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ABSTRACT : In this paper, a modified iterative decomposition method is proposed to solve the nth order 

linear and nonlinear integro differential equations. The solution was obtained by decomposition of the solution 

of the integro differential equations and the initial approximation was obtained by the evaluation of the source 

term. Subsequent approximations were obtained by applying the nonlinear operator on the sum of previous 

solutions obtained. The results obtained confirmed the accuracy and efficiency of the method when compared 

with the other methods found in literature. Some examples were given to illustrate the variational iterative 

method and the modified iterative decomposition method. 
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I. INTRODUCTION 
Integral and integro-differential equations arise in many scientific and engineering applications. A type of the 

equations can be obtained from converting initial value problems with prescribed initial values. However 

another type can be derived from boundary value problems with the given boundary conditions. It is important 

to point out that converting initial value problems to an integral equation and converting an integral equation to 

initial value problems are commonly used in the literature. However converting boundary value problem to an 

integral equation and integral equation to equivalent boundary value problems are rarely used. In recent time 

researchers have worked on integral equations and lots of discoveries have been recorded. Adomian G. 

(1994)[1] presented the decomposition method,  Aslam, Noor (2008)[2] had the Solution of Integro Differential 

Equations by Variational Iterative Method, Daftardar-Gejji V. and Jafari H.(2006)[4] produced an iterative 

method for solving nonlinear functional equations,  He J. H. (1999)[7] produced the Homotopy perturbation 

technique of solution, Hemeda A. A. (2012)[8] presentented a new Iterative Method of aplication to nth-Order 

Integro-Differential Equations. 

II. TECHNIQUES AND METHODOLOGY 

A.       Standard Variational Integration Techniques 

Consider the differential equation  

 )(= xgNuLu                                                                                                                          (1) 

Where L and N are linear and non-linear operators respectively and g(x) is the source term and equation (1) is 

formed non-homogeneous. 

According to Variational Iteration Method by Aslam Noor (2008)[2] we constructed a correct functional as 

follows  
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 Where   is a general Lagrange multiplier which is identified optimally via variational theory, noting that in 

this method   may be a constant or a function and )(xUn  is a restricted value. The subscript n denotes the nth 

approximation. Hence, 0=nu  where   is a variational derivative. For a complete use of the VIM, we 

followed two steps   

    1.  The determination of the Lagrange multiplier   that is identified optimally and  

    2.  With   determined, we substituted the result in (2) where the restriction is omitted.  

Taking the variation with respect to independent variable nu , we have.  
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 or equivalently  
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 Integration by parts is usually used for the determination of )(t . In other word, we used  
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 and so on. These identities are obtained by integration by parts. E.g If )(=)( tutLu nn
  in (3) then (4) becomes  
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 or  
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 but the extremum condition requires that 1nu  on the LHS of (8) is zero and as a result, the RHS should be 

zero as well and this yields the stationary condition. This gives:  

 1=                                                           (10) 

 Also if )(=)( tutLu nn
  in (8), then it becomes  
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 Integrating the integral of (11) by parts, we have:  
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 or  

 dtuutuu n

x

xtnxtnn   
0

==1 )(|)(1(=                             (13) 

 where 0=1nu , and these yield stationary condition  

 0=|,|)(0,=|1 === xtxtxt t                                            (14) 
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 The Langrange multiplier is determined from the the general formula  
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Where i  is the order of the differential equation. Having determined the Langrange multiplier )(t , the 

successive approximation 0),(1  nxun  of the solution )(xu  is readily obtained using selective function 

)(0 xu , However for fast convergence the function )(0 xu  should be selected by using the initial conditions as 

follows.  
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Consequently the solution  

 )(lim=)( xuxu n
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                                                                                                                 (18) 

 In other words, the correct functional (2) will give several approximate solution which will tend toward the 

exact solution. The correct functional for  the IDE is  
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 If 10,1,2,= kn   then equation (19) becomes  
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B.    Derivation of the Modified IDM on General Problem 

The general nth-order integro-differential equation is  
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 where 10,1,...=, iii  are real constants. m, n and q are integers with nmq <  in (21).  The function 

f(x), g(x) and k(x,t) are given and the unknown function )(xy  to be determined, we assumed that equation (21) 

has a unique solution. 

Let us consider the following general non-linear equation  

 )(= yNfy                                                                                                                              (23) 

 where N is a non linear operator from a Banach space BB  and f is a known function, we assumed an 

approximate solution y of equation (23) of the form  
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 The non-linear operator N is defined as  
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 Thus, from equations (24) and (25), equation (23) is equivalent to  
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 We defined the recurrence relation as  
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  The nth-term approximate solution for equation (27) is given as:  

 1210 ...=  nyyyyy                                                                                                 (28) 

III. NUMERICAL EXAMPLES 
In this section, we demonstrated the standard VIM and the Modified IDM on some numerical examples. We 

considered the comparison of the methods in four examples in which two are linear and the other two are non-

linear integro-differential equations and the degree of approximation; n = 6.  The errors were also considered. 

 

Example 1 

Consider 

 0=(0)   ,)(
3

1=)(
1

0
udttxtu

x
xu   

The Exact solution is given as: xxu =)(  
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Table 1: Numerical Results of VIM and Modified IDM for Example 1 and the Errors obtained 
x Exact VIM Result IDM Result Error for VIM Error for IDM 

0.0  0.0  0.0000000000  0.0000000000   0.0000000000  0.0000000000 

0.1  0.1  0.0999999936  0.09999999921   6.36 E-09   7.90 E-10 

0.2  0.2  0.1999999746  0.1999999968   2.45 E-08   3.20 E-09 

0.3  0.3  0.2999999428  0.2999999928   5.72 E-08   7.20 E-09 

0.4  0.4  0.3999998983  0.3999999873   1.02 E-07   1.27 E-08 

0.5  0.5  0.4999998411  0.4999999801   1.59 E-07   1.99 E-08 

0.6  0.6  0.5999997711  0.5999999714   2.29 E-07   2.86 E-08 

0.7  0.7  0.6999996885  0.6999999611   3.12 E-07   3.89 E-08 

0.8  0.8  0.7999995931  0.7999999491   4.07 E-07   5.09 E-08 

0.9  0.9  0.8999994850  0.8999999356   5.15 E-07   6.44 E-08 

1.0  1.0  0.9999993420  0.9999999205   6.58 E-07   7.95 E-08 
 

Example 2 

Consider the second order integro differential equation 

 

 dttytxy
x

xy )()(
2

2=)(
1

0
   

with initial conditions 0=(0)=(0) yy  ; the Exact solution is given as 
2=)( xxy  

 

Table 2: Numerical Results of VIM and Modified IDM for Example 2 and the Errors obtained 
x Exact VIM Result IDM Result Error for VIM  Error for IDM 

.0.0  0.0000000000  0.0000000000  0.0000000000   0.0000000000  0.0000000000 

0.1  0.0100000000  0.0099938228  0.0099999980   6.18 E-06   1.70 E-09 

0.2  0.0400000000  0.0399505826  0.0399999860   4.94 E-05   1.36 E-08 

0.3  0.0900000000  0.0898332164  0.0899999540   1.67 E-04   4.58 E-08 

0.4  0.1600000000  0.1596046611  0.1599998910   3.95 E-04   1.09 E-07 

0.5  0.2500000000  0.2492278537  0.2499997880   7.72 E-04   2.12 E-07 

0.6  0.3600000000  0.3586657312  0.3599996330   1.33 E-03   3.67 E-07 

0.7  0.4900000000  0.4878812305  0.4899994180   2.12 E-03   5.82 E-07 

0.8  0.6400000000  0.6368372887  0.6399991310   3.16 E-03   8.69 E-07 

0.9  0.8100000000  0.8054968427  0.8099987620   4.50 E-03   1.24 E-06 

1.0  1.0000000000  0.9938228295  0.9999983020   6.18 E-03   1.70 E-06 
 

Example 3 

Consider the third order volterra fredhom integro differential equation, giving as  

 dttudttutxxsinxxu
x

)()()(32=)(
1

00    

with initial conditions 
 

 1=(0)1,=(0)=(0)  uuu  

the exact solution is giving as  

 cosxsinxxu =)(  
 

Table 3: Numerical Results of VIM and Modified IDM for Example 3 and the Errors obtained 
x Exact VIM Result IDM Result Error for VIM Error for IDM 

0.0  1.0000000000  1.0000000000  1.000000000  0.000000000  0.000000000 

0.1  1.0948375820  1.0951049000  1.095105400   2.67318 E-04   2.67318 E-04  

0.2  1.1787359090  1.1808661320  1.180870200   2.13022 E-03   2.13022 E-03  

0.3  1.2508566960  1.2579985000  1.258012100   7.14180 E-03   7.14180 E-03  

0.4  1.3104793360  1.3272464300  1.327278500   1.67671 E-02   1.67671 E-02  

0.5  1.3570081000  1.3893426000  1.389405200   3.23345 E-02   3.23345 E-02  

0.6  1.3899780880  1.4449622900  1.445069300   5.49842 E-02   5.49842 E-02  

0.7  1.4090598740  1.4946734600  1.494841000   8.56136 E-02   8.56136 E-02  

0.8  1.4140628000  1.5388851500  1.539128000   1.24822 E-01   1.24822 E-01  

0.9  1.4049368780  1.5777897200  1.578119300   1.72853 E-01   1.72853 E-01  

1.0  1.3817732910  1.6113047500  1.611722800   2.29531 E-01   2.29531 E-01  
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Example 4  

 dttuexu x
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iv )(1=)( 2
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xexuExacteueuuu =)(:   =(1),=(1)1,=(0)=(0)   

 

Table 4: Numerical Results of VIM and Modified IDM for Example 4 and the Errors obtained 

x Exact VIM Result IDM Result Error for VIM Error for IDM 

0.0  1.0000000000  1.0000000000  1.0000000000   0.0000000000  0.0000000000 

0.1  1.1051581800  1.1161649000  1.1051707990   1.1000 E-02   1.1908 E-07 

0.2  1.2214022700  1.2323962000  1.2214026690   1.0994 E-02   8.9160 E-08 

0.3  1.3498588000  1.3608493000  1.3498580830   1.0991 E-02   7.4246 E-07 

0.4  1.4918246900  1.5028023000  1.4918184720   1.0977 E-02   6.2256 E-06 

0.5  1.6487212700  1.6596591000  1.6486976610   1.0938 E-02   2.3610 E-05 

0.6  1.8221188000  1.8329540000  1.8220479640   1.0835 E-02   7.0836 E-05 

0.7  2.0137527000  2.0243571000  2.0135713730   1.0604 E-02   1.8133 E-04 

0.8  2.2255409200  2.2356765000  2.2251306430   1.0135 E-02   4.1029 E-04 

0.9  2.4596031100  2.4688607000  2.4587584240   9.2576 E-03   8.4469 E-04 

1.0  2.7182818200  2.7259981000  2.7166666020   7.7163 E-03   1.6158 E-03 

 

IV. GRAPHS OF COMPARISON 

 

V. DISCUSSION OF RESULTS AND CONCLUSION 
It is very clear and easy to observe that the newly proposed method performed creditably well when it was 

applied to solve integro-differential equation. It compete favourably with the existing variational iteration 

method in the examples considered, we discovered that the results obtained using the modified iterative 
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decomposition method are in close agreement with the exact solution and performed better than the other 

existing methods. in the case of Fredholm integro differential equations, when the newly proposed scheme was 

applied, we saw a great convergence to the exact solutions, infact there is a better performance in terms of errors 

obtained and closeness to the exact solutions than the variational iteration method. The modified iterative 

decomposition method performed creditably well when applied to solve integro-differential equations, infact it 

had an edge over the VIM. Moreover the new modified iterative decomposition method gives better results than 

those obtained by the variational iteration method, evident are shown in the table of results 
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