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ABSTRACT: We consider the implementation of the dictionary data structure on Random Access Memory 

(RAM) machines with nonuniform access cost. More specifically, an access to the 𝑖th location of the RAM costs 

𝑓(𝑖), where fis some nondecreasing function. Block data movement can also be catered for by allowing the 

access cost to a block of data be a function of the length of the data segment as well as 𝑓(𝑖), where 𝑖 is the 

highest location in that block. This model of computation can capture the cost of data movement, or the I/O 

complexity of algorithms as well as their computational complexity. We give optimal and efficient worst case 

lookup and amortized update times under various access costs. We also show how to generalize the results to 

hold for a wide class of access costs, and give interesting worst case lookup/ amortized update times tradeoff for 

some of the access costs. 

Keywords: Dictionary, trees, forests, hierarchical memory 

 

I. INTRODUCTION 
The computational complexity of most algorithms is based largely on the RAM model of computation; the 

running time of the algorithm depends on the number of arithmetic operations, comparisons made and variable 

assignments. The cost, unfortunately, ignores the time to access the operands of an operation. 

In modern computers, where large data bases and multi-level memory systems are used, data are fetched from 

slow memory, where data bases usually reside, and moved to fast memory, before any action is taken on these data. 

The data items are brought to fast memory in blocks, to offset the cost of accessing the slow memory. On the other 

hand, bringing only one data item from any memory level to fast memory, as the RAM model permits, can have a 

detrimental effect on the running time of algorithms. 

[1], [2], and [3] were the first, to our knowledge, to consider this problem with the RAM model from a 

theoretical point of view. [1] consider 2 memory level machines, [2] consider hierarchical memory machines, where 

access to location i costs 𝑓(𝑖). [3] improve upon the latter machine model by allowing block transfer cost to be a 

function of the length of the block plus the access cost to a location in that block. Basically, their model is defined as 

follows. 

 

DEFINITION [3]. The Hierarchical Memory Machine (HMM) is a Random Access Machine (RAM) operating 

under the following conditions: 

I. The access cost to any location, i, costs 𝑓(𝑖), where 𝑓 is a non-decreasing function. 

II. The cost of moving a block of length 𝑙 in locations [ 𝑥 − 𝑙, 𝑥]to locations [𝑦 − 𝑙, 𝑦]costs 𝑓(𝑥) + 𝑓(𝑦) + 1. 
[4] on the other hand made a slight modification to the above definition. 

 

DEFINITION [4]. Given 𝑓 an invertible function, then define 𝑓𝑗 (𝑛)as follows: 

a) If f is a sublinear function, then 

𝑓𝑗 (𝑛)  =  𝑛  for 𝑗 = 0, 

𝑓𝑗 (𝑛)  =  𝑓(𝑓𝑗−1(𝑛)) for 𝑗 >  0, and 

𝑓𝑗 (𝑛)  =  𝑓−1(𝑓𝑗+1(𝑛)) for 𝑗 < 0. 

b) If 𝑓 is not a sub linear function, then 𝑓𝑗 (𝑛) =  𝑓(𝑛/2𝑗 ). 

 

DEFINITION [4]. The Hierarchical RAM (HRAM) running under access cost 𝑓(𝑛), 𝑓nondecreasing invertible 

function, is a RAM, with the exception that access cost to location 𝑖, costs 

𝑓𝑗 (𝑛), where     𝑓𝑗  𝑛 <  𝑖 < 𝑓𝑗−1 𝑛 , when 𝑓is a sublinear function. If 𝑓isnot a sublinear function in 𝑛, then 

the access cost to location i is 𝑓(𝑛/2𝑗 ), where 𝑛/2𝑗 ≤  𝑖 <  𝑛/2𝑗−1. 
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In this paper, we will consider the implementation of the dictionary data structure on the HRAM 

machine. The dictionary is a data structure that supports lookup, insertion and deletion operations. Other 

operations such as replace can be incorporated as a delete followed by insert. The lookup operation searches 

for a record whose key matches the given key and returns a yes/no answer, depending on whether the a 

matching record is found or not. For this operation a prompt response is required, and therefore, the worst case 

performance of this operation will be studied. The insert operation inserts a new record into the data structure. 

If a record with the same key already exists, then the insert is treated as a replace operation. The delete 

operation deletes a record with a matching key from the data structure. If no such record exists, the delete 

operation behaves as a no operation. Neither the insert, nor the delete operations have to return a response, and 

therefore, amortized time analysis will be given to these two operations. 

The dictionary problem renders itself as a suitable problem to be studied since large data bases are 

becoming the norm with the ever increasing power of computing. Most of these large data bases reside in slow 

access memory devices, calling for algorithm time analysis to take into account the I/O complexity of data 

transfer as well as their computational complexity. 

[3] First studied the implementation of dictionaries on the HMM machine. Unfortunately, some of their 

time bounds were not optimal. In this paper, we improve upon their bounds and provide optimal worst case 

lookup and amortized update times under various access costs, using the HRAM model of computation. We 

will be mainly interested in the access costs {log 𝑛 , 𝑛𝛼 for  0 <  𝛼 <  1 , 𝑛/ log 𝑛 , 𝑛 log 𝑛}, but the bounds 

obtained can be shown to hold for a wide class of access costs. Next we will consider HRAMs operating 

under access cost 𝑓(𝑛) =  𝑛𝛼 , 0 <  𝛼 <  1. 

 

II. THE DATA STRUCTURE 
The data structure is built from a sequence of update entries. Each update record is stored together with 

an indicator field to indicate if it is an insert or a delete entry, and a time stamp. The structure consists of 

𝑘 =  𝑂(log 𝑛 / log log 𝑛)forests; 𝐹0,𝐹1 , . . . , 𝐹𝑘 , where 𝑛 is the number of update entries in the structure. Entries 

in each forest 𝐹𝑖 , 0 <  𝑖 <  𝑘, are more recent than those in forest 𝐹𝑖+1. There are two types of forest used: 

a) Type 1 forests: Each forest Fi of this type consists of only one tree. The size of forest Fi, 

|𝐹𝑖  | =2 |𝐹𝑖−1 |.  

b) Type 2 forests: Each forest 𝐹𝑖  consists of Ign trees. The size of each type 2 forest, 𝐹𝑖 ,    |𝐹𝑖 | = log 𝑛|𝐹𝑖−1 |. 

The smallest type 2 forest, 𝐹1+log log 𝑛  , has size (log𝑛)2, and the largest type 2 forest has size |𝐹𝑗  |, 𝑛/

(log 𝑛)1+
1

𝛼<|𝐹𝑗  | <𝑛/(log 𝑛)
1

𝛼 .    Forest 𝐹1+log log 𝑛until 𝐹𝑗  are all type 2 forests. All the other forests in the 

structure are type 1 forests. 

 

The reader should note, that from now on we will be using 𝑗 to refer index of the last type 2 forest, and 𝑘 to 

refer to the index of the last forest in the structure. 

 

All the trees in the structure are 𝑚-ary trees, where the value of 𝑚will be defined later. These trees are 

like B-trees in the sense that the records are held at the leaves, and all leaves of a tree are at the same level, 

except possibly the right most branches in the most recent tree in a forest, which may contain less data or keys. 

The internal nodes of these 𝑚-ary trees are used only as path finders, for the lookup operation. The internal 

nodes hold the address of each child and the maximum key value that subtree holds. All entries in the trees are 

distinct, but different trees (even those belonging to the same forest) may carry duplicate entries. Moreover, 

the leaves are marked as such to distinguish between them and internal nodes. All trees that belong to the same 

forest are of the same size, except possibly the last which may contain less. The value of m for each m-ary tree 

depends on the size of the tree. For a tree of size 𝑆, say, we have 𝑚 =  𝑆𝛼 . All trees have |1/𝛼|  levels. 

Finally, as an implementational detail, the forests are laid in the memory tape so that 𝐹𝑖  appears in lower access 

cost locations than 𝐹𝑖+1, 0 <  𝑖 <  𝑘. Any other information, such as the index of the first and last type 2 forests 

is held in fast memory. 

 

III. OPERATIONS ON THE DATA STRUCTURE 
Lookup Operation 

The trees, starting from the most recent tree, of each forest, 𝐹𝑖  , 𝑖 =  0, 1, 2, . . . , 𝑘, is searched and the 

indicator field of the first match found is checked. If it is an insert record, then a YES reply is reported, otherwise 

a NO reply is reported. The code is as follows. 

1. Get value of 𝑗{index of last type 2 forest} and 𝑘{index of last forest in the structure} from fastmemory.  

Set answer = NO; 

2. for  i =1 to log log 𝑛do 

search type 1 forest Fi;  
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if match is found 

then if indicator field = INSERT then   answer = YES; 

od; 

3. for𝑖 =  1 + log log 𝑛to 𝑗 do 

Set  s = 𝐥𝐨𝐠 𝒏;  

while s> 0 do 

search tree 𝑇𝑖 ,𝑠 {tree s of forest 𝐹𝑖  };  

if match is found 

then if indicator field = INSERT 

then Set answer = YES;  

Sets = s-1;  

od  

od, 

4. for𝑖 =  𝑗 + 1to𝑘do 

search type 1 forest 𝐹𝑖 ;  

if match is found 

then if indicator field = INSERT then set answer = YES; 

od; 

5. return(answer); 

 

Update Operation 
To each update entry, we add two extra fields: A time stamp and an indicator field that indicates 

whether it is an insert or a delete request. The update entry is merged with forest 𝐹1 , and if an overflow occurs 

the result is merged with forest 𝐹2 , and so on. Care must be taken when dealing with type 2 forests. If the type 2 

forest is not full, i.e., does not have log 𝑛trees in it, then add resulting tree as one of the trees of this forest. 

Otherwise, merge all log 𝑛 trees of the forest plus the overflow data. The code for the update follows. 

1. Augment the record with time stamp and insert/delete indicator. Call the result temp; 

2. Setoverflow = True,   Seti = 0; 

3. While overflow do begin 

temp = merge( temp, 𝐹𝑖);  

if |temp| < | 𝐹𝑖 | 

  then     overflow = False, 

𝐹𝑖= temp; end, od, 

Note: In the above code IXI means size of X. 

 

Re-Placement of Structure 

Each time the structure grows from 𝑛 to 𝑛2 or shrinks from 𝑛 to  𝑛 all the forests in the structure are 

re-laid according to the new value of 2𝑙𝑜𝑔 𝑛 or (𝑙𝑜𝑔 𝑛)/2 respectively). Similarly, the first type 1 forests will 

increase by one or decrease by one, respectively. 

This can be done by sorting all the entries according to record key and time stamp. Of these records, 

only those whose most recent entry is an insert are kept. All others are deleted. The records are then placed 

as trees of forests of type 1 and 2, as explained earlier. 

 

IV. COMPLEXITY ANALYSIS 
The analysis makes use of the following theorem by[4]. 

Theorem 1. [4]On a HRAM machine with access cost 𝑓(𝑛)  =  𝑛𝛼 , 0 <  𝛼 <  1, 

a) 𝑛 items can be read (or brought to location 0) in 𝑂(𝑛 log log 𝑛) amortized time, 

b) log 𝑛 sorted lists, each of length 𝑛/ log 𝑛 can be merged in 𝑂(𝑛 log log 𝑛) amortized time, 

c) An intermix of 𝑛 pop/push operations on a stack or a queue can be performed in  𝑂(𝑛 log log 𝑛)amortized 

time, 

d) Sorting a list of 𝑛 items can be performed in 𝑂(𝑛 log 𝑛) time,     and 

e) Any fixed number of data structures can be maintained without affecting the running time 

complexity by more than a constant factor.  

∎ 
Moreover, it is helpful to give the following lemma, before embarking on the worst case lookup time analysis. 

Lemma 2. If accessing an item in a tree in the structure costs 𝑂(𝑛𝛼) time in the worst case, then the whole tree 

can be searched in 𝑂(𝑛𝛼) time in the worst case. 
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Proof. Bring the root of the tree to fast memory, and perform binary search on it to locate the subtree to be 

searched next. In performing binary search, we bring the half in which we expect the record to reside to fast 

memory. This idea is then applied recursively on the root of that subtree, until we reach a leaf, which can be 

searched to see if the record exists or not in the same manner. 

Bringing a node to fast memory should not cost more than 𝑂(𝑛𝛼)time since the length of the node is 𝑛𝛼  and the 

worst case access cost to an item in the tree is 𝑂(𝑛𝛼), the result follows. 

∎ 

Lemma 3.  Searching all trees in the dictionary data structure costs no more than 𝑂(𝑛𝛼) time in the 

worst case, where 𝑛 is the size of the data structure. 

Proof. The access cost to any element in the largest type 1 forest in the structure is no more than 𝑛𝛼 . Now by 

lemma 2, it follows that searching the largest type 1 forest costs no more than 𝑂(𝑛𝛼). Moreover, the next 

largest type 1 forest is smaller by at least a constant factor (2), and therefore the access to that forest is a 

constant factor less than that of accessing the largest type 1 forest. This argument can then be carried all the way 

to the smallest type 1 forest. Summing all these times forms a geometric series, which totals to at most 𝑂(𝑛𝛼)time 

in the worst case. 

Next consider the largest type 2 forest in the structure. This forest has no more than 𝑛/
(𝑙𝑔𝑛)1/𝛼 records. The next largest type 2 forest is log 𝑛 factor smaller. Adding up the space usage for all these 

forest, we get a value  <  2𝑛/(𝑙𝑔𝑛)1/𝛼  . Thus the worst access time to any item in the largest forest is no more 

than (2𝑛/(𝑙𝑔𝑛)1/𝛼)𝛼 = 𝑂 𝑛𝛼 log 𝑛  . . Type 2 forests can carry Ign trees. Thus the overall time to search a type 

2 forest is no more than 𝑂  𝑛𝛼 log 𝑛  log 𝑛 =  𝑂 𝑛𝛼 . Now we can apply the same argument as that for type 1 

forests to conclude that searching all type 2 forests costs no more than 𝑂(𝑛𝛼)time in the worst case. 

Thus the overall time to search all the trees in the structure is bounded above by 𝑂 𝑛𝛼 in the worst case. 

           ∎ 

Theorem 4. Given a dictionary of size 𝑛, then worst case lookup time is 𝑂(𝑛𝛼). 

Proof. The lookup algorithm searches all the trees in the forests starting from 𝐹1 and working its way up to 

the last tree in the data structure. By lemma 3, this time is bounded above by 𝑂(𝑛𝛼). In addition, 

the algorithm correctly returns a YES response if the record exists. This follows from the fact that the most 

recently added trees to a forest are searched first, and lower numbered forests are searched first also. Finally, 

the lower bound follows from the fact that accessing the 𝑛th data item requires at least 𝑛𝛼 time.  

          ∎ 
Next, we consider the update operation. The following lemma is helpful. 

Lemma 5.   The size of all forests, from 𝐹1 up to and including 𝐹𝑖−1, is no more than a constant factor greater 

than maximum size of any tree in forest 𝐹𝑖 , 𝑖 ≤  𝑘, and 𝐹𝑘  is the largest forest in the structure. 

Proof. If 𝐹𝑖 is a type 2 forest, then it is greater by log 𝑛 than 𝐹𝑖−1. Since type 2 forests can have log 𝑛trees, it 

follows that the maximum size of any tree in 𝐹𝑖  is to within a constant factor of the size of forest 𝐹𝑖−1. Because, 

the sum of size of all forests 𝐹1 to 𝐹𝑖−2 itself is not greater than the size of forest 𝐹𝑖−1 by more than a constant 

factor, as the reader may easily verify. Thus the result holds for type 2 forests. Type 1 forests on the other 

hand, carry only one tree, whose size is at least twice the preceding forest. The sizes of these forests form a 

geometric series whose sum is not greater than the size of the single tree in 𝐹𝑖by more than a constant factor. 

          ∎ 

Theorem 6.  Starting from an empty dictionary, any intermix of 𝑛 insert and delete operations can be 

performed in 𝑂(𝑛 log 𝑛) time in the worst case. 

Proof. Consider the update algorithm given earlier. By lemma 5, the size of all forests preceding 𝐹𝑖 is no more 

than a constant factor greater than any tree in forest 𝐹𝑖  . Hence, by Theorem 1 (c), merging all the trees in these 

forests and the trees in forest𝐹𝑖 , would cost no more than 𝑂(𝑚 log log 𝑚), where 𝑚is the size of forest  𝐹𝑖 . 

Thus, even if charges are made only to the entries in forest 𝐹𝑖 , no entry would incur more than 

𝑂(log log 𝑚)amortized cost for the merge. Now, the reader may easily verify that the update entries in an 

over-flown forest end up in a higher numbered forest, and that there are at most 𝑂( log 𝑛 / log log 𝑛 )forests in 

the structure. Thus, it follows that no entry incurs more than 𝑂(log 𝑛)amortized time, from which the theorem 

follows.            ∎ 

 

Finally, we show that the re-laying of the structure every time it grows from 𝑛to 𝑛2or shrinks 

from 𝑛to 𝑛 , does not cause any increase in the asymptotic behavior of the algorithm; i.e., theorem 6 still holds. 

Here, the cost of re-placing the structure is dominated by the time to sort the entries. By theorem 1 (e), this 

time is  𝑂(𝑛 log 𝑛)for 𝑛entries. This amounts to  𝑂(log 𝑛)time per entry. Now, the dictionary can grow from 

 𝑛 to 𝑛or shrink from 𝑛 to 𝑛  only as a result of 𝑛 −  𝑛 = 𝑂 𝑛 new update entries (insert, and delete 

respectively). If only these new entries are charged for the replacement of the structure, then none will incur 

more than 𝑂(log𝑛)cost. One last detail, the dictionary as it grows from an empty one to one that contains 
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𝑛entries, may go thru many re-placements in memory. The reader may easily verify, that in the case of 

dictionaries shrinking, if we make the delete operations pay not only for the sorting this time, but also for the 

preceding growth from 𝑛to 𝑛, then the overall time for the re-placement of the structure is no more than 

𝑂(log 𝑛)time per entry. Thus we have. 

 

Theorem 7. The dictionary data structure can be maintained on a HRAM running under access cost 𝑓(𝑛)  =
 𝑛𝛼 , 0 <  𝛼 <  1, so that lookups can be performed in 0( 𝑛𝛼  ) time in the worst case, and updates in 𝑂(log 𝑛) 

amortized time, after  𝑛 operations on an empty structure.    ∎ 

 

Next, we consider HRAMs running under access costs 𝑓(𝑛)  =  𝑛/(𝑙𝑔𝑛)𝛽 and 𝑓(𝑛)  =  𝑛(𝑙𝑔𝑛)𝛽  , 𝛽 >
0. The same algorithm and analysis given earlier will still hold, except that the bounds would be different. This 

follows from the results given by [4]. 

 

Theorem 8.   [4] On a HRAM machine with access cost 𝑓(𝑛)  =  𝑛/(𝑙𝑔𝑛)𝛽 , 𝛽 > 0. 

a) 𝑛 items can be read (or brought to location 0) in 𝑂(𝑛𝑆(𝑛)) amortized time, 

b) log 𝑛 sorted lists, each of length 𝑛/ log 𝑛 can be merged in 𝑂(𝑛𝑆(𝑛)) amortized time, 

c) An intermix of 𝑛  pop/push operations on a stack or a queue can be performed in  𝑂(𝑛𝑆(𝑛)) 

amortized time, 

d) Sorting a list of 𝑛 items can be performed in 𝑂(𝑛𝑇(𝑛)) time,     and 

e) Any fixed number of data structures can be maintained without affecting the running time 

complexity by more than a constant factor. 

Where 𝑆(𝑛)  =  log 𝑛 / log log 𝑛  for access costs 𝑓(𝑛)  =  𝑛/(𝑙𝑔𝑛)𝛽 , 𝛽 > 0 , and 𝑆(𝑛)  =  (𝑙𝑔𝑛)1+𝛽 , 𝛽 < 0 . 

Also 𝑇(𝑛)  =  (log 𝑛 / log log 𝑛)2 for the former access costs, and 𝑇(𝑛)  =  (𝑙𝑔𝑛)2+𝛽 , 𝛽 < 0 for the latter. 

          ∎ 

We leave it to the reader to verify the following. 

Theorem 9. The dictionary data structure can be maintained on a HRAM, so that lookups can be performed in 

𝑂( 𝑓(𝑛)) time in the worst case, and updates in 𝑂(𝑇(𝑛)) amortized time per entry, after 𝑛operations on an 

empty structure, where 𝑇(𝑛) is the function given in theorem 8.    ∎ 

Finally, dictionaries can also be implemented on HRAM running under access cost 𝑓 𝑛 = (log 𝑛)𝛽  , 𝛽 < 1, 

using the same structure given earlier, but at the risk of obtaining a non-optimal lookup time, as is given in the 

following theorem. 

 

Theorem 10. The dictionary data structure can be maintained on a HRAM running under access cost 𝑓 𝑛 =
(log 𝑛)𝛼  , 𝛼 < 1, so that lookups can be performed in 𝑂( (log 𝑛)3/ log log 𝑛 ) time in the worst case, and 

updates in 𝑂(log 𝑛) amortized time, after 𝑛 operations on an empty structure.   ∎ 

But the above lookup time can be improved if we use a single B-Tree to carry the update entries. [5] gives the 

following theorem in this case, which would hold for the dictionary data structure in this case. 

 

Theorem 11. The B-Tree data structure can be maintained on a HRAM running under access cost 𝑓 𝑛 =
(log 𝑛)𝛼  , 𝛼 < 1, so that lookups can be performed in 𝑂( (log 𝑛)2/ log log 𝑛 )  time in the worst case, and 

updates in 𝑂((log 𝑛)1+𝜀) amortized time, for some arbitrary constant 𝜀 >  0, after 𝑛 operations on an empty 

structure.          ∎ 

Moreover, [6] proved that a dictionary can be maintained on a RAM , so that lookups can be carried out in 

𝑂(1)time in the worst case, but with at most (and at least) 𝑂(𝑛𝜀), for constant 𝜀 >  0. Applying this result on a 

HRAM running under access cost 𝑓(𝑛)  =  log 𝑛, we obtain. 

 

Theorem 12. The dictionary data structure can be maintained on a HRAM running under access cost 𝑓(𝑛)  =
 log 𝑛, so that lookups are performed in 𝛩(log 𝑛) in the worst case, and updates in 𝑂(𝑛𝜀), for constant 

𝜀 >  0.           ∎ 

The reader can clearly see that there is a worst case lookup/ amortized update time tradeoff. Theorem 10 

on the one hand gives optimal update time at the cost of a non-optimal lookup time, and theorem 12 on the 

other hand gives optimal worst case lookup time but with a non-optimal update time. The lookup bounds 

given by theorem 11 would be optimal when only trees are considered to carry the structure. The bounds given 

by theorem 12, on the other hand, would be optimal if only hash tables are considered to carry the dictionary. 

V. CONCLUSION 
In this paper, we gave and analyzed an algorithm for maintaining dictionaries on HRAMs running 

under various access costs. These results improve upon those provided by [3] for the access costs they studied 

( 𝑙𝑔𝑛, 𝑛𝛼  , 0 <  𝛼 <  1 ). In addition, these results can be generalized to any HRAM running under any 
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nondecreasing access cost 𝑓(𝑛)  >  𝑂((𝑙𝑔𝑛)𝜀), constant 𝜀 >  0, provided that the time to sort 𝑛items, 𝑇(𝑛), is 

known for access cost 𝑓(𝑛). In such a case it can be shown that the dictionary data structure supporting 

lookups in 𝛩(𝑓(𝑛))time in the worst case, and 𝑂(𝑇(𝑛))amortized update time can be maintained. For access 

costs 𝑓(𝑛)  =  𝑂( (log 𝑛)𝜀), 𝜀 >  0, theorems 10 thru 12 provide interesting worst case lookup and amortized 

update times tradeoff. It is left as a challenging open problem to find if there exists a structure on which both 

𝑂(𝑓(𝑛))worst case lookup time and 𝑂(𝑙𝑔𝑛)amortized update time can be maintained, and if not, what is the 

minimum product of these two times. 
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