American Journal of Engineering Research (AJER)2017American Journal of Engineering Research (AJER)e-ISSN: 2320-0847 p-ISSN : 2320-0936Volume-6, Issue-1, pp-240-244www.ajer.orgResearch PaperOpen Access

Some More Results on Fuzzy Pairwise r-Separation Axioms in Fuzzy Bitopological Spaces

Manjari Srivastava

Department Of Mathematics, V. S. S D. College, Kanpur, India

ABSTRACT: Here we study fuzzy r-separation axioms in fuzzy bitopological spaces in detail. Some already existing definitions have been compared with each other. Several important results have been obtained. **Keywords**: Fuzzy regularly open sets, Fuzzy r-separation axioms, Fuzzy almost separation axioms.

I. INTRODUCTION

The concept of fuzzy regularly open set was introduced by Azad [2] in 1981. In 1988, Arya and Nour [1] introduced the notion of r-separation axioms in a bitopological space .Using these concepts Srivastava et al.[9] in 2015 introduced fuzzy r-separation axioms in fuzzy topological spaces. Fuzzy pairwise r-separation axioms were introduced and studied by Srivastava et al.[8].Here a comparative study among various definitions of fuzzy pairwise r-separation axioms have been established..We have obtained some results relating to these axioms also.

PRELIMINARIES

We take I= [0, 1].For a fuzzy set $A \in I^x$, co A denotes its fuzzy complement. For $\alpha \in I$, α denotes α valued constant fuzzy set. We denote the characteristic function of $Y \subseteq X$ as Y and regard it as an element of I^x .A fuzzy point x_r in X is a fuzzy set in X taking value $r \in (0, 1)$ at x and 0 elsewhere, x and r are called the support and value of x_r respectively. A fuzzy point x_r is said to belong to $A \in I^x$ if r < A(x). Two fuzzy points are said to be distinct if their support are distinct. Given a fuzzy topological space (in short fts) (X, T), $A \in I^x$ is called regularly open if int cl (A) = A . Also $A \in I^x$ is called regularly closed if co A is regularly open. Clearly A is regularly closed if and only if A=cl int A. All undefined concepts are taken from Lowen[3].

Proposition2.1: [2] Intersection of two fuzzy regularly open sets is regularly open.

Proposition2.2: [2] Closure of a fuzzy open set in a fts (X,T) is fuzzy regularly closed and interior of a fuzzy closed set in X is fuzzy regularly open.

Definition2.1 [4] Let (X, T) be an fts and x_r be a fuzzy point in X. A fuzzy set A is called a fuzzy rneighbourhood if there exists a fuzzy regularly open set U such that $x_r \in U \subseteq A$. A fuzzy set A is called quasi rneighbourhood of a fuzzy singleton x_r in X if there exist a fuzzy regularly open set U such that $x_r q U \subseteq A$.

Definition2.2 [4] Let (X,T) be a fts ,then the set of all fuzzy regularly open sets forms a base for some topology on X. This fuzzy topology is called the fuzzy semi regularization topology of T and is denoted by T*, clearly $T^* \subseteq T$

. (X, T^*) is called the fuzzy semi regularization of (X, T).

Definition2.3 [8] A fuzzy set A in fuzzy topological space is said to be a fuzzy δ -open set in X if it can be expressed as a union of fuzzy regularly open sets in X. The compliment of fuzzy δ -open set is called fuzzy δ -closed set. For a fuzzy set A in X, the δ -closure of A (in short, δ -clA) is defined as the intersection of all fuzzy δ -closed sets in X which contain A.

3. Fuzzy pairwise r-separation axioms in a fuzzy bitopological space.

We recall the definitions of fuzzy pairwise T_i axioms (i=0,1,2) from [6,7] and define fuzzy weakly pairwise T_i and fuzzy pairwise semi T_2 in the following lines.

Definitions 3.1 Let (X, τ_1, τ_2) be an fbts. Then it is called

- (i) Fuzzy pairwise T_0 if $\forall x, y \in X, x \neq y, \exists a \tau_1 fuzzy$ open set of a τ_2 -fuzzy open set U such that $U(x) \neq U(y)$.
- (ii) Fuzzy pairwise T_1 if $\forall x, y \in X, x \neq y, \exists a \tau_1 fuzzy$ open set U and a τ_2 -fuzzy open set V such that U(x) = 1, U(y) = 0 and V(x)=0, V(y)=1.

American Journal of Engineering Research (AJER)

- (iii) Fuzzy weakly pairwise T_1 if $\forall x, y \in X, x \neq y, \exists a \tau_1 fuzzy$ open set or a τ_2 -fuzzy open set U such that U(x) = 1, U(y) = 0.
- (iv) Fuzzy weakly pairwise T_1 if \forall pair of distinct fuzzy points $x_r, y_s \in X, \exists a \tau_1$ fuzzy open set U and a τ_2 fuzzy open set V such that $x_r \in U$, $y_s \in V$, or $x_r \in V$, $y_s \in U$, and $U \cap V = \emptyset$.
- (v) Fuzzy pairwise T₂ [SS₁] if \forall pair of distinct fuzzy points $x_r, y_s \in X, \exists a \tau_1$ fuzzy open set U and $a \tau_2$ fuzzy open set V such that $x_r \in U$, $y_s \in V$, and $U \cap V = \emptyset$.

Now replacing 'fuzzy open sets' by 'fuzzy regularly open sets' in (i), (iv) and (v) and by 'fuzzy δ open sets' in (ii) and (iii) of definition 3.1, we give the following definitions.

Definitions 3.2[8]: An fbts (X, τ_1, τ_2) is said to be

- (i) Fuzzy pairwise rT_0 if $\forall x, y \in X, x \neq y, \exists a \tau_1 fuzzy$ regularly open set of a τ_2 fuzzy open set U such that $U(x) \neq U(y)$.
- (ii) Fuzzy pairwise rT₁ if $\forall x, y \in X, x \neq y, \exists a \tau_1 fuzzy \delta$ -open set U and a τ_2 fuzzy open set V such that U(x) = 1, U(y = 0 and V(x)=0, V(y)=1.
- (iii) Fuzzy weakly pairwise $\mathbf{r}T_1$ if $\forall x, y \in X, x \neq y, \exists$ either a $\tau_1 \text{fuzzy}$ δ -open set or a τ_2 -fuzzy δ -open set U such that U(x) = 1, U(y) = 0.
- (iv) Fuzzy weakly pairwise rT_2 if \forall pair of distinct fuzzy points x_r , y_s in X, \exists a τ_1 fuzzy regularly open set U and a τ_2 -fuzzy regularly open set V such that $x_r \in U$, $y_s \in V$, or $x_r \in V$, $y_s \in U$, and $U \cap V = \emptyset$.
- (v) Fuzzy pairwise rT_2 if \forall pair of distinct fuzzy points x_r, y_s in X, $\exists a \tau_1$ -fuzzy regularly open set U and a τ_2 - fuzzy regularly open set V such that $x_r \in U, y_s \in V$, and $U \cap V = \emptyset$.

The relation among the above definitions has been stated in the following theorem.

Theorem 3.1Let (X, τ_1, τ_2) be an fbts. then we have the following imlication diagram.

fuzzy pairwise semi $T_2 \Rightarrow$ fuzzy weakly pairwise T_1

€

fuzzy pairwise semi rT₂ \Rightarrow fuzzy weakly pairwise rT₁

fuzzy pairwise semi rT₂ \Rightarrow fuzzy pairwise rT₁ \Rightarrow fuzzy pairwise rT₀ ∜

fuzzy pairwise semi $T_2 \Rightarrow$ fuzzy pairwise $T_1 \Rightarrow$ fuzzy pairwise T_0

Proof : we show that fuzzy pairwise $rT_2 \Rightarrow$ fuzzy pairwise rT_1

Let x, x, y, $\in X$, x \neq y. Now xr, ys, (0 < r < 1, 0 < s < 1) are distinct fuzzy points in X. Therefore, since (X, τ_1, τ_2) is fuzzy pairwise rT₂ \exists a τ_1 - fuzzy regularly open set U_r and a τ_2 - fuzzy regularly open set V_s such that $x_r \in U_r$, $y_s \in V_s$ and $U_r \cap V_s = \phi$. Now consider the fuzzy δ -open sets $U = \sup_r U_r$ and $V = \sup_s V_s$. The U(x)=1, U(y)=0 and V(x)=0, V(y)=1 showing that (X, τ_1, τ_2) is fuzzy pairwise rT₁. Other implication can be easily proved.

None of the above implications are reversible, as exhibited in the following counter examples. (i) fuzzy weakly pairwise $T_1 \neq$ fuzzy pairwise semi T_1 .

Counter-example 3.1 Let X be an uncountable set and τ_1 be the fuzzy topology on X generated by { α : $\alpha \in [0, 1] \cup \{U \subseteq X : X - U \text{ is finite}\}$ and τ_2 be the fuzzy topology on X generated by $\{\underline{\alpha} : \alpha \in [0, 1]\} \cup \{U \subseteq X : X - U \in [0, 1]\}$ U is countable}.

Then (X, τ_1, τ_2) is fuzzy weakly pairwise T_1 but it is not fuzzy pairwise semi T_2 since we can not find non empty $U \in \tau_1, V \in \tau_2$ which are disjoint.

(ii) fuzzy pairwise semi $T_2 \Rightarrow$ fuzzy pairwise semi T_2 .

Counter-example 3.2 Let X be an infinite set and τ_1 be the fuzzy topology on X generated by { $\underline{\alpha}$: $\alpha \in [0, 1] \cup \{ U \subseteq X: X - U \text{ is finite} \}$ and τ_2 be the discrete fuzzy topology on X.

Then (X, τ_1, τ_2) is fuzzy pairwise semi T₁ but it is not fuzzy pairwise semi rT₂ since there are no τ_1 fuzzy regularly open sets other than the constants.

(iii) fuzzy weakly pairwise semi $T_1 \Rightarrow$ fuzzy weakly pairwise rT_1 .

Counter-example 3.3 Let X be an infinite set, τ_1 be the fuzzy topology on X generated by $\{\alpha: \alpha \in$ [0,1] \cup {U \subset X: X-U in finite} and τ_2

 $\{\underline{\alpha}: \alpha \in [0, 1]\}.$

Then $(X, \tau_1, \text{open } \tau_2)$ is fuzzy weakly pairwise T_1 but not fuzzy weakly pairwise rT_1 since there are no τ_1 -fuzzy regularly open set or τ_2 -fuzzy regularly sets other than the constants. (iv) fuzzy weakly pairwise $rT_1 \Rightarrow$ fuzzy pairwise semi rT_1 .

www.ajer.org

2017

Counter-example 3.4 Let X be an infinite set, τ_1 be the fuzzy topology on X generated by { $\underline{\alpha}$: $\alpha \in [0, 1]$ } \cup { B_{xy} : x, y \in X, x \neq y} where B_{xy} is the fuzzy set in X such that $B_{xy}(x)=1$, $B_{xy}(y)=0$ and $B_{xy}(z)=1/2$ for $z \in X$, $z \neq x$, y and τ_2 be the fuzzy topology generated by { $\underline{\alpha}$: $\alpha \in [0, 1]$ } \cup { D_{xy} : x, y \in X, $x \neq$ y} where $D_{x,y}(x)=0$, $D_{x,y}(y)=0$ and $D_{x,y}(z)=1/3$ for $z \in X$, $z \neq x$, y.

Then (X, τ_1, τ_2) is fuzzy weakly pairwise rT_1 but not fuzzy pairwise semi rT_2 since we can not find τ_1 -fuzzy regularly open set U and τ_2 -fuzzy regularly open set V such that $x_r \in U$, $y_s \in V$ or $x_r \in V$, $y_s \in U$ and $U \cap V = \phi$.

(v) fuzzy pairwise semi $rT_2 \Rightarrow$ fuzzy pairwise rT_2 .

Counter-example 3.5 Let X be any set containing more than two points. Let τ_1 be the discrete fuzzy topology on X and τ_2 be the fuzzy topology on X generated by $\{\underline{\alpha}: \alpha \in [0,1]\} \cup \{U \subseteq X: U(x_0)=0 \text{ for some fixed point } x_0 \text{ in } X\}$.

Then (X, τ_1, τ_2) is fuzzy pairwise semi rT₁ since if we take distinct fuzzy points x_r , y_s in X, where x, y are different from x_0 then $\{x\}$ is a τ_1 -fuzzy regularly open set and $\{y\}$ is a τ_2 -fuzzy regularly open set, satisfying the condition that $x_r \in \{x\}$, $y_s \in \{y\}$ and $\{x\} \cap \{y\} = \phi$. Further, if $x = x_0$ or $y = x_0$ say $x = x_0$ then we can take $\{x_0\}$ in τ_1 and $\{y\}$ in τ_2 satisfying the requirement. But (X, τ_1, τ_2) is not fuzzy pairwise rT₂ since if we take the pair $(x_0)_r, y_r$ of distinct fuzzy points in X, then $\nexists \tau_2$ -fuzzy regularly open set U and τ_1 -fuzzy regularly open set V such that $(x_0) \in U$, $y_r \in V$, $U \cap V = \phi$.

(vi) fuzzy weakly pairwise $rT_1 \Rightarrow$ fuzzy pairwise rT_1 .

Counter-example 3.6. Let X={x,y,z}, τ_1 be the discrete fuzzy topology on X and τ_2 be the fuzzy topology on X generated by { $\underline{\alpha}$: $\alpha \in [0, 1]$ } \cup {{x}, {y}}.

Then (X, τ_1, τ_2) is fuzzy weakly pairwise rT_1 but not fuzzy pairwise rT_1 . (vii) fuzzy pairwise $rT_0 \Rightarrow$ fuzzy weakly pairwise rT_1 .

Counter-example 3.7. Let X={x,y,z}, τ_1 be the fuzzy topology on X generated by { $\underline{\alpha}$: $\alpha \in [0,1]$ } \cup {{x}, {y,z}} and τ_2 be the fuzzy topology on X generated by { $\underline{\alpha}$: $\alpha \in [0,1]$ } \cup {{x}, {y}}.

Then the fbts (X, τ_1, τ_2) is fuzzy pairwise rT_0 but not fuzzy weakly pairwise rT_1 since for the pair y, z there does not exist a $\tau_1 - \delta$ -fuzzy open set or a τ_2 -fuzzy δ -open set U such that U(z)=1, U(t)=0.

(viii) fuzzy pairwise $rT_1 \Rightarrow$ fuzzy pairwise rT_2 .

Here the counter example 3.4 again works.

(ix) fuzzy pairwise $rT_0 \Rightarrow$ fuzzy pairwise rT_1 .

Here the counter example 3.2 works. The fbts (X, τ_1, τ_2) is fuzzy pairwise rT_0 but it is not fuzzy pairwise rT_1 since we cannot find a τ_2 -fuzzy δ -open set U such that U(z)=1, U(y)=0.

(x) fuzzy pairwise $T_2 \neq$ fuzzy pairwise rT_2 .

Here counter example 3.2works. For distinct fuzzy points x_r , y_s in consider $X-\{y\} \in \tau_1$ and $\in \tau_2$ then $x_r \in X - \{y\}$, $y_s \in \{y\}$ and $(X - \{y\} \cap \{y\} = \phi$ showing that (X, τ_1, τ_2) is fuzzy pairwise T_2 but it is not fuzzy pairwise rT_2 since there do not exist τ_1 -fuzzy regularly open set other than the constants.

(ix) fuzzy pairwise $T_1 \neq$ fuzzy pairwise rT_1 .

Here the counter example3.2again works.

(xi) fuzzy pairwise $T_0 \Rightarrow$ fuzzy pairwise rT_0 .

Counter-example 3.8 Let X={x,y,z}, τ_1 be the fuzzy topology on X generated by { $\underline{\alpha}$: $\alpha \in [0,1]$ } \cup {{x}} and τ_2 be generated by { $\underline{\alpha}$: $\alpha \in [0,1]$ } \cup {{x}}.

Then (X, τ_1, τ_2) is fuzzy pairwise T_0 but not pairwise rT_0 since for there are no τ_1 -fuzzy regularly open sets or τ_2 -fuzzy regularly open sets other than the constants.

(xiii) fuzzy pairwise $T_1 \Rightarrow$ fuzzy pairwise T_2 .

Here counter example 5.2.1 works.

(xiv) fuzzy pairwise $T_0 \Rightarrow$ fuzzy pairwise T_1 .

Counter-example 3.9. Let X be any non empty set containing at least two points. Let τ_1 be the discrete fuzzy topology on X and τ_2 be the indiscrete fuzzy topology on X. Then (X, τ_1, τ_2) is fuzzy pairwise T_0 but not fuzzy pairwise T_1 .

Now we prove some results related to fuzzy pairwise rT_i axioms (i=0, 1, 2), fuzzy weakly pairwise rT₁.

2017

American Journal of Engineering Research (AJER)

2017

Proposition 3.1. An fbts (X, τ_1, τ_2) is fuzzy pairwise rT_0 if either (X, τ_1) or (X, τ_2) is rT_0 .

Proof. Given that (X, τ_1) or (X, τ_2) is rT_o if (X, τ_1) is rT_0 , then for $x, y \in X, x \neq y, \exists a \tau_1$ -fuzzy regularly open set U such that $U(x)\neq U(y)$ and if (X, τ_2) is rT_o , then for $x, y \in X, x \neq y, \exists a \tau_1$ -fuzzy regularly open set V such that $V(x)\neq V(y)$. Thus for $x, y \in X, x \neq y, \exists a$ fuzzy regularly open set U in $\tau_1 \cup \tau_1$ such that $U(x)\neq U(y)$ implying that (X, τ_1, τ_2) is fuzzy pairwise rT_0 .

We also have,

Proposition 3.2 An fbts (X, τ_1, τ_2) is fuzzy pairwise rT_1 if (X, τ_1) and (X, τ_2) are fuzzy rT_1 .

Proof. First, let us suppose that the fbts (X, τ_1, τ_2) is fuzzy pairwise rT_1 . If Then for $x, y \in X, x \neq y, \exists a \tau_1$ -fuzzy δ -open set U_1 and a τ_2 -fuzzy δ -open set V_1 such that $U_1(x)=1$, $U_1(y)=0$ and $V_1(x)=0$, $V_1(y)=1$. Further we take pair x, y then $\exists a \tau_2$ -fuzzy δ -open set V_2 such that $U_2(x)=0$, $U_2(y)=1$ and $V_2(x)=1$, $V_2(y)=0$. Thus for $x, y \in X, x \neq y$, we have found τ_1 -fuzzy δ -open sets U_1 and U_2 such that $U_1(x)=1$, $U_1(y)=0$ and $U_2(x)=0$, $U_2(y)=1$ showing that (X, τ_1) is fuzzy rT_1 . Similarly (X, τ_2) is fuzzy rT_1 .

Conversely, suppose that (X, τ_1) and (X, τ_2) are fuzzy rT_1 . Then since (X, τ_1) is fuzzy rT_1 , for $x, y \in X, x \neq y, \exists a \tau_1$ -fuzzy δ -open set U (say) such that U (x)=1, U(y)=0 and further, as (X, τ_2) is fuzzy rT_1 , choosing $y, x \in X, \exists a \tau_2$ -fuzzy δ -open set V (say) such that V(x)=0, V(y)=1. Thus for $x, y \in X, x \neq y$, we have found τ_1 -fuzzy δ -open sets U and a τ_2 -fuzzy δ -open set V such that U(x)=1, U(y)=0 and V(x)=0, V(y)=1 showing that (X, τ_1, τ_2) is fuzzy pairwise r T_1 .

Theorem 3.2[8]. In an fbts (X, τ_1, τ_1) the following statements are equivalent:

(a) (X, τ_1, τ_1) is fuzzy weakly pairwise rT_1 .

(b) $\tau_1 - \delta cl \{x\} \cap \tau_2 ng$ characterization of fuzzy pairwise rT_2 axiom.

Theorem 3.3[8]: An fbts (X, τ_1, τ_2) is fuzzy pairwise rT_2 iff the diagonal set Δ_x is fuzzy closed in $(X \times X, \tau_1^* \times \tau_2^*)$.

Now we study fuzzy pairwise r-regular and fuzzy pairwise r-normal fuzzy bitopological spaces. In case of fuzzy pairwise r-regular, we have the following characterization.

Theorem 3.4[8] In an fbts (X, τ_1, τ_2) the following statements are equivalent:

- (a) The fbts (X, τ_1, τ_2) is fuzzy pairwise r-regular.
- (b) For each fuzzy point x_r in X and every τ_i -fuzzy open set F such that $x_r \subseteq F, \exists a \tau_i$ -fuzzy regularly open set U such that $x_r \subseteq U \subseteq \tau_i$ -cl U $\subseteq F$.

Proof (a) \Rightarrow (b)

Let the fbts (X, τ_1, τ_2) be fuzzy pairwise r-regular. Then for every τ_i -fuzzy open set F and for each fuzzy point x_r such that $x_r \subseteq F, \exists \ a \ \tau_i$ -fuzzy regularly open set U and τ_i -fuzzy regularly open set V such that $x_r \subseteq U, coF \subseteq V$ and $U \subseteq coF \subseteq V$. Thus $x_r \subseteq U \subseteq coV \subseteq F$. Now $U \subseteq coV$ and coV is a τ_j -fuzzy regularly closed set and hence a τ_j -fuzzy closed set therefore τ_j -cl $U \subseteq coV$. Hence $x_r \subseteq U \subseteq \tau_j - cl \ U \subseteq F$.

$$(\mathbf{b}) \Rightarrow (\mathbf{a})$$

Let x_r be a fuzzy point and F be a τ_i -fuzzy closed set such that $x_r \subseteq coF$. In view of (b), $\exists a \tau_i$ -fuzzy regularly open set U such that $x_r \subseteq U \subseteq \tau_j - cl U \subseteq coF$. Consider now the fuzzy set U_1 and V_1 where $U_1=U$ and $V_1=1-\tau_j$ -cl U. Then U_1 is a τ_i -fuzzy regularly open set and using proposition 4.1.2. V_1 is a τ_j -fuzzy regularly open set such that $x_r \subseteq U_1$, $F \subseteq V_1$ and $U_1 \subseteq coV_1$ i.e. $U_1 \overline{q} V_1$, as for any $x \exists X$, $U_1(z)+V_1(z)=U(z)+1-\tau_j$ -cl U (z) which is obviously ≤ 1 .

Theorem 3.5 Every crisp bifuzzy regularly open subset of a fuzzy pairwise r-regular space is fuzzy pairwise r-regular.

Proof. Let (X, τ_1, τ_2) be fuzzy pairwise r-regular and let $Y \subseteq X$ be a crisp bifuzzy regularly open subset of X. To show that $(X, \tau_{1y}, \tau_{1y})$ is fuzzy pairwise r-regular, let F be any τ_{1y} -fuzzy closed set and $x_r \subseteq coF$. Then there is a τ_i -fuzzy closed set A such that $F=A \cap Y$. Since $(X, \tau_{1y}, \tau_{1y})$ is fuzzy pairwise r-regular and A is a τ_i -fuzzy closed set such that $x_r \subseteq coA$, $\exists \subseteq a \tau_i$ -fuzzy regularly open set U and a τ_i -fuzzy regularly open set V such that $x_r \subseteq U$, $A\subseteq V$ and $U \subseteq coV$. Take $U_y = U \cap Y$ and $U_y = V \cap Y$. Then U_y and V_y are fuzzy regularly open sets is Y by using proposition 4.1.1. Hence $x_r \subseteq U_y$, $F \subseteq V_y$ and U_y , $\subseteq coV_y$ showing that $(Y, \tau_{1y}, \tau_{1y})$ is fuzzy pairwise r-regular. Now we define fuzzy pairwise r-normality in a fbts.

Definition 3.3 [8] An fbts (X, τ_1, τ_2) is said to be fuzzy pairwise r-normal if for any τ_i -fuzzy regularly open set U and a τ_i -fuzzy regularly open set V such that $A \subseteq coB, \exists a \tau_j$ -fuzzy regularly open set U and a τ_i -fuzzy regularly open set V such that $A \subseteq U, B \subseteq V$ and $U \subseteq coV$.

www.ajer.org

American Journal of Engineering Research (AJER)

In case of fuzzy pairwise r-normal space, we have the following characterization:

Theorem3.6[8]. In an fbts (X, τ_1, τ_2) the following statements are equivalent:

- (a) The fbts (X, τ_1, τ_2) is fuzzy pairwise r-normal.
- (b) For any τ_i -fuzzy closed A and τ_j -fuzzy open set B such that $A \subseteq B$. $\exists a \tau_j$ -fuzzy regularly open set U such that $A \subseteq U \subseteq \tau_i$ -cl U $\subseteq B$.

Proof (a) \Rightarrow (b)

Let the fbts (X, τ_1, τ_2) be fuzzy pairwise r-normal. Then any τ_i -fuzzy closed set A and τ_j -fuzzy open set B such that $A \subseteq B$. $\exists a \tau_j$ -fuzzy regularly open set U and a τ_i -fuzzy regularly open set V such that $A \subseteq U$, $coB \subseteq V$ and $U \subseteq coV$. Thus $A \subseteq U \subseteq coV \subseteq B$. Since coV is τ_i -fuzzy regularly closed set and hence a τ_i -fuzzy closed set containing U, we have $A \subseteq U \subseteq \tau_i$ -cl. $U \subseteq B$.

$$(\mathbf{b}) \Rightarrow (\mathbf{a})$$

Let A be any τ_i -fuzzy closed set and B be any τ_j -fuzzy closed set such that $A \subseteq coB$. In view (b) $\exists a \tau_i$ -fuzzy regularly open set U such that $A \subseteq U \subseteq \tau_i - cl U \subseteq B$. Consider the fuzzy sets U_1 and V_1 where $U_1=U$ and $V_1=1-\tau_i$ -cl U. Then U_1 is a τ_j -fuzzy regularly open and V_1 is a τ_i -fuzzy regularly open using proposition 4.1.2 and are such that $A \subseteq U_1 B \subseteq V_1$ and $U_1 \subseteq coV_1$ i.e. $U_1 \overline{q} V_1$, as for any $z \in X$, $U_1(z)+V_1(z) = U(z)+1-\tau_i$ -cl U (z) which is obviously ≤ 1 .

Theorem 3.7 Every bifuzzy closed and bifuzzy regularly open subspace of a fuzzy pairwise r-normal space is fuzzy pairwise r-normal.

Proof. Let Y be a bifuzzy closed and bifuzzy regularly open subspace of fuzzy pairwise r-normal space (X, τ_1, τ_2) . Let A and B be any two fuzzy sets in Y such that A is τ_{iy} -fuzzy closed and B is τ_{iy} -fuzzy closed and A \subseteq coB. Since Y is a bifuzzy closed subset of X, A is τ_i -fuzzy closed and B is τ_j -fuzzy closed. Therefore since (X, τ_1, τ_2) is fuzzy pairwise r-normal, $\exists a \tau_j$ -fuzzy regularly open set V such that A $\subseteq U$, B \subseteq V and U \subseteq coV. Take U_y = U \cap Y and V_y = V \cap Y. Now U_y is τ_{jy} -fuzzy regularly open and U_y is τ_{jy} -fuzzy regularly open (using the fact that Y is bifuzzy regularly open and proposition 4.1.1), such that A \subseteq U_y, B \subseteq V_y and U_y \subseteq coV_y. Hence (X, τ_1, τ_2) is fuzzy pairwise r-normal.

II. CONCLUSION

Here we have studied fuzzy pairwise r-separation axioms in fuzzy bitopological space using fuzzy regularly open sets. Interrelations among the various pairwise r-separation axioms have been established. Several important results related to these axioms have been obtained.

REFERENCES

- Arya S.P. and Nour T.M., Separation axioms for bitopological spaces, Indian J.Pure and Appl. Math.19(1)(1988) 42-50
 Azad, K. K., on fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981)14-
- [2]. Azad, K. K., on fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981)14-32.
- [3]. Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56(1976) 621-633.
- [4]. Mukharjee, M. N. and Ghosh B., Fuzzy semi regularization topologies and fuzzy submaximal spaces, Fuzzy sets and systems 44(1991) 283-294.
- [5]. Singal H.K. and Rajvanshi N., Regularly open sets in fuzzy topological spaces, Fuzzy sets and systems 50 (1992) 343-353.
- [6]. Srivastava M.and Srivastava R., On fuzzy pairwise-T₀ and fuzzy pairwise-T₁ bitopological spaces,Indian J.Pure Appl.Math.32 (2001)387-396.
- [7]. Srivastava, R.and Srivastava, M., On pairwise Hausdorff fuzzy bitopological spaces, J. Fuzzy Math. 5(3)(1997) 553-564.
- [8]. Srivastava R. and Srivastava M., On certain separation axioms in fuzzy bitopological spaces, F.J. Math. Sci. 27(3)(2007) 579-587
- [9]. Srivastava M. and Sinha P. Fuzzy r-Separation Axioms in Fuzzy Topological Spaces, Int.J.Math. Archive-6(5)(2015)57-62

2017