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ABSTRACT: The optimal solution of a Linear Programming problem (LPP) is a basic feasible solution and 

all basic feasible solutions are extreme or boundary points of a convex region formed by the constraint 

functions of the LPP. In fact, the feasible solution space is not always a convex set so the verification of extreme 

points for optimality is quite difficult. In order to cover the non-convex feasible points within a convex set, a 

convex hull is imagined so that the extreme or boundary points may be checked for evaluation of the optimum 

solution in the decision-making process. In this article a computer assisted convex hull computation algorithm 

using the Mean Point and Python code verified results of the designed algorithm are discussed.  
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I. INTRODUCTION 

In Euclidean space, a convex set is the region such that, for every pair of points within the region, 

every point on the straight-line segment that joins the pair of points is also within the region. The convex hull or 

convex envelope of a set X of points in the Euclidean plane or Euclidean space is the smallest convex set that 

contains X. The domains and ranges of the functions for many linear programming problems’ constraints are 

hyper-planes which are convex sets. The solution processes of optimization problems are computed by 

improving the finite set of feasible points by means of a suitable iterative algorithm. The set of feasible points in 

many situations are not defined in the convex set forms. Therefore, a minimum convex set containing the 

feasible solution set in the form of a convex hull is computed first to decide the possible convex polyhedron that 

contain the basic feasible solution (BFS) as its vertices. 

In computational geometry, several algorithms are proposed for the computation of the convex hull of a 

finite set of points with various computational complexities. The convex hull computation is the framing of a 

convex shape that can represent the required convex feasible region for the constrained optimization problem. 

The time complexity of the corresponding algorithm is usually estimated in terms of  - the number of input 

points of the finite set and/or  - the number of points on the boundary of the convex-hull. If the time 

complexity depends on ,  then the algorithm is output sensitive. There are several algorithms available in the 

convex- hull computation algorithm literature. 

The notable algorithms are Gift wrapping planar algorithm of Jarvis [1], Graham Scan algorithm [2], 

Chan’s algorithm [3], The ultimate planar convex hull algorithm of Kirkpatrick & Seidel [4] and Akl-Toussaint 

heuristic algorithm [5]. In section II, we present the pseudocode of the algorithm. Then in section III, we give a 

step by step description of the algorithm. Section IV presents the analysis of the computational complexity of 

the algorithm followed by section V where the outputs of the Python code for the algorithm are presented.  

 

II. PSEUDOCODE OF THE PROPOSED ALGORITHM 

check_counter_clockwise(prev, nxt, curr) 

1- value = (nxt.x - prev.x)*(curr.y - prev.y) - (nxt.y - prev.y)*(curr.x - prev.x) 

2- if value > 0: 
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3-     return False 

4- else: 

5-     return True 

 

convexhull( list A ): 

1- mean_x = mean x-coordinate in list A 

2- mean_y = mean y-coordinate in list A 

3- M = [mean_x, mean_y] 

4- max_point = point in list A with maximum x coordinate (take the first instance in case of multiple 

instances)  

5- min_point = point in list A with minimum x coordinate  

6- Initialise empty lists Q1 = [ ], Q2 = [ ], Q3 = [ ], Q4 = [ ]  

7- for i = 1 to n:  

8-     If i doesn’t correspond to max_point or min_point:  

9-         d = distance between A[i] and M  

10-  a = positive angle in degrees that the line joining A[i] with M makes with the line joining M  with 

max_point in the counterclockwise direction 

11-         Append [ A[i].x, A[i].y, d, a ] to Q1, Q2, Q3 or Q4 according to the quadrant of A[i]  with respect to M 

12- Sort Q1, Q2, Q3 and Q4 according to distance parameter stored at each index 

13-  = length(Q1),  = length(Q2),  = length(Q3) and  = length(Q4) 

14- Initialise circular linked as convex_hull and insert max_point and min_point in it 

15- while max( , , , ) > 0:  

16- Take out the last element from each of Q1, Q2, Q3 and Q4 (if it exists) and insert it in sorted order with 

respect to angle parameter in convex_hull  

17-      prev = convex_hull.head, curr = prev.next, nxt = curr.next 

18-      while curr is not convex_hull.head: 

19-          if check_counter_clockwise(prev, nxt, curr) is false: 

20-              curr = nxt 

21-              nxt = nxt.next 

22-              prev.next = curr 

23-         else: 

24-              prev = prev.next 

25-              curr = curr.next 

26-              nxt = nxt.next 

27- Print convex_hull to get the points on the boundary of the convex hull in counterclockwise direction                                                               

 

III. DESCRIPTION OF THE ALGORITHM 

(1) The input is a list of  pairs  which denotes the set of input points on the X-Y plane for which we 

have to find the convex hull. 

(2) Find the mean - coordinate and the mean - coordinate. Label this point as M[mean_x, mean_y]. This is 

the mean point.  

(3) Since the two points with the maximum  coordinate and the minimum  coordinate have to be a part of 

the convex hull, we find them both and store them in max_point and min_point respectively.  

(4) Initialise four lists labeled as Q1, Q2, Q3 and Q4 which denote the four quadrants when we draw imaginary 

X-Y axes by setting the origin at the point M. The positive direction of this X axis is the extension of the 

line segment joining M to the point max_point.  

(5) The points- max_point and min_point are not put in any of these lists. Put every other input point in 

exactly one of these four lists by comparing their  coordinates and  coordinates with that of point M. 

(6) Each value in these four lists is of the form [  coordinate,  coordinate, distance, angle]. Here distance is 
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the distance of the point from M. The angle is found as the inverse tangent of the ratio of length of  

component (of line joining point to the M) with the  component (of the same line joining point to M) in 

degrees, and the points are considered from all four quadrants Q1, Q2, Q3 and Q4. We then add 360º to the 

values that are negative in order to store all angles as positive values. 

(7) Sort the values in the four lists individually according to the distance parameter. 

(8) Initialize a circular linked list called convex_hull and insert in it the two points: max_point and 

min_point. The head of the linked list points to the node corresponding to max_point. The node for 

max_point points to the node containing min_point which, in turn points to the head. This linked list at 

the end of the algorithm will have all the vertices of the convex hull in anti-clockwise direction starting at 

max_point. The nodes in this linked list will also be of the form [  coordinate,  coordinate, distance, 

angle]. Suppose curr is a node then curr.next gives us the node that comes after curr in the linked list.  

(9) Let , ,  and  be the number of points in Q1, Q2, Q3 and Q4 respectively. Repeat the steps (10) to 

(12) while . 

(10) Remove the last element from each list (if it exists otherwise pass) and store it in a new list temp_list. The 

last element is the current element with the maximum distance from M in that list. Whenever we remove 

an element, we decrease the corresponding variable , ,  or . 

(11) The number of elements in temp_list will be at most 4. We now insert these points into convex_hull 

based upon the angle parameter. The convex_hull list must always be in sorted order with respect to angle 

of the nodes starting at the first node (max_point with angle 0°). We insert a node with angle B between 

nodes with angles A and C if A< B < C. Note that a node might have to be inserted after the last node and 

before the head node if its angle is greater than every value in the list. 

(12) After the insertion of the new nodes, we test whether the points can be a part of the boundary of the 

convex hull or not. In convex_hull, we start from the head node (max_point) and take three consecutive 

nodes at a time. These three points are in the counterclockwise direction since we inserted them in sorted 

order. Let these points be , and   in this order. These may be a part 

of the convex hull if and only if 

(1):  

 If this value comes out to be negative, we delete the node curr denoting the point  and set          

,  and  

    Otherwise, ,  and  

    This step is terminated when we go around the list once and reach the head of convex_hull again.  

(13) After the while loop in from steps (9) to (12) ends, print the values in convex_hull starting from the head 

to get the vertices of the convex hull boundary in counter clockwise direction. These points are on the 

boundary of the convex hull.  

 

IV. DESCRIPTION OF COMPUTATIONAL COMPLEXITY OF ALGORITHM AND 

INFERENCE 

If we consider basic mathematical operations to run in constant time, we can see that the execution 

time of steps (2) to (6) is  . Using a sorting algorithm like the merge sort or the quick sort, step (7) runs in 

 time. This is so because we can argue that on average, one quadrant as defined above will have  

number of points. 

The while loop started in step (9) executes as long as  or  or  or   . The 

average number of times the while loop will run is thus . 

In each iteration of the while loop, we extract at most one point from each of the four quadrants and 

insert these points at their appropriate positions into convex_hull. After this, we iterate over this circular linked 

list considering three consecutive points at a time. Assume that we are at the ith iteration and let the length of the 
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circular linked list be . 

(2):  

We insert 1, 2, 3 or 4 points into this linked list in sorted order. Let  be the number of points 

inserted into the linked list in the ith iteration. 

We have to count the average (expected) number of comparisons that are done for each of these 

insertions. For the first insertion, the expected number of comparisons will be   . For the second insertion, 

the expected number of comparisons will be   . Similarly, we can find the expected number of comparisons 

for the other two points. Hence the average number of comparisons will be: 

 

(3):  

 

where the function is defined as:  

 

(4):  otherwise    

 

Since we are looking for an upper-bound to the number of comparisons, we assume that we make all 

four insertions in each case. The length of the list now is  and we also see that the number of 

comparisons on average is  from (3). 

After the insertions are done, we go around the list once and delete some point(s) based on the 

inequality (1). This adds to  more operations. The number of the operations in the while loop started 

in step (9) of the algorithm is:  

 

(5): +  

 

Whenever we have  points, in the worst case we can delete  of them when we iterate around 

the list taking three consecutive points at a time. The minimum number of points deleted here can be 0. The 

expected number of deletions will be thus . We also defined  - as the number of points which form the 

boundary of the convex hull. Assuming uniform distribution, we can claim that after  iterations, we will have 

 number of points in our convex_hull which are a part of the boundary. These can’t be deleted when we 

make a transition from the iteration to the iteration of the while loop.  

     The expected length of the list after the deletion will be 

 

(6):  

 

(7):  

 

Putting values of  from  to   in (7) and adding the equations vertically, we get: 

(8): =  

Using (8) with (5), we can see that the average runtime of the algorithm will be 

 . This algorithm is thus output sensitive. In cases where , the 

runtime will be . 
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The worst case occurs when all of the input points lie on the boundary of the convex hull, because then 

no point is deleted as we go from the ith iteration to the (i+1)th iteration as discussed above and then we can show 

that the runtime is achieved by setting  to get  . 

 

 

V. VERIFICATION OF CONVEX HULL COMPUTATIONAL ALGORITHM IN PYTHON 

CODE 

We have encoded the above described algorithm in Python version 3.4 and used “matplotlib” to plot 

the geometric shape of the computed circular linked list of the points that forms the boundary shape of the 

convex hull. The set of input points were generated by pseudo random number generator function in the random 

module of Python. Instance outputs for the algorithm at and are shown in Fig.1, Fig.2 and 

Fig.3 respectively. The point shown in red colour is the Mean Point for the input set. The dashed vertical and 

horizontal lines drawn through this point denote the imaginary X and Y axes required to separate the input set 

into Q1, Q2, Q3 and Q4. The points on the boundary of the convex hull region (both vertices and non-vertices) 

are shown in green colour and the interior points are shown in blue colour. 

 
Fig. 1 

 
Fig. 2 
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Fig. 3 

 

VI. CONCLUSION 

The discussed convex hull computation algorithm uses the mean point to find the polar angles and 

distances of all the input points and then with the help of a circular linked list implementation keeps track of all 

the points on the boundary of the convex hull. The average case time complexity of the algorithm is  . 

Thus, the runtime of the algorithm is the same as that of Jarvis [1].  
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