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ABSTRACT : Linear equalizers were derived either on tiheterministic Zero Forcing (ZF) approach for
equalizers of ZF type or on the stochastic Minimum Mean Square Error (MMSE) approach for equalizers of the
MMSE type. We present a new formulation af #ualizer problem based on a Weighted Legsafes WWLS)
approach. Here, we show that it is possible and in our opinion even simpler to derive the classical results in a
purely deterministic setup, intengting both equalizer types as Leagu&res solutions. This, in turn, allows the
introduction of a simpléinear reference model for equalizers, which supports the exact derivation of a family of
iterative and recursive algorithms with optimizeehavior. Due to this reference approach the adaptive
equalizer problem can equivalently be treated as an adaptisters identification problem for which very
precise Statements are possible withpect to convergenceptimizationand|-stability.

Keywords Zero Forcing (ZF), Minimum Mean Square Error (MMSE), Least Squares (LS),
Weighted easSquare (WLS) an8linglehputSingleOutput (SISQ)

l. INTRODUCTION

Linear equalizersvere designeceitheron the deterministicZF approah for equalizersof ZF type or
on the stochasticMMSE approah for equalizersof the MMSE type. We proposeda new formulation of the
equalizr problembasedon aweighted leastsquaregLS) apprach. Thisdeterministic conceps very much in
line with Lucky so original formulation [11], leaving out all signal and noiseproperties (up to the
noisevariance)but at the same time offerewinsight into the equalizer solutions, &lsey sharecommonLS
or thogonality properties. Thisnovel LS appro&h allows very generalformulationto cover a multitude of
equalizemproblemsjncludingdifferentchannelmodels,multiple antennasa s well asmultiple users [L].

In practice,the equalizerproblemis not yet solved once thesolution is known, asit typically
involvesa matrixinversion amathematicabperation that isighly complexandhallenginginbw-costfixed
pointdevices.Adapvealgorithmsardhus commaly used to appioximate the results. Sdhadaptve
algorithmsfoequalizationpumposescomeitwoforms aniterative(alsoofflineorbath proces$ approacthas well
asarecursieapproah (alsoonrlineordatadriverproces$ that readjusts its estimates onehnewdata
elementthat ideingobseved. Both approacheshave their benefits and drawbacks. Ifchannelestimation
isperformedinaprevioutep (forvarious reasons), then the itevati algorithm based onthe
channeimpulseegonsenaybemost effectte Onthe other hand, itish required tocompute firstthe
channeimpulsereponseifonlythe equalizer solutionisofinterest. In particulaintime-variantscenarios,
onenay not lave thechance tacontinuously estimate thehannelandthen compute equalizersolutionsitezti
andherefore arecursie solution that isableto tachanges, ray betheonlyhopeforgood results[2],[3].

However, such adaptie algorithms require deepunderstandin@f their properties asselectingtheir
free parameterthe step-size, turnsout to be crucial. While forward caczadesadaptve filter designerswere
highly satisfiedwhenthey ableto prove convergencen the meansquare sensenoreandmoresituations ow
becomeknown, in which this approeh hasproved tobe insufficient, since despite theconvergene in them
enquiresensethe worst casesequence®xist that causethe algorithm todiverge. This obsewvation has
startedwith Feintuchs adaptve 1IR algorithm andthe classof adaptve filterswith a line are filter in the error
path[4],[5]but hasrecetly found in other adaptie filters[6],[7],aswell asin adaptve equalizers[8]A robust
algorithm design,on the other hand, is much more suited to solving the equalization problemas it can
guarattee theadaptie algorithm will not divergein any case.In this contribution we show how to design
robust adapive filtersfor linearequalizerg9],[10].
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Il Formulation For Transmission Model
Throughoutthis paper,we adopt that the separabléransmit signal elemets s. hawe unit

enerye( s, '1=1,and the noiseariance at the recgiris givenby e[| v, ’1= N, .We areconsideringseveral
similar butdistincttransmissionschemes

2.1 Single User (SU) Transmission for Frequency Selective SISO Channels

The following SU transmission defirefrequencyselective (also called time dispersive)singleinput
singleoutput (SISO3cenarios:

=Hs, +v, (1)

k

k,sg]T consistsof the current and s - 1 past symbols according to
the spanL < s of thechanneh , which is typically the Toeplitiorm as describe in (2). Theceived vectoris
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Notethatfor atoeplitzform channelH we haver < s. A linearequalizerappliesanFIR filter  onthereceived

H

signal r. so that f"r is an estimae of s _,=e';s for the delayed version ef. A unit vector

e, =[0,»,0,1,0,» ,0" with asingle oneatposition: facilitates hedesciption.
2.2 Single User (SU) Transmission for Frequency Selective MIMO Channels

The transmissions follw the sameform as descrbed in equation(5), althoughwith a different
meaningaswe transmitover N, antennas andeceive by N, . Suwchmultiple input multiple- outpusystems are

generallyreferred toasMIMO system3he transmitectors =¢ .s ,, s éTﬁ is of dimensionx N , the

Np? ok
channel matrixH ,and thus the receve vector and the additive noise vector are of dimensionx N, .
Here,N- is the number of transmitantennas.As in the previouscase,we assumesech entry of the transmit
vector to hawe unit power. Unlike the earlier situation however, we hawe to distinguish N, > N (under

determined.S solution)and N, < N (over determined LSsolution).Forn_ = N, both solutons coincide. In
orderto detect thevarious entries ofthe transmitectors, , we again employ a unitectore, : ¢ s, = 5, . Note
however that in contrast to the previous channel model, a set ofiifferent vectorse, ; t = 1, 2will be
employed in order to select all transmitted symbols while in the frequency selective SISO case a single

vectore, is sufficient. Earlyworks on linear MIMO equalization capefound in[15] and [16]. Note that

precoding matrices are often applied in particular in modern cellular systems such as HSDPA and LTE. In this
case the concatenation of the precoding matrix and the wireless channel has to be considered as a new
compound channel. Such precodimgtrices can also have an impact on the dimension of the transmit vector

s, as in many cases fewer symbols than rank are transmitted at each timexinstgatrticular form of this is

given when the precody matrix shrinks to a vector, in which case we talk about beamforming where only one
symbol stream is transmitted.

2.3 Maximizing SIR and SINR

To understand the vast amount of research and information available on this subject, one has to ask the
guestihan f#iW the purpose of an equalizer?d While Luc
attempting a minimax approach to combat intersymbolinterference (ISl), today we typically view the equalizer
in terms of signato-interference ratio (SIR) or sighto-interference and noise ratio (SINR). If a sigrsalys, ,
is transmittedthrough a frequency selective channel, a mixture of ISI, additive noise and signals from other
users multiuser interference (MUI) is received. If signate transmitted by multiple antennas, then additional
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so-called spatial ISI (S#SI) is introduced. The ratio of the received signal powerand all disturbance terms

before an equalizer indicrbbéddad by the index O6bed) is e

P
SINR,_ = . (3)
Pe + P +P N

ISI SP-ISI MUI 0

The task of the equalizer is to improve the situation, i.e., to increasethis ratio. A linear filter applied to

the observé signal can for example result in an increasesd p_,utilizing useful parts ofp, and P, ,,

while the remaining and/opg, ., is decreas# Unfortunately, the noise power
N, as well as its power spectraldensity is in general also changed when an equalizer filter is applied.At best it
can be considered possible to achi eega&fteredquaizajpoyst equal i

<P and/orp, <P

SP-ISI | MUI

P+ P, +P
SIN Rae ¢ S IS| SP- ISI (4)

Ny

Wherethe equalizer manages to treat the I1SI andSSRs useful signal whilst at the samméi eliminating the
MUI (for example by successive interference cancellation). The ratisieR  to the eventually achieved
SINR,, is considered as the equalizer gain. The purpose of this [gafpedevelop a unifi view ofthe SINR

and SNR relation to the MMSE and ZF equalizer, which permits the introduction of a simple linear reference
model as well as its application in an adaptive system identification framework.

. A Reference Modelfor An Adaptive Equalizers
While classical literature views the equalizer problem as minimizing a mean square error, we show in the
following section that this is in fact not required and a purely deterministic approach based on a least squares
modeling is possible. This approach inntleads to the novel interpretation of the adaptive equalizer problem in
terms of a classic system identification problem. For such problems, however, a much sirestgeility and

robustness has been derived in the past torersanvergence of the adaptive algorithms under worst case
conditions. In order to apply such robust techniques, we first have to show the equivalent system identification
approach for equalizers. We start with the ZF equalizer and then continue witld8& lounterpart [8].

3.1 Zero Forcing (ZF) Equalizer
A solution to the ZF equalizer problem is equivalently given by the following LS formulation:

fZF

_ . H
fom Sargmin|iH - f e

Lt,m ”5 (5)
. H Hy-1 2
=argmin||H [f -(HH ) Her,t,m]”Z

Withe, , indicating a unit vector with a single one entryRaisition0, for transmit antenna of usermm ,

thuse; s =s , the transmit signal at antennaf userm that will be decoded at deldggU. Note that this
form of derivation requiresno signal or noise informatifocusing instead only onproperties of linear time
invariant systems of finite lIlength (FIR);it thus enti

original formulationg14], where system propertieswere the focus and the parti@sarafn, = 1,M = 1 was
consideredlf RN, <sN, M (forexamplei n Luckyds SelestVe stenaia weaverc<ys) the
solution to this problens obviously given by

f2F° =(HH ") 'He

t,t,m

(6)

Lt,m

Commonly known as the ZF solution. Note that this is ecatled overdetermined LS solution as we have more
equations than entriei %", . When RN, > SN, Man alternative scalled underdetermined LS solution
exists, as long asank(H)= SN, M

fo 0= HHH ") e (7

V]
And requires independent consideration as will be provided further on in this section.
Let us first consider the overdeterminembe of (7)As ISldoes not vanish for finite length vectors, we propose
the followingreference model for ZF equalizers

e . : H H fZF,o + y%F,O (8)
With the modeling error vector
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ZF 0
t,t,m

=1 -H"HH ")y H e )

ZF ,0
t,t,m

The termv models ISI, SRSI, and MUI. The larger the equalizer lengtRn, , thesmaller the ISI, e.g.,

ZF ,0

252 |t . The cursor positiom also influences the result.
3.2 Minimum Mean Square Error (MMSE) Equalizer

measured in||v

MMSE solutions are typically derived on the basisighal and noise atistics [2], e.g., by

MMSE
O, t,

f = argminE[| f"r -s kl?b (10)

k

However, the lineaMMSE solution can alternatively be defined by

fg o= argmin(lH" f-e  Jf+N UEIF)

1 11)
=argmin [[(HH" + N, 1P [f -(HH " + N )" He, ]| +MMSE

With an additional termaccording to the additive noise variamgg. We consider here white noise; alternative
forms with colored noise, as originatirfgr example from fractionally spacedjualizers, istraightforward; one
only has to replacev,1 withr,,, the autocorrelation matrix of the noise.
This formulation otthe equation(11) hasnow revealedhat the MMSE problem equivalently can bettemn as a
weighted LS problem with the

MMSE =¢; [I:H"(HH"+N 1) Hle (12)

Definesthe minimum mean square error. As the term is indepenafent, it can thus be dropped when
minimizing equatior(11). The weltknown MMSE solution is now obviously

fo'"2F = (HH "+ N 1) "He (13)

u,t, m
Similarly to the ZF equizer, an ovedetermined solution forn_ < sn, m also exists here.

fg o m=HHH "+ N I)7e (14)

U, t

Under white noise both solohs are in fact identicaly'"\°*°= ¢ ""$F, which is very different to th&F

equalizer Correspondinglyto thereference model for ZF equalizers in equat®nwe can now alsodefine a
reference model for MMSE equalizers

fMMSE +VMMSE (15)

U, t, m U, t.,'m

With the modeling error
vo"SEE (- H T (HE TN ) e (16)
Note, however, that unlike in the case of the ZF solution themodeling error is not orthogonal to the MMSE

solution, i.e.,vy " " g "t "5 is not equal tazero. MMSE equalizers are typically designed on the basis of

Uu,t

H

observationsather than system parameters.Multiplying the signal vector ayithwe obtain

MMSEH MMSEH
S k-Uft,m H%,{F,Vm

m:k

T S

eL"J,t,

17)
How does a received signaldk after such MMSEqualization? We apply on the observation vector and obtain

k

f MMSE,H MMSE,H MMSE,H

p r = -V s + f
u,t, m § kK - U U k \d (18)
=5tV SE

From classic equalizer theory it is well knowrat the remaininglSI energy of the ZF equalizer is smaller than
that ofthe MMSE pastThe weighted LS solutiori"",*®, of equation(17),applied to the observation vector ,
defines a linear referencemodel in athithe desired output signal &5 ;, originatingfrom a transmitted signal

over antenna of userm , corruptedby additive compound noise,’,>". The compound noisis defined by

MMSE H

fg ' to'vas well as by the modeling noigf"*“"'s,, defined by the modeling error vectef™ " in
equation(16)
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Fig 1: AdaptiveEqualization as System Identification problem.
In concluson, the adaptive equalizer problem has thus taken on the form of an identification problem as

depicted in Fig 1. The linear system with impulg§’, response is estimated ag , by an adaptive equalizer
algorith m. Her e, 6refdé stands for either MMSE or ZF. The
compound noise’*' (seeequation {8)) and constructs a noisy reference symepgl ,. The adaptive filter

k,t,m

with its output & _, +y&' tries to resemblg_; ,+y.' . The distorted error signa, . is applied to the

Kt,m

adaptive filter in order to adjust the equalizer solution.

V. An lterative Algorithms for An Adaptive Equ alizers
Equalizer solutions requiring matrix inverses are highly complex and numerically challenging, in
particular when the matrix size is 50 or over. An iterative algorithm, as referred to here, is one that possesses all
data and attempts to achieve gntimal solution. In the literature such algorithms are also referred to at times as
off-line or batch algorithms since they require no new data during their operation. In this contribution we show
convergence conditions for numerous known and novel atgasitout do not deal with the question of when to
stop the iterations [1].

4.1 An lterative Zero Forcing Equalizer (I1ZF)

Let Starting with an initial valuer, (which can be the zero vector), we arrive at the ZF iterative
algorithm for x = H

fo=f  +eH@ge “ H_ f ), (19)

| 1-1
With the reference model imquation 8) we can introduce the parameter error veatpe f; " - f, and obtain
we recognize that the noise condition is satisfied, as properfy = o forv = v5" . Convergence conditions for

the stepsize ¢ are now also readily derived, being dependent otatigestEigenvalue ofHH " .

2
0<eg < (20)

maxa ( H H
As computing the largest eigenvalue may @ computationallyexpensive task, simpler bounds are of interest,
even thoughthey may be conservative.
1. A classic conservative bound is given by

2
0<g <—m—rrrw— (21)

Trace(HH . )

And can be computed with low complexity once the mattixs known.
2. For a Single User in a frequency selective SISO channel, the chanimeldefined by a single

Toeplitz matrix, the largest eigenvalue of which can also be boundedalay [H(e )|, with

H(e'* ) denoting the Fourier transform of the channel impulse response. The corresponding condition

for the stepsize reads now

2
0<e < (22)

max, [HE' )]
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Such a steize may be more conservative than the condition in equation (20) but it is also more practical to
find.

In the sinulation examples presented the bound so obtained is very close to the theoretical value in equation
(20).

(i)SystemMismatch (ii)Relative Error
Fig.2lterative ZeroForcingEqualizer

Depending upon different step size conditions we have calcuakadive System mismatch and Error. Here as

the number of iterations increases error decreases means we are converging towards desired values of filter
weights.

4.2 An lterative Fast Convergent An Zero Forcing Equalizer (F-ZFE)

As the convergenceof the preus equalizer algorithm (lterative ZF Algorithm) is dependent on the channel
matrix , the algorithm exhibits much slower convergence forsome channels than for others, even for optimal
stepsizes. Theanalysis of the algorithm shawat the optimal matrix that ensures fastest convergence is

given by , Which is exactly the inverse whose computation we are attempting toavoid with the

iterative approach. If, however, some a priorikfexge is present on the channel class (e.g., Pedestrian Bor
Vehicular A), then we can precompute the mean value overan ensemble of channels from a specific class, for
example

(23)
In this case, the algorithm updates read

(24)
Convergenceondition for this algorithm will be

(25)

(i)SystemMismatch (ii)Relative Error
Fig.3FastConvergentf An Iterative Zero Forcing Equalizer




