
American Journal of Engineering Research (AJER) 2016

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

Volume-5, Issue-7, pp-269-274

www.ajer.org
Research Paper Open Access

w w w . a j e r . o r g

Page 269

From Verification to Implementation: UPPAAL to C++

Sidra Sultana
1
, Fahim Arif

2

1
(Department of Computer Software Engineering, MCS/ NUST, Pakistan)

2
(Department of Computer Software Engineering, MCS/ NUST, Pakistan)

ABSTRACT: Validation and Verification of safety critical systems is crucial and if done incorrectly can result

in fatal loss. The research contribution is focused on providing the transformation mechanism from software

verification to source code phase of software development life cycle. Modeling of the critical systems initializes

with the formalism of requirements followed by early model verification. The verified model can be automated

to get the high level language code via code generator. Basic steps of transformation starts with UPPAAL timed

automaton as an input, then getting the XML structure of the automaton. On the basis of XML structure parse

tree is generated to visualize the data structure to be used for the C++ source code generation. Finally the

verification, kernel and elapsed time used by the safety, liveness, reachability, deadlock freeness properties and

fairness property is presented. In real time systems, safety and deadlock freeness properties are among the most

crucial verification properties because if the system is not safe then it leads to insecurities related to life, money,

reputation and time. If the system is in deadlock state then the system is simply of no use. Thus verification of

safety and deadlock freeness properties is mandatory as per the statistical report provided in the research.

Keywords: Real time Systems, Formal properties, UPPAAL Model Checker, Properties Verification,

Automation, C++ Source Code, XML

I. INTRODUCTION
In software development life cycle, there are generally five phases including Software Requirement

Engineering, Software Design and Architecture, Implementation, Testing and Maintenance. In the field of

software engineering, systems with safety concerns require accuracy and precision in the design. Cases like

Therac-25 radiation overdosing (1985-1987), AT&T Telephone network outage (1990), Pentium FDIV bug

(1994) and Ariane-5 Crash (1996) are among some failures of design and testing errors that leads to faulty

systems and resulted in fatal loses relating human lives, money and organization's reputation [1].

In embedded software system, extensive modeling, simulation and verification is required and formal

methods are used for the verification of the critical requirements like safety, utility, liveness, deadlock freeness,

fairness etc. There are numerous applications of system modeling and verification in the aspects of bug

detection, safety and analysis. Real time systems are one of the important type of embedded systems [2].

Depending on the nature of time element, real time systems are either discrete or continuous. Certain

mathematical models, graph theories and axioms are used for the verification of the real time systems.

II. RELATED WORK
In literature, there are transformation rules for automation of source code to an automaton and vice

versa. A new model for verification of Chapel programs is defined by T. K. Zirkel [1]. The spawning of the

threads and the parallel constructs in Chapel for arbitrary scope is mapped to the model in a natural way.

Feasibility of defect-detection and automatic verification is being demonstrated in the symbolic execution using

the model checking for non-trivial Chapel programs. Chapel language is an extensive language where Chapel

Verification Tool (CVT) is a prototype tool which is initially composed for small sets of code. Handling the

arbitrary domains and complex data-types are to be provided in the extended version of tool covering even more

portion of the Chapel Language. Partial Order techniques are being used to improve the scalability of the tool.

On the basis of activity and sequence diagrams, researchers [2] have presented an automated methodology for

transformation while preserving the system's object oriented view in consideration. Automatic discovery of

deadlocks is being facilitated by mCRL2 tool set and to prove the formal properties, temporal logic is required

for the application-specific properties to be verified in model checking tool. Quantitative information like

number of requests, resource usage and expected execution time are modeled as annotations while profiling in

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 270

UML diagrams [4]. Reliability and efficiency of the system is accessed via these profiled and logged quantities.

In order to enhance the formalism and usage of modeling, some well integrated tools like CADP are available.

Bouissou [9] presented the converted code of hybrid automaton from the control code. In order to preserve the

transformation, he provides the semantics from H-Simple to a sampled hybrid automaton. Similar to the

annotations provided in [3], [9] uses statements for controlling the actuators and sensors along with starting

from the system's control code.

III. TRANSFORMATION RULES
Timed-automaton modeled in UPPAAL is used in software design and software testing phase. Thus,

translation rules can be applied for converting UPPAAL model into source code for transition from software

design phase into the implementation phase or for the sake of automating the code generation once the model is

provided. Same UPPAAL model with verification properties can be used for reverse engineering the verification

phase back to the implementation phase. Model Checking is a promising approach to ensure the safety of life

critical systems but at the same time multiplying the efforts in terms of manually modeling the automaton of the

system and then to verify the safety properties. This research contribution is focused on the automation of

UPPAAL automaton into C++ Code. Input, transformation rules and output of this automation process is

described as follows:

Input: The system that is being modeled in the UPPAAL Model Checker has two main parts which are Editor

and Verifier. In the Editor’s interface, the system is modeled in the form of automaton as shown in figures

below:

Fig. 1 Lamp Model

Fig. 2 Timer Model

 Fig. 3 Controller Model

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 271

In the verifier section, properties are mentioned in TCTL logic as follows:

Safety Property: Traffic flow in highway implies that there is no traffic flow in street and thus the system is safe

i.e., A[] (Controller.start1 == true imply Controller.start2==false)

Reachability Property: If start1== true and stop1==false (vehicles move in Highway path) i.e., E<>

(Controller.start1==true & Controller.stop1==false)

Deadlock Freeness: In this system, any deadlock was not occurred i.e., A[] not deadlock

Liveness Property: In this rule, if start1==true and stop1==false (vehicles move in Highway) or start2==true

and stop2==false (vehicles move in Street), then the green light should on i.e., E<> (Controller.start1==true &

Controller.stop1==false | Controller.start2==true & Controller.stop2==false) > (Lamp.green_on== true)

Fairness: In all of the states, delay <= 1 variable is const i.e., A<> Controller.delay<=1

Transformation Rules: Transformation rules relates to semantics of parsing xml tags and converting them into

C++ constructs like structures, variables, expressions, conditional operators, loops and functions. Fig. 4 shows

basic phases of transformation from timed automaton xml to C++ program.

Parse tree generation is the second phase in which the basic structure types are at one level and nested elements

are parsed as their child nodes. Fig. 5 shows the XML Parse tree.

Output: After applying the transformation rules, this automaton and xml file of UPPAAL is to be transformed in

C++ code. Almost all of the data structures of C++ are either derived from Array or Structures. The automaton

generated from UPPAAL resembles with the Graphical Data Structure. Graphs in C++ are either implemented

with Adjacency Matrix (two dimensional arrays of locations (nodes) and transitions (edges)) or as Adjacency

list. First approach is listed in Table 1 and Table 2 below:

Fig. 4 XML Structuring

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 272

Fig. 5 XML Parse Tree

Table 1 Adjacency Matrix for Locations (nodes)

Id x y Label Title Label x Label y color Initial state

id2 -153 -85 Green Lamp -204 -119 #00ff00 true

id1 42 -85 Red Lamp 32 -119 #ff0000 false

id0 -51 68 Yellow Lamp -102 34 #ffff00 false

Table 2 Adjacency Matrix for Transitions (edges)

Target

Transitions Green_Lamp Red_Lamp Yellow_Lamp

Green

Lamp

N/A N/A green_on = true,

yellow_on = false,

red_on = false

Red

Lamp

green_on = false,

yellow_on = false,

red_on = true

N/A N/A

Yellow

Lamp

N/A green_on = false,

yellow_on = true,

red_on = false

N/A

The adjacency list can be created with either node or transition perspective. Node structure of adjacency list

construct is as follows

struct node{

 char id; //id2

 int x; //-153

 int y; //-85

 char lable_title; //Green_lamp

 int lable_x; //-204

 int lable_y; //-119

 int color; //#00ff00

 bool initial; //true

 node *next;

};

Transition structure of adjacency list construct is as follows

struct transition{

char source; //id1

 char target; //id2

 char label_kind; //assignment, update, guard or reset

 int lable_x; //-102

 int lable_y; //-144

 char label_text; //green_on=false, yellow_on= false, red_on = true

 transition *next;

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 273

};

The structure for the node and transition is customized and the functions of the standard linked list will be

used in transformation rule set.

IV. DISCUSSION AND ANALYSIS
Core objective of the research is to transform the timed automaton for UPPAAL model checker into

C++ source code. UPPAAL requires a timed automaton for modeling purpose and control temporal logic (CTL)

for verification purpose. Transformation rules are focusing the modeling part of UPPAAL model checker and

intermediate artifacts like xml structure and parse tree are generated to get some visual data structure that can be

further transformed in the code generation process. For efficient verification of the safety critical properties

accurate response time is mandatory. Table 3 shows the verification, kernel and elapsed time (in seconds) used

in the verification of safety, reachability, deadlock, liveness and fairness properties. Graphical representation of

time used by the verification properties is presented in Fig. 6.

Table 3 Time used for the execution of verification properties

Properties Verification Time Used Kernel Time Used Elapsed Time Used

Safety 0.01 0 0.02

Reachability 0 0 0.001

Deadlock 0.01 0.01 0.018

Liveness 0 0 0.001

Fairness 0 0 0.002

Fig. 6 Response Time for Verification properties

Verification time used by the UPPAAL model checker is worth mentioning for Safety and Deadlock

freeness properties. Kernel responded all properties in no time but the deadlock property took 0.01seconds.

Elapsed time is the one that responded uniquely for all of the verified properties. Safety property took maximum

elapsed time i.e., 0.02 seconds and with fractional change deadlock freeness property has 0.018 seconds of

elapsed time used.

V. CONCLUSION
In real time systems, testing phase is important in terms of ensuring critical properties like safety,

utility, deadlock freeness, reachability, fairness, mutual exclusion, liveness etc. Such highly complex systems

cannot affords compromising the fine grain safety concerns specially in the fields of fabrication, chip design,

transportation, medical, satellite etc. Modeling of the critical systems initializes with formalism of requirements

followed by early model verification. The verified model can be automated to get the high level language code

via code generator. Software testing for real time systems is generally decomposed in modeling and verification

phases. Timed-automaton modeled in UPPAAL is used in software design and software testing phase. Thus,

translation rules can be applied for converting UPPAAL model into source code for transition from software

design phase into the implementation phase or for the sake of automating the code generation once the model is

provided. Same UPPAAL model with verification properties can be used for reverse engineering the verification

phase back to the implementation phase. This research contribution is being carried out to reverse engineer the

UPPAAL automaton into C++ constructs.

American Journal Of Engineering Research (AJER) 2016

w w w . a j e r . o r g

Page 274

REFERENCES
[1] Kulkarni, V.; Tata Res. Dev. & Design Centre, Pune; Reddy, S.,: Introducing MDA in a large IT consultancy organization,

IEEE,Software Engineering Conference, 2006. APSEC 2006. 13th AsiaPacific, 2006, 6-8 Dec. 2006, pp. 419 - 426.
[2] Choong Koon Fong.,: Successful Implementation of Model Driven Architecture, APAC Support Center, 2007, A Borland White

Paper.

[3] Behzad Bordbar; Kyriakos Anastasakis, MDA and Analysis of Web Applications, School of Computer Science, University of
Birmingham, Birmingham, 2007.

[4] YU Xiaofeng; HU Jun; ZHANG Yan et al, A Model Driven Development Framework for Enterprise Web Services, Proceedings of

the 10th IEEE International Enterprise Distributed Object Computing Conference, EDOC, 2006, pp. 75-84
[5] Mila Keren; Andrei Kirshin; Julia Rubin; Ahto Truu, MDA Approach for Maintenance of Business Applications, Model Driven

Architecture –Foundations and Applications, Lecture Notes in Computer Science Volume 4066, ECMDA-FA 2006, LNCS 4066,

pp. 40 – 51
[6] Hong Wang ; Carleton Univ., Ottawa, Ont., Canada ; Dong Zhang ; Jun Zhou, MDA-based development of e-learning system,

Computer Software and Applications Conference, 2003. COMPSAC 2003, pp. 684 - 689

[7] John D. Poole, Model-Driven Architecture: Vision, Standards And Emerging Technologies, ECOOP, 2001.
[8] Youcong Ni ; Wuhan, China ; Shi Ying ; Linlin Zhang ; Jing Wen , Modeling Aspect-Oriented Software Architecture, Industrial

and Information Systems, International Conference on Industrial and Information Systems, 2009, IIS '09, pp. 108 - 113

[9] Jiang Guo, An approach for modeling and designing software architecture,Engineering of Computer-Based Systems, 2003.
Proceedings. 10Th IEEE International Conference and Workshop, pp. 89 – 97

[10] Jiang Guo ; Yuehong Liao, The scheduling algorithms in software architecture modeling, Engineering of Computer-Based Systems,

2004. Proceedings. 11th IEEE International Conference and Workshop, pp. 36 – 43
[11] Ortega, D. ; Silvestre, L. ; Bastarrica, M.C. ; Ochoa, S.F., A Tool for Modeling Software Development Contexts in Small Software

Organizations, Chilean Computer Science Society (SCCC), 2012 31st International Conference, pp. 29-35
[12] Chang-Guo Guo ; Xiao-Ling Li ; Jun Zhu., A Generic Model for Software Monitoring Techniques and Tools, Networks Security

Wireless Communications and Trusted Computing (NSWCTC), 2010 Second International Conference, pp. 61-64

[13] Alves Pereira, J. ; Souza, C. ; Figueiredo, E. ; Abilio, R. , Software Variability Management: An Exploratory Study with Two
Feature Modeling Tools, Software Components, Architectures and Reuse (SBCARS), 2013 VII Brazilian Symposium, pp. 20-29

[14] T. K. Zirkel, S. F. Siegel, and T. McClory, Automated Verification of Chapel Programs Using Model Checking and Symbolic

Execution, NASA Formal Methods Lecture Notes in Computer Science Volume 7871, 2013, Pp 198-212
[15] D. Remenska, J. Templon, T. A.C. Willemse, P. Homburg, K. Verstoep, A. Casajus, and H. Bal, From UML to Process Algebra

and Back: An Automated Approach to Model-Checking Software Design Artifacts of Concurrent System, NASA Formal Methods

Lecture Notes in Computer Science Volume 7871, 2013, Pp 244-260.
[16] S. Lyde, M. Might, Extracting Hybrid Automata from Control Code, NASA Formal Methods Lecture Notes in Computer Science

Volume 7871, 2013, Pp 447-452

[17] N. Decker, M. Leucker, and D. Thoma, jUnit RV —Adding Runtime Verification to jUnit, NASA Formal Methods Lecture Notes
in Computer Science Volume 7871, 2013, Pp 459-463.

[18] Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA

(1991)
[19] Van Horn, D., Might, M.: Abstracting abstract machines. In: ICFP 2010: Proceedings of the 15th ACM SIGPLAN International

Conference on Functional Program- ming, pp. 51–62. ACM Press (2010)

[20] Cousot, P.: Integrating physical systems in the static analysis of embedded control software. In: Yi, K. (ed.) APLAS 2005. LNCS,
vol. 3780, pp. 135–138. Springer, Heidelberg (2005)

[21] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or

approximation of fixpoints. In: Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, pp.
238–252. ACM Press, New York (1977)

[22] Bouissou, O.: From control-command synchronous programs to hybrid automata. In: Analysis and Design of Hybrid Systems, pp.

291–298 (2012)
[23] Najafi M., H. Haghighi: A formal mapping from Object-Z specification to C++ code, Scientia Iranica D (2013) 20(6), pp. 1953-

1977

[24] Najafi M., Haghighi H., Zohdi N. T.: A survey on formal, object-oriented program development approaches, Scientia Iranica D
(2015) 22(3), pp. 1001-1017

[25] M. Bashiri and S.G. Miremadi: Perform-ability guarantee for periodic tasks in real-time systems, Scientia Iranica D (2014) 21(6),

pp. 2127-2137
[26] Ralf W., Nils J., Erika A., Joost-Pieter K.High-Level Counter examples for probabilistic automata, Logical Methods in Computer

Science Vol. 11(1:15)2015, pp. 1–23

[27] Rahim, M.A.B., Arif, F.,: Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal
Verification using UPPAAL and DiVinE, Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1,

January, 2016, pp. 139-154

[28] Rahim, M.A.B., Ahmad, J., and Arif, F.,: Parallel verification of UML using DiVinE tool, 5th International Conference on
Computer Science and Information Technology, Amman, Jordan, 27-28 March, 2013, pp. 49-53

