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ABSTRACT: Shock wave propagations along a one-dimensional molecule chain were studied in this paper 

via molecular dynamics modeling and simulation. When the molecule chain is subject to an impact force, 

oscillations were observed behind the shock wave fronts based on the molecular dynamics simulation results. 

Such oscillations were mainly due to the numerical errors occurring at strong discontinuities. In this paper, the 

flux-corrected transport algorithm was implemented in molecular dynamics to overcome this issue. The 

simulations showed that the proposed method can eliminate the oscillations while keeping the strong 

discontinuities at the shock wave fronts. 
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I. INTRODUCTION 
Shock waves, like other waves, carry energy and propagate through a medium. The propagation is 

governed by a second order differential equation, which is hyperbolic in nature, and therefore the shock wave 

propagation occurs with a finite speed[1]. They are characterized by a nearly discontinuous change in 

characteristics of the medium, with an extremely rapid rise in pressure, temperature, and density across the 

shock front. This rapid change can cause deformation, fracture and fragmentation, polymorphic phase changes, 

and other alterations which can cause failure to occur in materials [2]. Researchers are interested in studying the 

potentially destructive effects of shock waves both for applications where it is desired, such as military 

explosions and ballistic impacts, and resistances, such as supersonic flow and military defense.  

Experimental studies can be very costly, both in time and material/facility. Therefore, it is preferred to 

use numerical simulations, whose only major cost is computation time. The simulation of nanoscale mechanics 

is of growing interest as the area of nanotechnology expands. Molecular dynamics (MD), as a widely-used 

numerical method at nanoscale, has been employed to study shock wave propagation at nanoscale. Bringa and 

co-workers [3] used non-equilibrium molecular dynamics (NEMD) to understand about the behavior of metals 

during the initial phase. Their large-scale MD simulations of up to 352 million atoms provided a detailed 

understanding of dislocation flow at high strain rates. Other researchers also used MD simulation to study 

shock-induced phenomena such as phase transitions [4] and chemistry [5, 6]. 

Because of the nearly discontinuous nature of shockwaves, oscillations are generated behind the shock 

fronts, which are numerical errors that develop during the simulation. A common technique to remove these 

oscillations is applying artificial viscosity to the system [7]. While effective at reducing the oscillations, this 

method spreads the shock wave fronts over several elements and dissipates the total energy in the system. 

Alternatively, the flux-corrected transport (FCT) algorithm has been shown to remove oscillations without 

causing these problems, and a finite element with FCT method for the study of shock wave propagation was 

proposed by Xiao [8]. 

In this study, we implemented the FCT algorithm in MD simulation to model shock wave propagation 

at the nanoscale with the removal of oscillations behind shock wave fronts. The outline of this paper is described 

as below. After introduction, Section 2 provides the methodologies used in this study. Simulations and results 

are discussed in Section 3 followed by the conclusion. 
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II. METHODOLOGY 
2.1  Molecular Dynamics 

MD is a powerful tool that is used to elucidate many physical phenomena at the nanoscale. It assumes 

that the motion of the molecules in the system obey the laws of classical mechanics. MD simulations are 

considered excellent approximations for many materials [9]. In a MD simulation, the system is first initialized 

by selecting initial positions and velocities for each molecule. Once initialization is done, the forces are 

calculated for each molecule, and positions and velocities are updated through time integration of Newton’s 

equations of motion, shown in (1). 

          (1) 

where u is the displacement, the superposed dots represent material time derivatives, fext is the 

externally applied force,  fint is the internal force, and m is the particle mass. The internal force is derived from 

the potential energy function as shown in (2), 

          (2) 

where U is the total potential, and r is the position of molecule 

 

During the MD simulation, the accelerations are calculated based on the forces, i.e. (1). The velocities 

are then determined by integrating accelerations, and positions by integrating velocities. In this paper, the time 

integrations within the time step of  were performed using the velocity Verlet method given below. 

       (3) 

        (4) 

        (5) 

 

2.2  Flux-Corrected Transport 

The FCT algorithm contains two stages, the transport stage and the antidiffusion stage, where the 

antidiffusion stage corrects the numerical errors from the transport stage. These two stages allow the FCT 

algorithm to treat discontinuities without generating oscillations. The FCT algorithm was originally used in one 

dimensional finite-difference (FD) methods. The general FCT is composed of six steps outlined below in (6) 

through (11).  

The first step is the transport calculation, where the trial values of any function Q are obtained at time 

step n+1 and spatial step j with (6), where  is the time step and  is the spatial increment. 

         (6) 

The second step is shown as (7), the calculation of the diffusive fluxes, where   is the diffusive coefficient. 

         (7) 

The third step is the diffusion step. 

        (8) 

Step four is (9), the calculation of the antidiffusive fluxes, where  is the antidiffusive coefficient. 

         (9) 

Step five is to select the limitation of antidiffusive fluxes, where , and . 

      (10) 

The final step is the antidiffusion step, shown as (11). 

        (11) 

 

While the FCT algorithm has been shown to efficiently eliminate oscillations when used with FD 

methods, it must be applied to each of the several differential equations that are usually needed for FD. For 

finite element (FE) methods, the same algorithm can be used by only applying the FCT algorithm to the velocity 

update [8]. Since each component of velocity is independent, the FCT can be applied to each component 

separately, provided that a structured mesh is used. This algorithm can be extended to MD simulations. 

 

2.3 MD-FCT  

 With the implementation of the FCT algorithm, the flowchart for the MD simulation can be written as 

follows: 
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a) Initialization and initial conditions: give initial positions to the molecules in equilibrium position. 

b) Update displacements and accelerations of molecules via equations (3) and (4) at time  based on the 

atomistic displacements, accelerations and velocities at time . 

c) Obtain trial velocities via equation (5), , and then apply FCT to velocities: 

i) Calculate diffusive fluxes: . 

ii) Diffusion: . 

iii) Calculate antidiffusive fluxes: . 

iv) Apply limitation of antidiffusive fluxes: 

, 

where , and . 

v) Antidiffusion: . 

d).  Output if simulation is complete; if not, return to (b). 

 

III. SIMULATIONS AND DISCUSSIONS 
We first considered shock wave propagation in a one-dimensional linear elastic molecule chain with a 

length of 20 nm. A simple spring model was used for interaction between two neighboring molecules. The 

potential function is 

         (12) 

where k= 100 N/m is the spring stiffness,  is the unstretched bond length bewteen two 

neighboring molecules,  and  is the current bond length. Each molecule has a mass of 10
-25

 kg. The initial 

configuration was assumed to be at zero temperature, and molecules were placed at their equilibrium positions. 

A force with magnitude 30 nN was applied to the molecule chain at one end for 1.3 ps and then released. A free 

end boundary condition was used for the opposite end of the chain. At nanoscale, the stress is calculated based 

on the interatomic forces between molecules as the following equation 

         (13) 

 

where  represents interatomic distance between atoms J and I, and  denotes the tensor product of 

two vectors. The sign convention adopted here for interatomic forces, , is positive for attraction and negative 

for repulsion. 

Stress distributions along the molecule chain were plotted at three different times: , , 

and  ps as shown in Fig. 1. It can be seen that the oscillations were generated behind the shock fronts 

during molecular dynamics simulation. After applying the FCT algorithm, a very good discontinuous wave 

profile can be seen in Fig. 1(b). 
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(a) MD simulation    (b) MD-FCT simulation 

Fig. 1. square shape stress wave propagating along a one-dimensional molecule chain with a spring-model 

potential 

 

 
(a) MD simulation    (b) MD-FCT simulation 

Fig. 2. decaying stress wave propagating along a one-dimensional molecule chain with a spring-model potential 

 

Next, a different wave shape is examined by changing the applied load and keeping all other 

parameters unchanged. Instead of a constant magnitude, the load exponentially decays after the initial 

application. Fig. 2 shows the wave with FCT applied and without FCT applied, respectively. It can be seen that 

the FCT algorithm can remove the oscillations while preserving the discontinuous wave front and the peak of 

the wave. It should be noted that in both cases the wave perfectly retained its shape as it propagated along the 

molecule chain. This was due to the spring-model potential being very simple, and its derivative, which was the 

internal force, being linear. Because the slope for the internal force was constant, it did not matter how high or 

low the stress was, the stiffness is always the same. Thus, the front (loading) wave and back (unloading) wave 

always had the same speed, even if the stresses were at different magnitudes. 

 

The second potential function examined is the Lennard-Jones 6-12 (LJ) potential, shown in (14), where 

 is the depth of the energy well. 

         (14) 

The same molecule chain was studied as in the above except the LJ potential is employed to describe 

the interatomic interaction between neighboring molecules. A square stress wave was examined first. A force of 

30 nN is applied to the end of the molecule chain for 4.0 ps. The stress waves were plotted at three different 

times: , , and  ps. Without applying the FCT algorithm, oscillations were again 

generated behind the shock fronts. Such oscillations can be totally eliminated when implementing the FCT 

algorithm in MD simulations, as shown in Fig. 3. 
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(a) MD simulation    (b) MD-FCT simulation 

Fig. 3. square stress wave propagating along a one-dimensional molecule chain with a LJ potential 

 
(a) MD simulation      (b) MD-FCT simulation 

Fig. 4. decaying stress wave propagating along a one-dimensional molecule chain with a LJ potential 

 

It shall be noted that the induced stress was small enough here, and the equivalent stiffness due to the 

LJ potential was almost a constant. Therefore, the loading and unloading waves had nearly the same (and 

constant) speed. Consequently, the shape was almost perfectly maintained. However, if the stress was large 

enough, the equivalent stiffness (second derivative of the potential) was not constant at different stress levels. 

Therefore, the wave speed at different stress levels would vary. Specifically, higher stresses would cause slower 

wave speeds. To illustrate such phenomena, a wave similar to the exponentially decaying wave was studied. The 

initial force magnitude of 300 nN was held for 2.0 ps, and then decayed for 3.0 ps down to zero. The stress 

waves at three different times were plotted in Fig. 4. 

As shown in Fig. 4, the loading wave front sloped back because wave propagated slower at a higher 

stress level. At unloading phase, since low-stress waves propagated faster than high-stress waves, the unloading 

wave become more and more abrupt. In addition, the unloading wave caught the loading wave, and the plateau 

began to shrink. 

 

IV. CONCLUSION 
The flux-corrected transported algorithm was implemented in molecular dynamics simulations in this 

paper to study shock wave propagation at nanoscale. The simulation results showed that the proposed method 

could easily eliminate the oscillations behind the shock wave fronts as well as maintain the strong 

discontinuities. Two potential functions were employed, and the shock waves propagated differently. Although 

only one-dimensional molecule chains were studied in this paper, the proposed method could be easily extended 

to study multi-dimensional nanosystems. It shall be noted that no temperature effects were considered in this 

paper because the proposed method could eliminate atomic vibrations as well. Studying the temperature effects 

on shock wave propagations at the nanoscale could be the future research. 
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