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ABSTRACT: The present study is concerned with the thermoelastic interactions in a two dimensional 

homogeneous, transversely isotropic thermoelastic solids without energy dissipation and with two temperatures in 

the context of Green - Naghdi model of type-II.  The Laplace and Hankel transforms have been employed to find the 

general solution to the field equations. Concentrated normal force, normal force over the circular region and 

concentrated thermal source and thermal source over the circular region have been taken to illustrate the 

application of the approach. The components of displacements, stresses and conductive temperature distribution are 

obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using 

numerical inversion technique. Numerically simulated results are depicted graphically to show the effect of two 

temperature and anisotropy on the components of normal stress, tangential stress and conductive temperature. 

 

KEYWORDS: Transversely isotropic, thermoelastic, Laplace transform, Hankel transform, concentrated and 

distributed sources 

I. INTRODUCTION 
During the past few decades , widespread attention has been given to thermoelasticity theories that admit a 

finite speed for the propagation of thermal signals. In contrast to the conventional theories based on parabolic-type 

heat equation , these theories are referred to as generalized theories. Thermoelasticity with two temperatures is  one 

of the non classical theories of thermomechanics of elastic solids. The main difference of this theory with respect to 

the classical one is a thermal dependence. 

In a series of papers, Green and Naghdi [6] –[8]  provided sufficient basic modifications in the constitutive 

equations and  proposed   three thermoelastic theories which are referred to as GN theories of Type-I, II, and III . 

GN Theory of Type-I  is a theory describing behaviour of a thermoelastic body which relies on entropy balance 

rather than entropy inequality. The novel quantity is a thermal displacement variable.  GN theory of Type-II  allows 

heat transmission at finite speed without energy dissipation. This model admits un-damped thermoelastic waves in a 

thermoelastic material and is best known as theory of  thermoelasticity without energy dissipation. The principal 

feature of this theory is in contrast to classical  thermoelasticity associated with Fourier’s law of heat conduction, the 

heat flow does not involve energy dissipation. This theory permits the transmission of heat as thermal waves at finite 

speed. GN theory of Type-III  includes the previous two models as special cases and admits dissipation of energy in 

general. This theory was pursued  by many authors. Chandrasekharaiah and Srinath [1] discussed the thermoelastic 

waves without energy dissipation in an unbounded body with a spherical cavity.                                                                          
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Youssef [25,27,29] constructed a new theory of generalized thermoelasticity by taking into account  two-

temperature generalized thermoelasticity theory for a homogeneous and isotropic body without energy dissipation 

and obtained the variational principle. Chen and Gurtin [2], Chen et al. [3] and [4] have formulated a theory of heat 

conduction in deformable bodies which depends upon two distinct temperatures, the conductive temperature   and 

the thermodynamical temperature T. For time independent situations, the difference between these two temperatures 

is proportional to the heat supply, and in absence of heat supply, the two temperatures are identical. For time 

dependent problems, the two temperatures are different, regardless of the presence of heat supply. The two 

temperatures T,    and   the strain are found to have representations in the form of a travelling wave plus  a 

response, which occurs instantaneously throughout the body. Several researchers studied various problems involving 

two temperature.e.g. (Warren and Chen [24] ,Quintanilla [16], Youssef AI-Lehaibi [26] and Youssef AI -Harby [27] 

, Kaushal, Kumar and Miglani [12] , Kumar, Sharma and Garg [14],Sharma and Marin[18],Sharma and Bhargav 

[17], Sharma, Sharma and Bhargav [22],Sharma and Kumar[19]). The axisymmetric problems has been studied 

during the past  decade by many authors.e.g. (Kumar and Pratap [10]. Sharma and Kumar [15] , Kumar and Kansal 

[13], Kumar,Kumar and Gourla[11],Sharma,Kumar and Ram[21] ). Inspite of these studies no attempt has been 

made to study the axisymmetric deformation  in transversely isotropic medium with two temperature and without 

energy dissipation.  

In the present investigation, a two dimensional axisymmetric problem in transversely isotropic 

thermoelastic solid without energy dissipation and with two temperature is investigated . The components of normal 

stress, tangential stress and conductive temperature subjected to concentrated normal force , normal force over the 

circular region and concentrated  thermal  source along with thermal source over the circular region are obtained by 

using Laplace and Hankel transforms. Numerical computation is performed by using a numerical inversion 

technique and the resulting quantities are shown graphically.                                    

II. BASIC EQUATIONS  
Following Youssef [28] the constitutive relations and field equations in absence of  body forces and heat sources  

are: 

                                                                                              (1) 

                                                                                              (2) 

                                                                                           (3) 

where   

                                                                                                 (4) 

                                                                                                      (5) 

                                                 
 

 
                                      (6) 

Here  

                                are elastic parameters,     is the thermal tensor,   is the thermodynamic  

temperature,    is the reference temperature,     are the components of stress tensor,      are the components of 

strain tensor,   are the displacement components,   is the density,    is the specific heat,      is the thermal 

conductivity,     are the two temperature parameters,     is the coefficient of linear thermal expansion. 

III.  FORMULATION OF THE PROBLEM 
We consider a homogeneous transversely isotropic , thermoelastic body initially at uniform temperature   . 

We take a cylindrical polar co-ordinate system         with symmetry about   –axis. As the problem considered is 

plane axisymmetric, the field component     , and            are independent of     We have used appropriate 

transformation following Slaughter[23] on the set of equations (1)-(3) to derive the equations for transversely 

isotropic  thermoelastic  solid  without energy dissipation and with two temperature and restrict our analysis to the 

two dimensional problem  with             , we obtain 
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Constitutive relations are 

                              

             

                              

                                                                                                                                            (10) 
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In the above equations we use the contracting subscript notations                                 
to relate              

To facilitate the solution, the following dimensionless quantities are introduced 
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in equations (7)-(9) and after that suppressing the primes and applying the Laplace and Hankel transforms  defined 

by 

                         
 

 
                                                       (12) 

                              
 

 
                                                 (13) 

on  the resulting quantities, we obtain 
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The  solution of the equations (14)-(16), using the radiation condition  that    ,   ,             ,yields 

        
        

        
                                                                                            (17) 

         
          

          
                                                                               (18) 

        
          

          
                                                                                   (19) 

where                  are the roots  of the equation   

                                                                                                                   (20) 

where A , B, C,D, and E are listed in appendix A  and the  values of coupling constants        and      ,  are given in 

appendix B and     ,i=1,2,3 being arbitrary constants. 

IV. APPLICATIONS 
Mechanical forces/ Thermal sources acting on the surface 

The boundary conditions  are 

                          

                  

     
  

  
                                                                                                                             (21) 

         ,           are  well behaved functions 

Here           =0  corresponds to plane boundary  subjected to  normal force and          = 0 corresponds to plane 

boundary  subjected to thermal point  source.   

Case 1. Concentrated normal force/ Thermal point source 

When plane boundary is subjected to concentrated normal force/ thermal point  force, then  

       ,          take the form 

                           (                   
          

   
   

          

   
                                                 (22)                                                         

    is the magnitude of the force applied ,    is the magnitude of the constant temperature  applied  on the boundary 

and      is the Dirac delta function. 

Using the equations (10), (11)  in the boundary conditions (21) and applying the transforms defined by(12)  

and (13) and substitute the values of    ,   ,    from (17)-(19) in the resulting equations, we obtain the expressions for 

the components of displacement, stress , and conductive temperature in case of concentrated normal force which are 

given in appendix C and in case of thermal point source are these are obtained by replacing     by   
  and    with   , 

as listed in appendix D    

Case II: Normal force over the circular region/ Thermal source over the circular region 

Let a uniform pressure of total magnitude   / constant temperature     applied over a uniform circular 

region of radius a is obtained by setting  

                                       
  

   
            

  

   
                                       (23)                                                                

where        is the Heaviside unit step function. 

Making use of dimensionless quantities defined by (11) and then applying Laplace and Hankel transforms defined 

by (12)-(13) on (23) ,we obtain  
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The expressions for the components of displacements, stress and conductive temperature are obtained by replacing 
  

  
 with 

  

  

      

  
  and by replacing 

  

  
  with  

  

  

      

  
 in equations (C.1)-(C.5)  and in (D.1)-(D.5) respectively 

V. PARTICULAR CASES 

(i) If        , from equations (C.1)   (C.5) and from (D.1)  – (D.5) we obtain the corresponding expressions 

for displacements,  stresses and  temperature change in thermoelastic medium without energy dissipation.  

(ii) If we take          ,             ,           ,       ,        ,        ,       

  in equations (C.1)   (C.5) and  (D.1)  – (D.5)  , we obtain the corresponding expressions for displacements,  

stresses and conductive temperature for isotropic thermoelastic solid without energy dissipation. 

VI.  INVERSION OF THE TRANSFORMS 
To obtain the solution of the problem in physical domain, we must invert the transforms in equations (26)-

(30) These expressions are functions of z, the parameters of Laplace and Hankel transforms s and   ,respectively 

,and hence are of  the form   (        To get the function          in the physical domain, first we invert the Hankel 

transform using 

             
 

 
  (                                                                                                            (24) 

Now for the fixed values of              the           in the expression above can be considered as the Laplace 

transform       of     . Following Honig and Hirdes [9] , the Laplace transform function        can be inverted. 

           The last step is to calculate the integral in equation (24). The method for evaluating this integral is described in Press et al. 

[15]. It involves the use of Romberg’s integration with adaptive step size. This also uses the results from successive refinements 

of the extended trapezoidal rule followed by extrapolation of the results to the limit when the step size tends to zero. 

VII. NUMERICAL RESULTS AND DISCUSSION 
Copper material is chosen for the purpose of numerical calculation which is transversely isotropic. Physical 

data for a single crystal of copper is given by 

                       ,                         ,                                  
             ,                                                                            ,   

              ,                     ,                                   ,                    
                  

Following Dhaliwal and Singh [5], magnesium crystal is chosen for the purpose of  numerical calculation(isotropic 

solid). In case of magnesium crystal like material for numerical calculations, the physical constants used are 

              ,                           ,                                                    

                      ,                               298K,                                           

The values of normal force stress     , tangential stress     and conductive temperature   for a transversely 

isotropic thermoelastic solid with two temperature  (TITWT) , isotropic thermoelastic solid with two 

temperature(ITSWT) and thermoelastic solid without two temperature (TSWT) are presented graphically to show 

the impact of two temperature and anisotropy.  

   i). The solid line corresponds to (TITWT)  for        ,                                                                        

  ii) small dashed line corresponds to(TITWT)  for        ,                                              
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  iii)solid line with centre symbol circle corresponds to (TSWT)  for                                                           

  iv) solid line with centre symbol diamond corresponds to (ITSWT) for                                                                                                                                                              

VIII. NORMAL FORCE ON THE BOUNDARY OF THE HALF-SPACE 

Case I: Concentrated normal force 
Fig.1 shows the variations of normal stress     with distance r. In the initial range there is a sharp decrease in the values 

of     for all the curves i.e. (TITWT) , (ITSWT) and (TSWT)  but away from source applied, it follows oscillatory behaviour near 

the zero value. We can see that the two temperature have significant effect on the normal stress in all the cases as there are more 

variations in     in case of  (TITWT)  and (ITSWT)  as compared to (TSWT). Impact of anisotropy is seen in the range     
  where the values of      for (TITWT)  are more than from (ITSWT). It is evident from fig.2 that near the point of application of 

source there is increase in the values of     for (ITSWT) and have small variation near the zero value in the remaining range. 

However for (TITWT) and (TSWT) , there is a sharp decrease in the range        but pattern is oscillatory near the zero 

value in the rest of the range. In case of (TITWT)  oscillations are of greater magnitude than in case of (TSWT), however not 

much difference in behaviour is noticed in the two cases  i.e. i)       ,         and ii)         ,       . Fig.3 depicts the 

behaviour of conductive temperature  . Two temperature and anisotropy effect is more prominent in the range        for all 

the curves and curves are close to each other in the remaining range with minor difference in the magnitude. 

Case II: Normal force over the circular region 

The trend of variations of normal stress    , tangential stress     and conductive temperature   for normal 

force over the circular region is similar to concentrated normal force with difference in their magnitude. At a first 

look it seems as mirror image of one another i.e. pattern is similar but the corresponding values are different. These 

variations are shown in figs. (4-6) 

7.2 Thermal source on the boundary of half-space 

Case-I: Thermal point source  
Fig.7 depicts the variations of normal stress      with distance r. In case of  (ITSWT), it decreases sharply in the range 

      and away from point of application of source the behaviour is oscillatory. Opposite behaviour is exhibited  in the 

remaining cases i.e. in case of (TITWT)  and (TSWT). Also  for (TITWT)  , difference in variations in  both cases(case( i) 

       ,          and case(ii)        ,        )  are not found  but follow same pattern for two temperature parameter 

and are shown in fig.7. 

The values of      increase sharply in the range         and afterwards follow oscillatory pattern  in case of  

(TITWT  both cases) and (TSWT). In this case difference in variations is shown when temperature parameters are changed. In 

case of (ITSWT) , there is a decrease in range        and away from origin ,it has small variations near zero and impact of 

anisotropy is visible  because behaviour is quite different in this case than in transverse isotropy as is depicted in fig.8.  

Fig.9 exhibits the behaviour of conductive temperature   with distance r. In the initial range there is a sharp increase in 

(TITWT both cases), (TSWT)  but away from source behaviour is oscillatory. In case of  (ITSWT), there is an increase in the 

initial range but afterwards  there are small variations near zero. 

Case-II: Thermal source over the circular region 

The trend of variations of normal stress    , tangential stress     and conductive temperature   for  thermal 

source over the circular region is similar to thermal point source with difference in their magnitude. The pattern is 

similar but the corresponding values are different. These variations are shown in figs. (9-12) 
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Fig.1 Variation of normal stress tZZ with distance r 

(concentrated normal force) 
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Fig.2 Variation of tangential stress tzr with 

distance r (concentrated normal force) 
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Fig.3 Variation of conductive temperature φ with 

distance r (concentrated normal force) 

 

0 2 4 6 8 1 0

d is ta n c e  r

-0 .1

0

0 .1

0 .2

0 .3
n

o
r
m

a
l 

s
tr

e
s

s
 t

z
z

T IT W T  a
1
= .0 2 ,a

3
= .0 4

T IT W T  a
1
= .0 5 ,a

3
= .0 7

T S W T  a
1
= a

3
= 0

IT S W T  a
1
= a

3
= .0 6

 
Fig.4 Variation of normal stress tzz with distance 

r (normal force over the circular region) 
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 Fig.5 Variation of tangential stress tzr with distance r 

(normal force over the circular region) 
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Fig.6 Variation of conductive temperature φ 

with distance r (normal force over the circular 

region) 
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Fig.7 Variation of normal stress tzz with distance r 

(thermal point source) 
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Fig.8 Variation of tangential stress tzr with 

distance r (thermal point source) 



American Journal of Engineering Research (AJER) 2015 
 

 
w w w . a j e r . o r g  

 
       Page 184 

0 2 4 6 8 1 0

d is ta n c e  r

-2

-1 .5

-1

-0 .5

0

0 .5
c

o
n

d
u

c
ti

v
e

 t
e

m
p

e
ra

tu
re

 
 

T IT W T  a
1
= .0 2 ,a

3
= .0 4

T IT W T  a
1
= .0 5 ,a

3
= .0 7

T S W T  a
1
= a

3
= 0

IT S W T  a
1
= a

3
= .0 6

 
Fig.9 Variation of conductive temperature φ with 

distance r (thermal point source) 
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Fig.10 Variation of normal stress tzz with 

distance r(thermal source over the circular 

region) 
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Fig.11 Variation of tangential stress tzr with distance 

r (thermal  source over the circular region) 
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Fig.12  Variation of conductive temperature φ 

with distance r (thermal source over the circular 

region) 

 

IX. CONCLUSION 
From the graphs it is clear that effect of two temperature plays an important part in the study of the 

deformation of the body. As r diverse from the point of application of the source the components of normal stress, 

tangential stress and conductive temperature for all types of sources ( concentrated normal force / normal force over 

the circular region/ thermal point source/ thermal source over the circular region ) follow an oscillatory pattern. It is 

observed that the variations of normal stress    , tangential stress     and conductive temperature   for both 

mechanical forces (concentrated normal force  and  normal force over the circular region) are same and for both 

thermal sources( thermal point source and thermal source over the circular region) are same with difference in 

magnitude. As the disturbances travel through different constituents of the medium , it suffers sudden changes 

,resulting in an inconsistent/ non- uniform pattern of curves. The trend of curves exhibits the properties of two 

temperature of the medium and satisfies the requisite condition of the problem. The results of this problem are very 

useful in the two dimensional problem of dynamic response due to various sources of the transversely isotropic 

thermoelastic solid without energy dissipation and with two temperature  which has various geophysical and 

industrial applications.  
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