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ABSTRACT : Linear equalizers were derived either on the deterministic Zero Forcing (ZF) approach for 

equalizers of ZF type or on the stochastic Minimum Mean Square Error (MMSE) approach for equalizers of the 

MMSE  type. We present a new formulation of the equalizer problem based on a Weighted Least Squares (WLS) 

approach. Here, we show that it is possible and in our opinion even simpler to derive the classical results in a 

purely deterministic setup, interpreting both equalizer types as Least Squares solutions. This, in turn, allows the 

introduction of a simple linear reference model for equalizers, which supports the exact derivation of a family of 

iterative and recursive algorithms with optimize behavior. Due to this reference approach the adaptive 

equalizer problem can equivalently be treated as an adaptive system identification problem for which very 

precise Statements are possible with respect to convergence, optimization and l2-stability. 

Keywords: Zero Forcing (ZF), Minimum Mean Square Error (MMSE), Least Squares (LS), 

WeightedLeastSquare (WLS) and SingleInput SingleOutput (SISO).     

I. INTRODUCTION  
Linear equalizers were designed either on the deterministic ZF approach for equalizers of ZF type or 

on the stochastic MMSE approach for equalizers of the MMSE type. We proposed a new formulation of the 

equalizer problem based on a weighted least squares (LS) approach. This deterministic concept is very much in 

line with Lucky so original formulation [11], leaving out all signal and noise properties (up to the 

noisevariance) but at the same time offers new insight into the equalizer solutions, as they share common LS 

or thogonality properties. This novel LS approach allows very general formulation to cover a multitude of 

equalizer problems, including different channel models, multiple antennas a s well as multiple users [1]. 

In practice, t he equalizer problem is not yet solved once the solution is known, as it typically 

involves a matrix invers ion, a mathematical operation that is highly complexandchallenginginlow-costfixed-

pointdevices.Adaptivealgorithmsarethus commonly used to approximate the results. Suchadaptive 

algorithmsforequalization purposescomeintwoforms, aniterative (alsooff-lineorbatch process) approach as well 

asarecursiveapproach (alsoon-lineordata-drivenprocess) that readjusts its estimates oneachnewdata 

elementthat isbeingobserved. Both approaches have their benefits and drawbacks. Ifchannelestimation 

isperformedinapreviousstep (forvarious reasons), then the iterative algorithm based onthe 

channelimpulseresponsemaybemost effective.Onthe other hand, itisnot required tocompute firstthe 

channelimpulseresponseifonlythe equalizer solution isofinterest.   In particularintime-variantscenarios, 

onemay not have the chance to continuously estimate thechannelandthen compute equalizersolutionsiteratively 

andtherefore, arecursive  solution that isableto track changes, may betheonlyhopeforgood results[2],[3]. 

However, such adaptive algorithms require a deep understanding of their properties as selecting their 

free parameter, the step-size, turns out to be crucial.  While forward cascades adaptive filter designers  were 

highly satisfied when they able to prove convergence in the mean-square sense, more and more situations now 

become known, in which this approach has proved to be insufficient, since, despite the convergence in them 

enquire sense, the worst case sequences exist that cause the algorithm  to diverge. This observation has 

started with Feintuchs adaptive I IR algorithm and the class of adaptive filters with a line are filter in the error 

path [4],[5]but has recently found in other adaptive filters[6],[7],as well as in adaptive equalizers[8]. A robust 

algorithm design, on the other hand, is much more suited to solving the equalization problem as it can 

guarantee the adaptive algorithm will not diverge in any case. In this contribution we show how to design 

robust, adaptive filters for linear equalizers [9],[10]. 
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II.  Formulation For Transmission Model 
Throughout this paper, we adopt that the separable transmit signal elements  kS  have unit 

energy 2
[ | | ] 1

k
E s = ,and the noise variance at the receiver is given by 2

0
[ | | ]

k
E v N= .We are considering several 

similar but distinct transmission schemes: 

 

2.1 Single User (SU) Transmission for Frequency Selective SISO Channels 

The following SU transmission defines frequency selective (also called time dispersive)single-input 

single-output (SISO)scenarios: 

                                                   k k k
r H s v= +

                                                                               
(1) 

Here, the vector [ ]
T

k k k -1 k - S +1
s = s ,s ,é,s consists of the current and 1S- past symbols according to 

the span L S< of the channelH , which is typically the Toeplitz form as describe in (2). The received vector is 

defined as [ ]
T

k k k -1 k - R +1
r = r ,r ,é,r. Let the transmission be disturbed by additive noise 

k
v  being of the same 

dimension as kr . 
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Note that for a toeplitz form channelH we haveR < S . A linear equalizer applies an FIR filter f on the received 

signal kr  so that H

k
f r  is an estimate of T

k -Ű Ű k
s = e s  for the delayed version ofks . A unit vector 

[ ]0 0 1 0 0
t
= » »e , , , , , ,

T
 with a single one at positiontfacilitates the description. 

2.2 Single User (SU) Transmission for Frequency Selective MIMO Channels 

The transmissions follow the same form as described in equation (5), although with a different 

meaning as we transmit over
T

N antennas and receive by
R

N .  Suchmultiple input multiple- outputsystems are 

generally referred toasMIMO systems. The transmit vector 
T

k 1,k 2 ,k N ,kT
s = s ,s ,é,sè ø

ê ú
 is of dimension

T
1× N , the 

channel matrix H ,and thus the receive vector and the additive noise vector are of dimension
R

1× N . 

Here, TN is the number of transmit antennas. As in the previous case, we assume each entry of the transmit 

vector to have unit power. Unlike the earlier situation, however, we have to distinguish 
R T

N > N (under 

determined LS solution) and 
R T

N < N (over determined LS solution). For
R T

N = N both solutions coincide. In 

order to detect the various entries of the transmit vector
k

s , we again employ a unit vector T

t t k t,k
e : e s = s . Note 

however that in contrast to the previous channel model, a set of 
T

N  different vectors 
t T
e ;t = 1,2,é,Nwill be 

employed in order to select all
T

N  transmitted symbols while in the frequency selective SISO case a single 

vector
Ű

e  is sufficient. Early works on linear MIMO equalization can befound in [15] and [16]. Note that 

precoding matrices are often applied in particular in modern cellular systems such as HSDPA and LTE. In this 

case the concatenation of the precoding matrix and the wireless channel has to be considered as a new 

compound channel. Such precoding matrices can also have an impact on the dimension of the transmit vector 

k
s  as in many cases fewer symbols than rank are transmitted at each time instantk . A particular form of this is 

given when the precoding matrix shrinks to a vector, in which case we talk about beamforming where only one 

symbol stream is transmitted. 
 

2.3 Maximizing SIR and SINR 

To understand the vast amount of research and information available on this subject, one has to ask the 

question ñWhat is the purpose of an equalizer?ò While Luckyôs original work focused on the SU scenario, 

attempting a minimax approach to combat intersymbolinterference (ISI), today we typically view the equalizer 

in terms of signal-to-interference ratio (SIR) or signal-to-interference and noise ratio (SINR). If a signal, say
k

s , 

is transmitted through a frequency selective channel, a mixture of ISI, additive noise and signals from other 

users multiuser interference (MUI) is received. If signals  are transmitted by multiple antennas, then additional 
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so-called spatial ISI (SP-ISI) is introduced. The ratio of the received signal power  
s

P  and all disturbance terms 

before an equalizer indicated by the index óbeô) is easily described as 

                                                     0-

=
+ + +

s

b e

IS I S P IS I M U I

P
S IN R

P P P N
                                         (3) 

The task of the equalizer is to improve the situation, i.e., to increasethis ratio. A linear filter applied to 

the observed signal can for example result in an increased'

S s
P > P ,utilizing useful parts of 

IS I
P and 

S P - IS I
P , 

while the remaining and/or '

S P - IS I S P - IS I
P < P  and/or 

M U I

'

M U I
P < P is decreased. Unfortunately, the noise power 

0
N as well as its power spectraldensity is in general also changed when an equalizer filter is applied.At best it 

can be considered possible to achieve the post equalizationSINR (the index óaeô denotes after equalization) 

 

                                              0

-
+ +

¢
s IS I S P IS I

a e

P P P
S IN R

N
                                                              (4) 

Where the equalizer manages to treat the ISI and SP-ISI as useful signal whilst at the same time eliminating the 

MUI (for example by successive interference cancellation). The ratio of 
b e

S IN R to the eventually achieved 

ae
SIN R  is considered as the equalizer gain. The purpose of this paper is to develop a unified view of the SINR 

and SNR relation to the MMSE and ZF equalizer, which permits the introduction of a simple linear reference 

model as well as its application in an adaptive system identification framework. 

 

III.  A Reference Model for An Adaptive Equalizers 
While classical literature views the equalizer problem as minimizing a mean square error, we show in the 

following section that this is in fact not required and a purely deterministic approach based on a least squares 

modeling is possible. This approach in turn leads to the novel interpretation of the adaptive equalizer problem in 

terms of a classic system identification problem. For such problems, however, a much stronger 
2

l -stability and 

robustness has been derived in the past to ensure convergence of the adaptive algorithms under worst case 

conditions. In order to apply such robust techniques, we first have to show the equivalent system identification 

approach for equalizers. We start with the ZF equalizer and then continue with its MMSE counterpart [8]. 

 

3.1 Zero Forcing (ZF) Equalizer 

A solution to the ZF equalizer problem is equivalently given by the following LS formulation: 

                                       

2

2

1 2

2

t t

t

-

= -

= -

, , , ,

, ,

          

 

a rg m in || ||

a rg m in || [ ( ) ] ||       

Z F H

t m t m

H H

t m

f H f e

H f H H H e
                                      

(5)                                                               

With
Ű,t,m

e  indicating a unit vector with a single one entry at PositionŰ, for transmit antenna t  of userm , 

thus
T

Ű,t,m k k-Ű,t,m
e s = s , the transmit signal at antennat of userm that will be decoded at delay lagŰ. Note that this 

form of derivation requiresno signal or noise information, focusing instead only onproperties of linear time-

invariant systems of finite length (FIR);it thus entirely ignores the presence of noise. This is identicalto Luckyôs 

original formulations [14], where system propertieswere the focus and the particular case of 
T

N = 1, M = 1 was 

considered. If 
R T

R N < SN M  (for example, in Luckyôs SISO frequency selective scenario, we haveR < S ) the 

solution to this problem is obviously given by 

                                                    

1

t t

-
=

,

, , , ,
( )

Z F o H

t m t m
f H H H e                                                                (6) 

Commonly  known as the ZF solution. Note that this is a so-called overdetermined LS solution as we have more 

equations than entries in
, ,

Z F

l m
f
t . When 

R T
R N > SN M an alternative so-called underdetermined LS solution 

exists, as long as 
T

rank(H ) = SN M  

                                                                   

Z F ,o H -1

Ű,t,m Ű,t,m
f = H (H H ) e                                                                 (7) 

And requires independent consideration as will be provided further on in this section. 

Let us first consider the overdetermined case of (7). As ISIdoes not vanish for finite length vectors, we propose 

the followingreference model for ZF equalizers 

                                                                   

H Z F ,0 Z F ,0

Ű,t,m Ű,t,m Ű,t,m
e = H f + v                                                                  (8) 

With the modeling error vector 
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1

t t

-
= -

,

, , , ,
( ( ) )

Z F o H H

t m t m
v I H H H H e                                                    (9) 

The term 
,

, ,

Z F o

t m
v
t  models ISI, SP-ISI, and MUI. The larger the equalizer length  

R
R N  , the smaller the ISI, e.g., 

measured in  
, 2

, , 2
|| ||

Z F o

t m
v
t  . The cursor position t also influences the result. 

3.2 Minimum Mean Square Error (MMSE) Equalizer  

MMSE solutions are typically derived on the basis of signal and noise statistics [21], e.g., by 

                                                   

M M S E H 2

Ű,t,m k k-Ű,t,m
f = argm in E [| f r - s | ]                                                      (10) 

However, the linear MMSE solution can alternatively be defined by 

                    

M M S E H 2 2

Ű,t,m Ű,t,m 2 0 2

1

H H -1 22

0 0 Ű,t,m 2

f = a rg m in (|| H f - e || + N || f || )

          = a rg m in || (H H + N I) [ f - (H H + N I) H e ] | | + M M S E

                      (11) 

With an additional term, according to the additive noise variance
0

N . We consider here white noise; alternative 

forms with colored noise, as originating, for example from fractionally spaced equalizers, is straightforward; one 

only has to replace 
0

N I  with
vv

R , the autocorrelation matrix of the noise. 

This formulation of the equation (11) has now revealed that the MMSE problem equivalently can be written as a 

weighted LS problem with the 

                                                  

T H H -1

Ű,t,m 0 Ű,t,m
M M S E = e [I - H (H H + N I) H ]e                                         (12) 

Defines the minimum mean square error. As the term is independent of f , it can thus be dropped when 

minimizing equation (11). The well-known MMSE solution is now obviously 

                                         

M M S E H -1

Ű,t,m 0 Ű,t,m
f = (H H + N I) H e                                                             (13) 

Similarly to the ZF equalizer, an over determined solution for R N < SN M
R T

 also exists here. 

                                                      

M M S E ,o H -1

Ű,t,m 0 Ű,t,m
f = H (H H + N I) e                                                            (14) 

Under white noise both solutions are in fact identical
M M S E ,o M M S E

Ű,t,m Ű,t,m
f = f , which is very different to the ZF 

equalizer. Correspondingly, to thereference model for ZF equalizers in equation (8), we can now alsodefine a 

reference model for MMSE equalizers 

                                         

H M M S E M M S E

Ű,t,m Ű,t,m Ű,t,m
e = H f + v                                                                      (15) 

With the modeling error 

                                                        

M M S E H H -1

Ű,t,m 0 Ű,t,m
v = (I - H (H H + N I) H )e                                              (16) 

Note, however, that unlike in the case of the ZF solution themodeling error is not orthogonal to the MMSE 

solution, i.e., 
M M S E H M M S E

Ű,t,m Ű,t,m
v H f  is not equal to zero. MMSE equalizers are typically designed on the basis of 

observations rather than system parameters.Multiplying the signal vector with 
Ű,t,m

e we obtain 

                                                      

T M M S E H M M S E H

Ű,t,m k k-Ű,t,m Ű,t,m k Ű,t,m k
e s = s = f H S + v S                                          (17) 

How does a received signal look after such MMSE-equalization? We apply on the observation vector and obtain 

 

                                                        
"

M M S E ,H M M S E ,H M M S E ,H

Ű,t,m k k -Ű Ű k Ű,t,m k

M M S E
k -Ű k,t,m        

f r = s - v s + f v

= s +         v

                                        (18) 

From classic equalizer theory it is well known that the remainingISI energy of the ZF equalizer is smaller than 

that ofthe MMSE parts.The weighted LS solution 
M M S E

Ű,t,m
f  of equation (17),applied to the observation vector 

k
r  , 

defines a linear referencemodel in which the desired output signal is 
k -Ű

s , originating from a transmitted signal 

over antenna t of userm , corrupted by additive compound noise 
M M S E

k ,t ,m
v" . The compound noise is defined by 

M M S E ,H

Ű,t,m k
f v  as well as by the modeling noiseM M S E ,H

Ű k
v s , defined by the modeling error vector M M S E ,H

Ű
v in 

equation (16) 
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Fig 1: Adaptive Equalization as System Identification problem. 

In conclusion, the adaptive equalizer problem has thus taken on the form of an identification problem as 

depicted in Fig 1. The linear system with impulse 
re f

Ű,t,m
f  response is estimated as 

Ű,t,m
f  by an adaptive equalizer 

algorithm. Here, órefô stands for either MMSE or ZF. The outcome of the reference system is disturbed by the 

compound noise 
r e f

k ,t ,m
v" (see equation (18)) and constructs a noisy reference symbol

k -Ű,t,m
s . The adaptive filter 

with its output 
re f

k -Ű,t,mk ,t ,m
s + vĔ Ĕ  tries to resemble

re f

k -Ű,t,mk ,t ,m
s + v" . The distorted error signal 

k ,t ,m
e" is applied to the 

adaptive filter in order to adjust the equalizer solution. 

 

IV.  An Iterative Algorithms for An Adaptive Equ alizers 
Equalizer solutions requiring matrix inverses are highly complex and numerically challenging, in 

particular when the matrix size is 50 or over. An iterative algorithm, as referred to here, is one that possesses all 

data and attempts to achieve an optimal solution. In the literature such algorithms are also referred to at times as 

off-line or batch algorithms since they require no new data during their operation. In this contribution we show 

convergence conditions for numerous known and novel algorithms, but do not deal with the question of when to 

stop the iterations [1]. 

 

4.1 An Iterative Zero Forcing Equalizer (IZF)  

Let Starting with an initial value 
0

f (which can be the zero vector), we arrive at the ZF iterative 

algorithm for X = H  

                                               
H

Ű l-1l l - 1
f = f + ɛH(e - H f ),    l = 1,2,3,.....                                              (19) 

With the reference model in equation (8) we can introduce the parameter error vector 
Z F

Űl l
f = f - f and obtain 

we recognize that the noise condition is satisfied, as property Z F

Ű
H v = 0 for Z F

Ű
v = v . Convergence conditions for 

the step-size ɛare now also readily derived, being dependent on the largest Eigen value of H
H H . 

 

                                                                
H

2
0 < ɛ <

m a xɚ(HH )

                                                                    (20) 

As computing the largest eigenvalue may be a computationallyexpensive task, simpler bounds are of interest, 

even thoughthey may be conservative. 

1.  A classic conservative bound is given by 

                                                    
H

2
0 < ɛ <

T ra ce (H H )

                                                                 (21) 

And can be computed with low complexity once the matrix H is known. 

2. For a Single User in a frequency selective SISO channel, the channel H is defined by a single 

Toeplitz matrix, the largest eigenvalue of which can also be bounded by
jɋ

ɋ
m a x | H (e ) |, with 

jɋ
H (e )  denoting the Fourier transform of the channel impulse response. The corresponding condition 

for the step-size reads now 

                                                      
jɋ 2

ɋ

2
0 < ɛ <

m a x | H (e ) |
                                                          (22) 



American Journal of Engineering Research (AJER) 2016 
 

 
w w w . a j e r . o r g 

 

Page 17 

Such a step-size may be more conservative than the condition in equation (20) but it is also more practical to 

find. 

In the simulation examples presented the bound so obtained is very close to the theoretical value in equation 

(20). 

 

  
(i)System Mismatch (ii )Relative Error 

Fig.2:I t e r a t i v e  Zero Forcing Equalizer 

 

Depending upon different step size conditions we have calculated Relative System mismatch and Error. Here as 

the number of iterations increases error decreases means we are converging towards desired values of filter 

weights. 

4.2 An Iterative Fast Convergent An Zero Forcing Equalizer (IF-ZFE) 

As the convergenceof the previous equalizer algorithm (Iterative ZF Algorithm) is dependent on the channel 

matrix , the algorithm exhibits much slower convergence forsome channels than for others, even for optimal 

step-sizes. Theanalysis of the algorithm shows that the optimal matrix  that ensures fastest convergence is 

given by , which is exactly the inverse whose computation we are attempting toavoid with the 

iterative approach. If, however, some a prioriknowledge is present on the channel class (e.g., Pedestrian Bor 

Vehicular A), then we can precompute the mean value overan ensemble of channels from a specific class, for 

example 

                                                                   
                                                                   (23) 

In this case, the algorithm updates read 

                                            
                                            (24) 

Convergence condition for this algorithm will be 

                                                              

                                                                       (25) 

  

(i)System Mismatch (ii )Relative Error 
Fig.3:Fast Convergent of An Iterative Zero Forcing Equalizer 


