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ABSTRACT: This paper adopted five popular Runge-Kutta algorithms ranging from order two to five as well 

as modified order five to investigate the chaotic behavior of the excited Duffing Oscillator using fractal disk 

dimension characterization. Studied nodal points included 11×11 to 101×101 at a step increment of 10 along 

each of the excitation amplitude and damping coefficient axes and for three equilibrium positions: (-1,0), (0,0) 

and (1,0). Excitation amplitude and damping co-efficient range are 0.10 ≤ Po ≤ 0.21 and 0.0168 ≤ γ ≤ 

0.168respectively. Common parameters to all studied cases included the excitation frequency(1.0) and random 

number generating seed value of 9876.The probability that any combination of parameters selected at random 

from within the studied parameter plane can drive the Duffing Oscillator chaotically was obtained to be 

62.63%, 58.58%, 63.53% for the respective equilibrium positions (-1,0), (0,0) and (1,0) using the popular fourth 

order scheme. This probability measure was found to be insignificantly different quantitatively for the remaining 

four schemes studied. 

Keywords: Duffing Oscillator, Damping co-efficient, Excitation Amplitude, Runge-Kutta schemes, Fractal disk 
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I. INTRODUCTION 
The Duffing oscillator has been described physically as an oscillator with a restoring spring force 

which does not obey Hooke’s law. The Duffing Equation was named after the German electrical engineer Georg 

Duffing in 1918. It is undoubtedly one of the most intensively studied systems in dynamics, and it found its 

application as models of various physical and engineering situations such as Josephon junctions, optical 

bistability, plasma oscillators, buckled beams of plate under transverse dynamic excitation, ship dynamics, 

vibration isolators and electrical circuits [1]. A common model using this oscillator involves an electro-

magnetized vibrating beam analyzed as exhibiting cusp catastrophic behavior for certain parameter values [2]. 

The physical model depicts the Duffing Oscillator as two magnets that deflect a steel beam toward each other as 

shown in figure 1. 

 

 
Figure 1: The physical model of the Duffing Oscillator. 

 

The Duffing Oscillator has gained wide applications in the field of engineering, medicine, economics, 

weather forecast, biology. Research article [3] modelled the dynamics of a ship by modifying the Duffing’s 

equation and using the oscillation of sea waves as the parameter, while [4] established that the deterministic 
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Duffing-Oscillator-Model (DOM) is suitable for examining inventory fluctuations of wheat in the global market 

for a given time period, with reasonable credibility.In such problems which are modelled mathematically from 

physical problems, initial conditions usually have very tangible interpretations for differential equations derived 

from physical problem settings. 

It was concluded by [5] that the Duffing equation behaves interestingly and begins to show chaotic 

behavior at excitation amplitude of Po=0.21, damping coefficient, γ=0.168 and a forcing frequency of =1.0. He 

further noticed that at other conditions fixed, that when the excitation amplitude varies between 0 Po 0.177, 

the system responded by oscillating through one period as the force also oscillates through one period (one 

period motion), and at Po= 0.178, the system oscillates through one-half a period as the force oscillates through a 

period which implies that for the response to go through a period, the force must oscillate through two periods. 

This has led to the study of the Duffing Oscillator and different modified Duffing Oscillators to suit different 

applications by different authors. 

Research article [6] studied the Duffing Oscillator and were able to demonstrate visual comparisons of 

the chaotic behavior of the Duffing Oscillator in the plane of the excitation amplitude versus the forcing 

frequency using adaptive time steps Runge-Kutta fourth and fifth order algorithms to compute simultaneously 

multiple trajectories of a harmonically excited Duffing oscillator from very close initial conditions. It was 

obtained from the study, that the chances of chaotic behavior were higher for combined higher excitation 

amplitudes and frequencies alongside smaller damp coefficient.  

Research article [7]proceeded to further adopt two popular Runge-Kutta algorithms (fourth and fifth 

orders) to investigate the chaotic driven impact of both the damp coefficient and the excitation amplitude on the 

Duffing Oscillator. The study was able to identify and support damp parameter proper tuning as an easier agent 

of impacting chaotic behavior in Duffing Oscillator compared with the excitation amplitude provided other 

simulation conditions remain the same while this study utilizes five popular Runge-Kutta algorithms to 

investigate the Duffing Oscillator in the plane of excitation amplitude and the damping coefficient. 

 

II. METHODOLOGY 
This research studied the normalized governing equation of harmonically excited Duffing system given 

in the equation below with reference to [5], [8] and[9]. 

ẍ + ẋ - 
x

2
(1-x

2

) = PoSin (t) ………………….. (1) 

 

In equation (1), x, ẋ and ẍ represents respectively displacement, velocity and acceleration of the 

oscillator about a set equilibrium position. By damp and harmonic excitation, it means that the system is 

controlled by a sinusoidally varying load with an amplitude strength, damp coefficient, frequency and time 

given respectively as: Po,γ, and t. According to literature, combination of  = 0.168, Po= 0.21, and  = 1 .0 or  

=0.0168, Po=0.09 and  = 1.0 parameters leads to chaotic behavior which were validated with the Poincare 

section obtained using these parameters [5]. However, this study focuses on the comparison of solutions 

obtained using the second to fifth, as well as modified fifth orders Runge-Kutta simulations at different 

resolutions in  the plane of the excitation amplitude and damping coefficient and equilibrium positions as 

described later. The scattered Poincare plots of simulation obtained for the excited Duffing oscillator were 

captured and characterised using fractal disk dimension obtained by optimum disk count method of [10]. The 

relative distribution of the fractal disk dimensions were obtained and compared over one hundred subintervals 

for the cases and simulation algorithms. Thereafter, error analyses and variation for schemes and drive 

parameters were performed and the results were interpreted. The schemes were then paired and correlation 

analysis was performed over range of drive parameters and the findings were interpreted. 

 

III. PARAMETER DETAILS OF STUDIED CASES 
A case is defined as a point on the parameter plane.11x11 up to 101x101cases were studied at fixed 

excitation frequency alongside ten different constant step incremental of damping coefficient (0.0168  

0.1680) and excitation amplitude (0.10Po 0.21) over large number of excitation period at the equilibrium 

position (0,0). Then 101x101 cases were also examined at a constant step incremental of damping 

coefficient(0.0168 0.1680) and excitation amplitude (0.10Po 0.21), over large number of excitation period 

at the equilibrium positions (1,0) and (-1,0). Common parameters to all cases include the excitation frequency 

value, =1.0 and random number generating seed value of 9876. A typical parameter plane is shown in figure 2. 
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Figure 2: Parameter space for excitation amplitude and the damping coefficient ranging from 0.10 ≤ Po 

≤ 0.21 and 0.0168 ≤ γ ≤ 0.168 respectively. 

 

IV. POINCARE SOLUTIONS 
The phase space trajectory of the motion for all time is called the phase plot out of which the 

poincare solutions is filtered out. Rather than considering the phase space trajectory for all times, which gives a 

continuous curve, a discrete set of phase space points of the particle at every period of the driving force, i.e. 

when time (t) = 2π/, 4π/, 6π/, etc could be considered. The resulting image of the collection of displacement 

and velocity components as scattered plot for all these discrete timesis referred to as poincare section. It is a 

periodical collection of fundamental solutions obtained for a dynamical system. That is other solutions are 

available at every point in time, since time never stops, but our focus of interest is at a certain point in time 

which occurs at a constant interval of the period of the exciting force. Thus, embedded in a single phase plot are 

numerous scattered plot which varies by the time step or interval used. Clearly for a periodic orbit the Poincaré 

section is a single point, when the period has doubled it consists of two points, when the period triple, it consist 

of three points and so on. The Poincare sections obtained are termed attractors. A typical Duffing attractor 

obtained atPo=0.21, γ=0.168, ω=1.0 using the order five modified schemeis shown in figure 3. 

 

 
Figure 3: Poincare maps of the Duffing equation using Po=0.21, γ =0.168, ω =1.0 obtained using the order five 

modified scheme. 

 

V. ATTRACTOR CHARACTERIZATION 
The optimum disk count algorithm was employed in charactering all the resulting attractors based on 

ten (10) different disk scales of examination and over five (5) independent trials. The Duffing oscillator was 

considered to have behaved chaotically when the estimated disk dimension is greater than zero and non-chaotic 

at an estimated disk dimension of zero. 
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VI. RESULTS AND DISCUSSION 
The Poincare sectionswere simulated and the corresponding fractal dimensions were estimated. A typical 

fractal dimensions obtained during one of the simulation is given in table I. 

 

Table I: Selected Cases of Variation of the Estimated Fractal Disk Dimension of Poincare Section with  

Simulation Schemes using Constant Time Step obtained across 121 nodalsimulations at the 

equilibrium position (0,0) 
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Table I Continued: Selected Cases of Variation of the Estimated Fractal Disk Dimension of Poincare 

Section with Simulation Schemes using Constant Time Step obtained across 121 nodal simulations at the 

equilibrium position (0,0). 
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Table I Continued:  Selected Cases of Variation of the Estimated Fractal Disk Dimension of Poincare 

Section with Simulation Schemes using Constant Time Step obtained across 121 

nodal simulations at the equilibrium position (0,0). 

 

 
 

With the criteria that an estimated fractal dimension above zero signifies chaos, the probabilities that 

the Duffing Oscillator will be driven chaotically when explored within the different resolution of the parameter 

space and at different resolutions are summarized in tables II and III. Table II shows the number of parameter 

set that drove the Duffing Oscillator chaotically as the nodal simulation increased and the initial condition 

(equilibrium position) of the system is maintained at (0,0), while table III reveals a similar information obtained 

at a constant nodal simulation but at three different equilibrium positions (-1,0), (0,0), (1,0). The chaotic 

parameters result reveals that the percentage of the chaotic parameters in the parameter space provided by all the 

Runge-Kutta schemes agree quantitatively well except for that provided by the second order Runge-Kutta 

scheme. Table II shows that the Dufffing Oscillator is less driven chaotically at the equilibrium position (0,0), 

while it is observed to be more stable at the other two equilibrium positions (1,0) and (-1,0) since their 

percentage of chaotic parameters agree quantitatively well. 

 

Table II: Percentage of chaotic parameter of the Duffing Oscillator across the various simulations at the  

equilibrium position (0,0) 

 
 



American Journal Of Engineering Research (AJER) 2016 
 

 
 w w w . a j e r . o r g  

 
Page 85 

Table III: Percentage of chaotic parameter of the Duffing Oscillator across the various simulations at the 

three equilibrium positions. 

 
 

The correlation coefficient shows the degree of agreement of the two sets of data paired. It ranges 

between zero and one. A correlation coefficient value of 1.0 signifies total agreement between the set of data 

plotted while a value of zero means that there is no agreement at all between the two sets of data. Some of the 

correlation coefficients obtained are detailed in figures 4 and 5. 

 

 
 

Figure 4: Correlation Plot of the Estimated Fractal Disk Dimension (EDD) by RK2 and RK4 with 

constant simulation time step for 50 by 50 resolutions 

 
Figure 5: Correlation Plot of the Estimated Fractal Disk Dimension (EDD) by RK3 and RK5M with 

constant simulation time step for 100 by 100 resolutions. 

 

The correlation coefficient of the estimated fractal disk dimension obtained by the second order Runge-

Kutta scheme when paired with that obtained from the other schemes are low as revealed in tables IV and V. 

 

Table IV: Correlation Analysis of Pairs of Runge-Kutta schemes at 2601 simulation points (51 by 51 nodes). 
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Table V: Correlation Analysis of Pairs of Runge-Kutta schemes at 10201 simulation points(101 by 101 nodes). 

 
 

A careful observance of all the columns of table VI and VII shows that the first four rows of each 

column are the lowest set of correlation coefficient per column. This shows the disagreement of RK2 schemes 

with the other scheme. On the other hand, the highest value of the correlation coefficient occurs at the last row 

of each column showing the strong agreement between the estimated fractal disk dimension of the fifth order 

Runge-Kutta scheme and the modified fifth order Runge-Kutta scheme. 

From tables VI and VII, using the fourth order Runge-Kutta scheme as the bench mark due to its speed 

and the reliability of its results, the third order ranks best among the remaining four Runge-Kutta algorithms 

with a correlation coefficient of 0.8227, 0.8697, and 0.8093 for case 1, case 2, and case 3 respectively. This 

implies that the third order Runge-Kutta scheme which takes lesser time to compute could also be employed in 

researching the Duffing Oscillator within the range of the drive parameters with little loss in accuracy of the 

results obtained. 

 

Table VI: Correlation Analysis of Pairs of Runge-Kutta schemes at various nodal simulations. 

 
 

Table VII: Correlation Analysis of Pairs of Runge-Kutta schemes at 10,201 simulations for the three 

equilibrium positions. 
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From tables VIII and IX, the higher coefficient of fitness (R
2
=0.80) and slope value that is not less than 

0.88 recorded between pairs of scheme from RK3, RK4, RK5 and RK5M are strong indicator that any of these 

schemes is good enough to simulate the Poincare section of the Duffing Oscillator with further processing or 

not. 

 

Table VIII: Trend line parameter of correlation plot of the Estimated Fractal Disk Dimension (EDD) 

between selected pairs of Runge-Kutta schemes across various nodal simulations for 

equilibrium position (0,0). 

 
 

Table IX: Correlation Analysis of Pairs of Runge-Kutta schemes at 10,201 simulations for the three 

equilibrium positions. 

 
 

The dimension distribution summarized in figures 6 and 7shows that there is a qualitative agreement of 

the estimated fractal disk dimension distribution for all schemes. The quantitative differences which were noted 

in figures 6 and 7 can be accounted for by the computational differences among the schemes. 
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Figure 6: Normalized Frequency Distribution of the Estimated Fractal Disk Dimension (EDD) of 

Poincare Sections with constant simulation time step using all schemes with Damping 

coefficient (0.0168  0.1680) and Excitation Amplitude (0.10Po 0.21) at 101 by 101 

simulation for equilibrium position (0,0). 

 

 
Figure 7: Zoomed-Up Normalized Frequency Distribution of the Estimated Fractal Disk Dimension 

(EDD) of Poincare Sections with constant simulation time step using all schemes with 

Damping coefficient (0.0168   0.1680) and Excitation Amplitude (0.10Po 0.21) at 101 

by 101 simulation for equilibrium position (0,0). 

 

VII. CONCLUSIONS AND RECOMMENDATIONS 
The Poincare solutions and chaos diagrams obtained in this study compare very well with that of 

literature. Likewise fractal dimensions obtained across different schemes do not vary significantly quantitatively 

for corresponding nodes suggesting qualitative agreement of Poincare solutions. Furthermore, the study has 

shown that more than fifty percent of the studied parameters nodes drove the Duffing oscillator chaotically 

across equilibrium positions and Runge-Kutta schemes. In order to have a better and finer solution quickly, a 

faster computer better than (HP pavilion g6 Intel(R) Pentium(R) CPU 2020M @2.40GHz) that can handle 

higher resolution than 101 x 101 is highly recommended. 
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