into PSO by Hendtlass and Randall. The best 

position is selected from the list of best positions obtained and recorded. Victoire and Jeyakumar [33] proposed 

the hybrid of PSO and sequential quadratic programming (SQP). It was used to solve economic dispatch 
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problem in Boggs and Tolle [34]. Grosan et al. [35] developed an independent neighborhoods particle swarm 

optimization (INPSO) algorithm that is made up of autonomous sub-swarms that allows the production of many 

points at the end of iteration.  

In Liu et al. [36], the authors developed a turbulent PSO (TPSO) in the effort to surmount the 

shortcomings of the traditional PSO. They later integrate TPSO with a fuzzy logic controller to make a Fuzzy 

Adaptive TPSO (FATPSO). Sha and Hsu [37] proposed a novel hybrid algorithm that combine PSO with Tabu 

search (TS) and applied it to solve job shop problem (JSP). He and Wang [38] developed a hybrid algorithm that 

fuse PSO and Simulated Annealing (SA) together. Mo et al. [39] introduced Particle Swarm Assisted 

Incremental Evolution Strategy (PIES). This algorithm uses PSO for global optimization while Evolutionary 

strategy is used for local optimization. Fan and Zahara [40] and Fan et al. [41] proposed the NM-PSO algorithm 

by integrating PSO with Nelder Mead Simplex method. Their work was later extended by Zahara and Kao [42] 

and used to solve constricted optimization tasks. Guo et al. [43] proposed an algorithm that hybridized PSO with 

gradient descent (GD) method and they used it for fault identification. Shen et al. [44] introduced the HPSOTS 

algorithm which is a hybrid of PSO and Tabu search. Ge et al. [45] developed a hybrid of PSO and Artificial 

Immune System (AIS). Song et al. [46] proposed hybrid particle swarm cooperative optimization (HPSCO) 

algorithm merging simulated annealing algorithm and simplex method.  

The research work of Kao et al. [47] presented an algorithm that combine NM-PSO algorithm 

developed in [40, 41], with K-means algorithm and used for data clustering. Murthy et al. in [48] proposed an 

algorithm that have the advantages of the parameter-free PSO (pf-PSO) and the extrapolated particle swarm 

optimization like algorithm (ePSO). Kuo et al. in [49] proposed the HPSO algorithm that amalgamated a 

random-key(RK) encoding system, individual enhancement (IE) system, and particle swarm optimization (PSO) 

and used to solve the flow-shop scheduling tasks. Chen et al. [50] developed the PSO-EO algorithm by 

hybridizing of PSO with Extremal Optimization (EO) as reported in Boettcher and Percus [51]. Kavehand and 

Talatahari [52, 53] proposed a heuristic particle swarm ant colony optimization (HPSACO) and a discrete 

heuristic particle swarm ant colony optimization (DHPSACO). Wei et al. [54] introduced the concept of 

entrenching swarm targets into Fast Evolutionary Programming (FEP) algorithm to make the swarm’s 

performance better. Pant et al. in [55] presented an AMPSO algorithm which combines PSO and EP mutation 

operator employing Beta distribution.  

The (VL-ALPSO) was proposed by Tang and Eberhard in [56] to make planning for change in the 

physical position of swarm robots for collective search of targets more effective. The authors explained that the 

VL-ALPSO approach to swarm robotics is the amalgamation of augmented Lagrangian multipliers, velocity 

restrictions in addition to virtual detectors to guarantee the implementation of constraints, obstacle avoidance 

and mutual avoidance which are situations obtainable in swarm mobile robots in coordinated movements. 

Augmented Lagrangian Particle Swarm Optimization (ALPSO) algorithm was presented by Sedlaczek and 

Eberhard in [57]. The authors made use of some part of the original PSO technique and combines it with 

Augmented Lagrangian Multiplier. 

 

III. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 
PSO was originally proposed by James Kennedy and Russell Eberhart in 1995 as seen in [58]. The 

algorithm is made up of particles which have position and velocity. Each of the particles of a swarm epitomizes 

a possible solution in PSO. Each of the particles of a swarm epitomizes a possible solution in PSO. The particles 

explore the problem search space seeking for the best or at least a solution that is suitable. Each of the particles 

changes their movement according to their own accumulated knowledge of moving in the environment and that 

of their neighbours. In PSO (Xi) represent the position of a particle, and (Vi) the velocity of the particle. The 

particle’s number is i. Where (i = 1,…,N), and N is the number of particles in the swarm. The i
th

 particle is 

denoted as Xi. The velocity is the degree at which the subsequent position is varying as regards the present 

position. Vi represent the velocity for the particle i. As the algorithm begins, the position and velocity of the 

particles are given numerical values haphazardly. This is followed by using equations (1) and (2) to update the 

position and velocity of the particles after successive iterations are conducted throughout the search. 
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As opined by Shi and Eberhart in their statement in [5], to prevent commotion, the value )1(

,

t

mi
v  is fixed at 

±vmax. The reason is that the value of vmax is going to be extremely large if the scope of search is too broad. Also, 

if vmax is very narrow, the extent of the search will be unreasonably reduced thereby forcing the particles to do 

local exploration. The inertia weight is represented as w (constriction factor) is the inertia parameter; this 

regulates algorithm’s searching properties. Shi and Eberhart posited as seen in [5] that it is better to commence 

the search using a larger inertia value (a more global search) that is automatically decreased to the end of the 
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optimization (a more local search). Using inertia weight with smaller values mostly ensures fast convergence as 

little time is wasted on the exploration of the global space [59]. The inclusion of w in the equation is to provide 

equilibrium between the global and local search capability of the particles. There are two techniques that have 

been presented for the choice of suitable values for inertia factor. The number one technique is called linear 

method, here the inertia weight decreases linearly after each iteration until the highest number of iteration or the 

highest number of inertia parameter is reached [60]. 

 

 
The number two technique is called the dynamic method, here the value of the inertia reduces from the 

initial value to the final value fractionally by ∆w. 

 
Where the value of  varies from 1 to 0. Judging from the results of experiments that have been 

performed, the performance of the dynamic method in term of convergence is superior to the one of linear 

method. In [5], it was showed that PSO having different swarm population has practically alike but not identical 

performance. The c1 and c2 are two positive constants representing the cognitive scaling and social scaling 

factors which according to [60] are usually set to 2. The stochastic variable rand1() and rand2() has the 

distribution U (0, 1). These random variables are stand-alone functions that infuse momentum to the particles. 

The most ideal position located so far by the particle is denoted as pbesti,m. The best position attained by the 

neighbouring particles is denoted as gbestm. There are two types of particles neighbourhood in PSO, and the 

type of neighbourhood is what determines the value of gbestm. The two types of neighbourhood are: 

1. gBest (Global neighbourhood) – Here, there is a full connection among the particles, and the exploration of 

swarm is controlled by the best particle in the swarm.  

2. lBest (Local neighbourhood) – There is no full connection among the particles in the swarm, rather they are 

connected only to their neighbours. 

Equation 2 is used in updating the position of the particles whereby the velocity is added together with 

the earlier position and a new search is started from its former position. Eberhart and Shi in [58] bounded )1(

,

t

mi
x to 

avoid a situation whereby particles are spending too much time in infeasible region. A problem dependent 

fitness function is used in evaluating the superiority of )1(

,

t

mi
x . Assuming the present solution is superior to the 

fitness of pbesti,m or gbestm then the new position will replace pbesti,m or gbestm accordingly. Unless the 

condition for ending the search (either the iteration has reached its peak or we have gotten the desired solution) 

this updating process will continue. The optimal solution is the best particle found when the stopping criterion is 

satisfied [59]. In the Asynchronous PSO (APSO), pbesti,m or gbestm of a particle, its velocity and position are 

updated immediately after computing their fitness and, as a consequence, they update it having incomplete or 

imperfect information about the neighbourhood [60]. This result into varieties in the swarm since some of the 

information is from the previous iteration while some is from the current iteration. In [61], Luo and Zhang 

(2006), they used the bench-mark functions of Rosenbrock (unimodal) and Griewank (multimodal) to do a 

performance comparison of SPSO and APSO on the Rosenbrock (unimodal) and Griewank (multimodal) bench-

mark functions. They found out that APSO performs better and has a faster convergence than SPSO. Perez and 

Basterrechea [62] opined from the results of their experiments that APSO is able to find solutions faster and 

with a similar accuracy as SPSO. They concluded that APSO provides the best accuracy at the expense of 

computational time. 

 

IV. PRIMAL DUAL INTERIOR POINT METHOD  
The primal-dual interior-point (PDIP) method is an excellent example of an algorithm that uses the 

constraint-reduction methods. Mehrotra in [63] developed the Mehrotra’s Predictor-Corrector PDIP algorithm, 

which has been executed in the majority of the interior-point software suite for solving both linear and convex-

conic problems [64]. The primal-dual methods are a new category of interior-point methods that have of recent 

been practically employed for solving large-scale nonlinear optimization problems according to [67]. Contrary 

to the traditional primal method, primal-dual method evaluates both the primal variables x and dual Lagrange 

multipliers λ relating to the constraints concurrently. The disconcerted Karush-Kuhn-Tucker (KKT) equations 

below can be solved using the precise primal-dual solution ( , ) at a given parameter µ 

     

with the constraint (C(x), λ) ≥ 0. 

The Newton’s algorithm and line search approach are employed to recursively solve any primal or 

primal-dual sub-problems for a given µ value as stated in [65, 66]. Feasibility and convergence is enforced in 
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the algorithm by selecting the size of step in the iteration. This can be achieved by appropriately reducing the 

merit function used in gauging degree of advance to the solution. The dual variables of the primal dual can be 

protected by using Fµ as a function that can incorporate the primal and dual variables [67]; and at the same time 

measures the harmony between data and the fitting model for a particular choice of the variables [68]. The major 

setback of the barrier functions is the ineffectiveness of traditional line exploration methods thereby 

necessitating the development of more efficient line search [69]. According to them, primal-dual method can 

efficiently handle large linear programming problems (the bigger the problem size the more noticeable the 

efficiency of the primal dual algorithm). The algorithm is not susceptible to degradation and the number of 

iterations does not depend on the number of vertices in the feasible search space [70]. Primal-dual algorithm 

uses considerably less iteration compared to the simplex method and the algorithm is able to generate the ideal 

solutions for a linear programming problem in less than 100 iterations irrespective of the huge number of 

variables involved in nearly all its implementations [70]. However, Primal-dual method is hindered by its 

inability to detect the possibility of having unbounded status of the problem (to a certain extent, the method is 

labeled as incomplete). This issue has been addressed sufficiently using undiversified model as suggested in 

[71]. In addition, the computational cost for each iteration in primal-dual is higher than that of the simplex 

algorithm. Despite this issue, primal-dual method is able to handle a large linear programming problem better 

than the simplex algorithm. This is because the total work required in providing solution to a large linear 

programming problem comprised of the multiplication of the number of iterations and the work executed for 

each iteration [72]. 

 

V. PRIMAL DUAL ASYNCHRONOUS PARTICLE SWARM OPTIMIZATION 
In one of our previous work, we proposed a new algorithm called Primal-Dual PSO (pdPSO) in [73]. In 

the bid to improve the performance of our algorithm, we developed the Primal-Dual APSO (pdAPSO) and used 

the algorithm to solve flocking problem in swarm robotics [74]. Having discovered from our findings in [75] 

that APSO have a superior performance compared to the conventional PSO, our intention was to present a 

hybridized APSO and Primal Dual algorithm which will perform better other earlier variants of PSO that have 

been developed. The flowchart of the pdAPSO algorithm is shown in figure 1 below. 

 

A. Benchmark functions used for performance comparison of primal-dual-APSO (pdAPSO) and state of 

the art algorithms   
In this section we present a comparison between the two new algorithms that we proposed in this 

paper. We went further to conduct more thorough experiments to evaluate the efficiency of the pdPSO 

algorithm. The test functions that we used for the experiments are as shown in the table 1 below. Thirteen 

benchmark functions are used in our experiment to further affirm the genuineness of pdPSO algorithm. A 

concise description of these benchmark functions are enumerated in table 1 below. Our reason for adopting 

these benchmark functions is because they have been generally accepted as suitable functions in measuring the 

performance of global optimisation algorithms [76, 77, 78, 79]. We made use of twelve functions from the list 

of functions used in [80]. Based on the attributes of these functions, they can be categorised into three groups. 

Category one comprises of three (3) unimodal functions. Category two is made up of four composite multimodal 

functions. The category three comprises of six functions out of which four are rotated multimodal while the 

remaining two are shifted functions. 
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Figure 1: Primal- Dual-APSO (pdAPSO) algorithm. 

Table 1: Test functions used in the comparisons 
Function Name Dimension (D) Global opt Search Range Initialization Range 

Unimodal 

Sphere 30 {0} D [-100,100]D [-100,50] D 

Schwefel's P2.22                               30 {0} D [-10,10] D [-10,10] D 

Rosenbrock 30 {0} D [-10,10] D [-10,10] D 

Multimodal 

Rastrigin 30 {0} D [-5.12,5.12] D [-5.12,5.12] D 

Ackley 30 {0} D [-32.768,32.768] D [-32.768,32.768] D 

Schwefel 30 {0} D [-500,500] D [-500,500]D 

Griewank  30 {0}D [-600,600]D [-600,600]D 

Rotated and Shifted  

Rotated Rosenbrock 30 {0}D [-10, 10] D     [-10, 10] D     

Rotated Rastrigin  30 {0}D [-5.12,5.12]D [-5.12,5.12]D 

Rotated Ackley 30 {0}D [-32.768,32.768]D [-32.768,32.768]D 

Rotated Griewank    30 {0}D [-600, 600]D [-600,600]D 

Shifted Rosenbrock 30 {0}D [-100, 100]D [-100,100]D 

Shifted Rastrigin 30 {0}D [-100,100]D [-100,100]D 

 

Some performance metrics were used to evaluate the performance of the pdPSO in order to know the 

dependability of the algorithm and the quality of the solution generated. Such performance metrics include the 

value of mean fitness and standard deviation. The speed of convergence is measured by computing the average 

number of FEs needed to arrive at a satisfactory solution among successful runs. The dependability of the 

algorithm is evaluated based on the mean success rate (SR %). The computation of the Mean value of FEs is 

done only for the successful runs. The ratio of trial runs expressed as a fraction of 100 that successfully reach 

the standard accuracy is called the success rate. According to Auger and Hansen [81], some algorithms may fail 

to attain the satisfactory solution for each run on some problems. Another standard of measurement is called 

success performance (SP). 

Where 

Success =  (Fit(x*) + (1.0E-5)) 

X* =   Theoretical global optimal solution 

NFE =  Average number of function evaluation required to find solution when all 30 runs are 

successful. 

SP =   (Mean FEs)/(SR%)  

 

B. Performance comparison of pdAPSO algorithms with the state-of-the art PSO variants  

In this section we compared the performance of pdAPSO with nine (9) state of the art algorithms as 

listed in the tables 2-7 below. The conventional PSO algorithm that has been popularly applied in different field 

is PSO-LDIW which was proposed by [82]. The comprehensive learning strategy PSO (CLPSO) was proposed 

by [83] with the purpose of producing superior performance compared to the existing PSO variants for 

multimodal functions. The Perturbed particle swarm optimisation for numerical optimisation was (pPSA) was 

proposed by [84]. The algorithms device a strategy for handling premature convergence by employing a particle 

updating approach that centres on the idea of perturbed global best particle. The rank based particle swarm 

optimisation algorithm with dynamic adaptation (PSOrank) was proposed by [85]. The algorithm exploits the 

collaborative behavior of particles to make a meaningful increase in the efficiency of the conventional PSO 

algorithm. Zhan et al. in [76] proposed the orthogonal learning PSO (OLPSO-G). This algorithm uses a 

perpendicular learning approach to create a favourable and effective model to pilot particles to move in most 

suitable directions. Huang et al. in [77] developed the Example-based learning PSO (ELPSO) for continuous 

optimisation. Their purpose is to use example-based learning scheme to proffer a superior performance for 

multimodal functions. An adaptive parameter tuning of PSO centered on velocity information (APSO-VI) 

algorithm was proposed by [86]. Diversity enhanced PSO with neighbourhood (DNSPSO) was presented by 

[87]. This algorithm engages the variety improving method and neighborhood search tactics to attain a swapping 

between exploration and exploitation. Multiobjective sorting-based learning PSO for continuous optimisation 

(MLPSO) proposed by [80] uses the MSL approach to direct particles to move in the most suitable path by 

creating a direction paradigm that have superior fitness value and variety in swarm population.  The parameter 

settings for these PSO variations are specified in Table 9 with reference to their references. The purpose of using 

these PSO variants for our comparisons is because they are state of the art PSO algorithms which cover a broad 

period of time from 1999 to 2016. Furthermore, they have been described in literature as high performing 

variants of PSO with reference to their experimented problems. 
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Table 2: PSO variants used for our comparative studies. 
PSO variants Parameter Setting Reference 

PSO-LDIW w : 0.9–0.4, c1 = c2 =2 Shi and Eberhart (1999) 

CLPSO w : 0.9–0.4, c = 1.49, m =7 Liang et al. (2006) 

pPSA w = 0.9, c1 = 0.5, c2 = 0.3, 𝜎max = 0.15, 𝜎min = 0.001, ∝ = 0.5 Zhao (2010) 

PSOrank w is non-linear, ∝ = 0.45, 𝛽 = 0.385, m = 2 Akbari and Ziarati (2011) 

OLPSO-G w: 0.9–0.4, c = 2.0, G = 5, Vmax = 0.2 9 x Range  Zhan et al. (2011) 

ELPSO w = 0.729, c = 1.49, m = 4 Huang et al. (2012) 

APSO-VI w:0.9–0.3, c1 = c2 = 1.49 Xu (2013) 

DNSPSO w = 0.729, c1 = c2 = 1.49618, k = 2, pr = 0.9, pns = 0.6 Wang et al. (2013) 

MLSPSO w:0.9–0.4, c1 = c2 = 2 Gang et al (2016) 

CDIWPSO W1=0.9, W2=0.4, c1 = c2 = 2.0 Feng et al (2007) 

CRIWPSO W1=0.9, W2=0.4, c1 = c2 = 2.0 Feng et al (2007) 

pdAPSO w:0.9–0.4, c1 = c2 = 1.494  

 

From the experiments that were conducted, the algorithm configurations of pdAPSO are as follows. For 

the PSO part, the inertia weight w is linearly decreasing from 0.9 to 0.4, and c1 and c2 are set to 1.494. The 

initial value of the maximum centering parameter sigmamax is 0.5. The maximum forcing number etamax is set 

to 0.25. The Primal Dual segment of the algorithm uses the minimum barrier parameter (mumin) whose initial 

value is set to 1e-9. The maximum step size (alphamax) is 0.95. The minimum step size (alphamin) is 1e-6. The 

granularity of backtracking during the search is set to 0.75. And the amount of actual decrease we will accept 

during backtracking is given the value of 0.01. For a fair comparison among all the PSO variants, the population 

size is set at 50 and the maximum fitness evaluations (FEs) is set at 30,000. We carried out experiment 30 times 

for each algorithm using twelve (12) benchmarking functions and the statistical values of the Best Fitness, 

Worst Fitness, Mean Fitness, Standard Deviation, SP, Success Rate (%), R Runtime (s), and NFE are used in the 

evaluations. 

 

C. Performance Evaluation Comparison (PEC) on superiority of results 

We make comparison of the performance of the PSO algorithms listed in table 2 with that of pdAPSO. 

The results of our comparison are in tables 3 and 4 where we compared the mean and standard deviations of the 

twelve (12) algorithms. Our performance evaluation of these algorithms is based on the Mean and Standard 

Deviation. The Mean and Standard Deviations are the Mean value and the Standard Deviation of the best fitness 

solutions generated by conducting the experiment 1000 times autonomously. The Mean signifies the accuracy of 

the solutions generated by the algorithm within the given iterated times, and it also indicates the algorithm’s 

convergence velocity. The Standard Deviation reveals the stability and robustness of the algorithm. The best 

results obtained among the other eleven algorithms that we evaluated their performances are boldfaced. The first 

three functions (Sphere, Schwefel’s P2.22, and Rosenbrock) we considered are unimodal functions. The first 

two are comparatively easy and virtually all the algorithms can solve them. The two algorithms that proffer the 

best results for Sphere are pdAPSO and ELPSO while pdAPSO and OLPSO-G proffers the best results for 

Schwefel's P2.22. For Rosenbrock function, pdAPSO and MSLPSO proffers the best solution. This function is 

used to test the ability of an algorithm to solve a hard problem because it contains very narrow valley in its 

landscape. It is only these two algorithms that were able to escape being trapped in its local optima. 
 

Table 3: Mean and Standard Deviation comparisons among twelve (12) PSO algorithms 
Algorithm PEC f1 f2 f3 f4 f5 f6 f7 

PSO-LDIW Mean 4.68E-23 4.08E-09  5.59E+01  1.85E+01  1.04E-04  2.98E+03  1.84E-04  

Std Dev 8.33E-23 1.09E-09  3.83E+01 2.72E+01  3.85E-03  9.29E+02  2.77E-04  

CLPSO Mean 5.23E-14 2.81E-07 2.25E+01 3.98E-08 3.00E-11 3.86E-03 2.88E-09 

Std Dev 3.66E-14 3.57E-07 1.21E+01  4.54E-08 2.97E-12 4.19E-03 6.47E-08 

pPSA Mean 2.76E-07 2.35E-09 3.57E+01 3.07E-03 8.92E-07 2.58E+03 9.02E-06 

Std Dev 5.93E-07 4.94E-09 2.56E+01 6.25E-02 7.92E-07 6.23E+02 7.29E-06 

PSOrank Mean 3.91E-09 3.73E-12  4.44E+01  1.08E-12  7.82E-10  2.32E+03  1.54E-04  

Std Dev 7.87E-09 5.22E-11  3.14E+01 9.74E-11  5.91E-10 5.12E+02  4.24E-03  

OLPSO-G Mean 6.21E-52 3.77E-28 2.51E+01 8.25E-02 1.33E-14 6.34E+02 3.41E-03 

Std Dev 2.19E-52  6.77E-28 1.77E+01  4.81E-02 5.11E-14 8.09E+01 1.03E-03 

ELPSO Mean 3.38E-94 8.08E-24 1.78E+01 2.89E-14 7.69E-15 6.56E-03 9.78E-23 

Std Dev 1.22E-94 2.99E-24 1.59E+01 3.18E-14 8.44E-14 3.24E-03 3.11E-23 

APSO-VI Mean 1.37E-12 4.66E-14  1.50E+01  3.82E+00  6.77E-14  2.43E+01  4.88E-12  

Std Dev 8.39E-12 1.44E-14  1.23E+01 4.69E+00  7.35E-14  9.49E+00  2.07E-11  

DNSPSO Mean 8.27E-85 7.97E-26 7.38E+00 7.66E-15 1.89E-14 5.95E+00 3.96E-38 

Std Dev 3.69E-85 5.99E-26 8.82E+00  3.38E-15 2.17E-14 7.17E+00 2.31E-38 

MSLPSO Mean 2.73E-82 1.35E-16 2.90E-01 2.37E-15 7.23E-16 9.36E+00 5.91E-43 

Std Dev 1.69E-82 2.98E-16 3.72E-01 1.44E-15 2.94E-16 5.44E+00 1.38E-43 
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pdAPSO Mean 1.13E-29 1.24E-28 2.32E-01 1.23E+00 1.40E+00 7.53E-07 2.83E-03 

Std Dev 2.10E-29 2.23E-28 3.69E-01 2.51E+00 5.01E+00 4.06E-06 3.37E-03 

Table 3 continued 
Algorithm PEC f8 f9 f10 f11 f12 f13 

PSO-LDIW Mean 8.89E+01 9.26E+01 9.55E+00 9.68E-02 6.15E+02 -1.38E+02 

Std Dev 7.27E+01 8.73E+01 7.67E+00 6.33E-01 9.58E+01 3.65E+01 

CLPSO Mean 5.27E+01 4.23E+01 7.21E-05 4.20E-08 4.87E+02 -3.07E+02 

Std Dev 3.88E+01 3.78E+01 6.24E-04 2.72E-09 3.36E+01 7.44E+00 

pPSA Mean 6.06E+01 6.78E+01 6.34E-04 5.14E-04 5.29E+02 -2.78E+02 

Std Dev 5.25E+01 5.33E+01 9.35E-04 3.23E-04 8.53E+01 1.39E+00 

PSOrank Mean 5.87E+01 5.24E+01 3.27E-06 1.52E-03 5.62E+02 -2.42E+02 

Std Dev 6.29E+01 4.19E+01 8.47E-05 2.99E-03 7.87E+01 1.84E+00 

OLPSO-G Mean 3.46E+01 2.81E+01 2.93E-13 4.08E-03 4.63E+02 -3.26E+02 

Std Dev 3.82E+01 2.21E+01 1.79E-12 3.88E-03 4.63E+01 2.33E+00 

ELPSO Mean 3.13E+01 1.62E+00 9.73E-14 5.06E-13 4.26E+02 -3.03E+02 

Std Dev 2.44E+01 3.92E-01 2.04E-14 4.24E-13 4.04E+01 5.66E+00 

APSO-VI Mean 4.51E+01 1.23E+01 4.85E-05 1.35E-06 4.41E+02 -2.89E+02 

Std Dev 1.78E+01 8.24E+00 5.25E-05 1.03E-05 3.52E+01 9.24E+00 

DNSPSO Mean 2.92E+01 6.45E-14 5.89E-14 3.98E-21 4.48E+02 -3.11E+02 

Std Dev 2.13E+01 7.19E-14 4.75E-14 4.34E-22 3.27E+01 7.17E+00 

MSLPSO Mean 6.38E+00 5.89E-15 8.68E-14 2.17E-35 4.13E+02 -3.22E+02 

Std Dev 5.45E+00 8.82E-15 7.34E-14 8.92E-34 3.11E+01 6.34E+00 

pdAPSO Mean 3.53E+00 3.30E+00 5.19E-09 2.79E-13 3.73E+01 -3.24E+00 

Std Dev 3.11E+00 2.94E+00 1.47E-08 1.45E-13 2.69E+00 4.32E+00 

 

For all the experiments we carried out on the multimodal benchmark functions, the Primal Dual 

method provides PSO the capacity to explore the search space better and exploit the particle in the swarm to its 

advantage thereby producing enhanced fitness value and create diversity in the swarm population.  The mean 

and standard deviation show that our proposed method can generate better optimum fitness values for some 

benchmark functions. Also, the convergence accuracy and convergence velocity of our proposed method is 

commendable. The standard deviation specifies that the divergence of the optimum fitness result that our 

proposed technique produced is relatively less. This is a prove that our proposed method possesses better 

stability and robustness. It is anticipated that pdAPSO will escape from being trapped in local minima and 

produce superior results on multimodal functions. For the all the functions tested pdAPSO converged to the 

global optimum. Our proposed algorithm produced the best result for Schwefel, Rosenbrock, Griewank, Rotated 

Rosenbrock, Shifted Rosenbrock, and Shifted Rastrigin functions. The results of our tests demonstrated that 

pdAPSO possess that ability to effectively handle premature convergence problem and escape from being 

trapped in local minima on majority of the multimodal functions. The successful attainment of global optima 

solutions on many of the multimodal functions indicates that the performances of pdAPSO algorithm have really 

been enhanced through the fusion of Primal-Dual method and PSO algorithm. 

We also investigated the performances of the eleven algorithms on rotated and shifted functions. 

Rotated Rosenbrock, Rotated Rastrigin, Rotated Ackley, and Rotated Griewank are multimodal functions with 

rotated coordinates. The pdAPSO algorithm attained global optima for all the rotated functions. On Rotated 

Rosenbrock, Shifted Rosenbrock, and Shifted Rastrigin functions, pdAPSO produced the best result. MSLPSO 

achieved the best result for Griewank, Rastrigin, Ackley, Rotated Rastrigin, and Rotated Griewank functions. 

ELPSO generated the best result for the Sphere function. It should be noted that the rotation does not affect the 

performance of the pdAPSO. Infact the effectiveness of our algorithms become more pronounced with test on all 

the rotated functions especially Rotated Rosenbrock where pdAPSO produced the most accurate result and 

closely followed by MSLPSO. To be precise, our experiments confirmed the observation of Wang et al. [87] 

that the Rotated Rosenbrock function proved very difficult for other PSO algorithms to escape being trapped in 

its local optima as the function becomes more problematic after rotating its coordinates. 

The outcome of our experiments also indicates that pdAPSO competes very well with other state of the 

art algorithms. On the Shifted Rosenbrock functions, pdAPSO produced the best result and closely followed by 

MSLPSO. The other PSO algorithms are trapped in local optima this function. In summary, the rotation and 

shift affected the performance of the other nine algorithms while the efficiency of pdAPSO becomes more 

noticeable with the rotation and the shift. The comparisons reveal that the integration of Primal-Dual into PSO is 

advantageous to enhancing the performance of PSO. We hereby conclude that pdAPSO have a superior 

performance compared to the other PSO variants on one of the rotated functions and on the two shifted 

functions. 

 

D. Performance Evaluation Comparison (PEC) on the dependability and speed of convergence 

The dependability of an algorithm is determined by the mean of success rate on the entire test 

functions. The success rate (SR) is the rate of the optimum fitness result in the criterion range experimenting 
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1000 times independently. The SR indicates the algorithm’s global search competence. The convergence speed 

in attaining the global optimum is also a striking standard for determining the performance of any optimisation 

algorithm. The rates of success of all eleven variants of PSO algorithm on individual test function and the 

dependability of the algorithms are shown in Table 4 below. 

 

Table 4: Performance Evaluation Comparison (PEC) of the dependability and speed of convergence 
Algorithm PEC f1 f2 f3 f4 f5 f6 f7 

PSO-LDIW Mean Fes 5571  12,049  8938  12,164  11,216  18,243  7781 

SR% 100 100 100 100 16.67 30.33 40 

SP 5571  12,049  8938  12,164  67,323  60,148  19,452  

CLPSO Mean FEs 7069 14,702 6786 15,423 12,957 10,024 9204 

SR% 100 100 100 100 100 100 100 

SP 7069 14,702 6786 15,423 12,957 10,024 9204 

pPSA Mean FEs 6954 11,205 10,080 11,835 13,720 15,045 13,567 

SR% 100 100 100 100 100 43.33 100 

SP 6954 11,205 10,080 11,835 13,720 34,722 13,567 

PSOrank Mean FEs 6631 9929 9607 10,387 13,142 13,956 8318 

SR% 100 100 100 100 100 76.67 100 

SP 6631 9929 9607 10,387 13,142 18,205 8318 

OLPSO-G Mean FEs 3872 9301 11,680 9629 10,751 9827 7432 

SR% 100 100 100 100 100 100 63.33 

SP 3872 9301 11,680 9629 10,751 9827 11,735 

ELPSO Mean FEs 4396 8973 9287 9302 6698 9306 7672 

SR% 100 100 100 100 100 100 100 

SP 4396 8503 9287 9302 6698 9306 7672 

APSO-VI Mean FEs 24,910 18,932 23,940 27,127 29,361 23,194 28,381 

SR% 100 100 100 100 100 100 100 

SP 24,910 18,932 23,940 27,127 29,361 23,194 28,381 

DNSPSO Mean FEs 4767 10,345 6269 10,073 10,673 10,083 8315 

SR% 100 100 100 100 100 100 100 

SP 4767 10,345 6269 10,073 10,673 10,083 8315 

MSLPSO Mean FEs 5853 8828 6198 7896 12,992 9362 7159 

SR% 100 100 100 100 100 100 100 

SP 5853 8828 6198 7896 12,992 9362 7159 

pdAPSO Mean FEs 332 495.00 2124 3545 2124 5929 1160 

SR% 100 100 100 100 100 100 100 

SP 332 532 3321.16 3526.79 3321.16 8316.73 1734.56 

 

Table 4 Continued 
Algorithm PEC f8 f9 f10 f11 f12 f13 

PSO-LDIW Mean FEs 9897  14,278  –  8241  9235  11,097  

SR% 33.33  76.67 0 13.33  13.33  26.66  

SP 29,694  18,625  - 61,823  69,280  41,624  

CLPSO Mean FEs 10,623 16,085 24,727 12,514 13,024 13,295 

SR% 76.67 100 40 100 43.33 100 

SP 13,857 16,085 61,817 12,514 30,058 13,295 

pPSA Mean FEs 14,929 12,537 16,296 9574 9783 11,092 

SR% 63.33 100 16.67 60 23.33 53.33 

SP 23,573 12,537 97,815 15,957 47,351 20,799 

PSOrank Mean FEs 13,057 11,043 15,292 8933 12,312 10,551 

SR% 76.67 100 80 43.33 16.67 63.33 

SP 17,032 11,043 19,115 20,616 73,902 16,660 

OLPSO-G Mean FEs 12,958 10,074 12,707 9404 10,331 9012 

SR% 93.33 100 100 33.33 66.67 100  

SP 13,884 10,074 12,707 28,215 15,496 9012 

ELPSO Mean FEs 10,034 9737 9318 9242 10,376 10,075 

SR% 100 100 100 100 73.33 100  

SP 10,034 9737 9318 9242 14,149 10,075 

APSO-VI Mean FEs 27,035 11,003 27,824 297,10 26,292 28,039 

SR% 73.33 100 36.67 100 83.33 76.67 

SP 36,868 11,003 75,897 29,710 31,552 36,575 

DNSPSO Mean FEs 9836 9265 13,239 5981 8832 9923 

SR% 100 100 100 100 86.67 100  

SP 9836 9265 13,239 5981 10,192 9923 

MSLPSO Mean FEs 8742 8792 9153 7748 9783 12,081 

SR% 100 100 100 100 100 100  

SP 8742 8792 9153 7748 9783 12,081 

pdAPSO Mean FEs 2197 5403 2185 1105 2256 3402 
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SR% 100 100 99.5 98.7 100 100 

SP 3380.16 7301.35 3378.16 1860.25 3182.72 3526.38 

From the results of our experiment depicted in Table 4 above, the success rate of the proposed 

algorithm is an indication that it has a fairly good global search capacity as it can escape from the local optimum 

and search out the global optimum result. The mean dependability of pdAPSO is very high. This is an indication 

that the fusion of Primal Dual method and PSO will increase the dependability to PSO in overcoming premature 

convergence and converging to global optima. It is worthy of note that pdAPSO converged to the global 

optimum for all the test functions. PSO-LDIW was unable to converge on Rotated Ackley function. The ratio of 

dependability of pdAPSO indicated that our algorithm offers a dependable and robust method for providing 

solution to global optimisation problems. The pace at which an algorithm attains the global optimum is a very 

important parameter for assessing the performance of the algorithm. Since the Primal Dual method is a robust 

optimisation algorithm, it is expected that pdAPSO will produce superior result in comparison to so other state 

of the art algorithm with a better speed of convergence. To substantiate our claim, the results of Mean FEs and 

SP, for the eleven algorithms are shown in Table 4. The best results are boldface in each of the Tables.  

It is very obvious from those tables that the speed of convergence of pdAPSO algorithm is superior to 

the other PSO algorithms on all the benchmark functions. For instance, on Schwefel's function, the mean FEs of 

5571, 7069, 6954, 6631, 3872, 4396, 24,910, 4767, and 5853 are required by PSO-LDIW, CLPSO, pPSA, 

PSOrank, OLPSO-G, ELPSO, APSO-VI, DNSPSO and MSLPSO respectively to attain the global optima.  

However, pdAPSO only uses 332 which is an indication that pdAPSO is the fastest. To be concise, pdAPSO uses 

the lowest number of FEs to attain satisfactory solutions for all the 13 benchmark functions. This is another 

confirmation that the Primal Dual method has enhanced the PSO algorithm in producing better fitness value and 

creating diversity in the swarm population to improve the convergence speed of PSO particles. 

 

VI. CONCLUSION  
This paper presents a new hybrid optimization algorithm named Primal Dual Interior Point Method 

Asynchronous Particle Swarm Optimization (pdAPSO). This algorithm combines the explorative ability of PSO 

with the exploitative capacity of the Primal Dual Interior Point Method thereby possessing a strong capacity of 

avoiding premature convergence. Several experiments were conducted. We did a comparison of the 

performance and superiority of solutions of the 10 algorithms, and the outcome of our tests show that pdAPSO 

have the capacity to overcome the problem premature convergence and prevent particles from being trapped in 

local minima on many all the functions. The comparison of dependability and speed of convergence of the 10 

algorithms on 13 benchmark functions was also done. The result of our experiment shows that pdAPSO is 

reliable and robust algorithm for solving global optimisation problems. The convergence speed of pdAPSO 

algorithm was compared to the other state of the art PSO algorithms and our proposed algorithms proved to 

attain the global optima on all the benchmark functions in the shortest run time. The behaviour of pdAPSO 

under the unimodal and multimodal functions shows that the algorithm will be a suitable tool in solving 

complicated optimization problems that PSO alone or Primal Dual alone cannot solve efficiently. 
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