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ABSTRACT: The determination of the composition of lignocellulosic substrate is a crucial step in order to 

determine the overall efficiency of the processes designed to convert lignocelluloses to ethanol. Standard 

methods as gravimetric, chromatography, and spectroscopic are routinely explored in the scientific literature. 

This paper details our investigations in the application of economically viable gravimetric methods particularly 

suitable for developing countries. The methods were proven to be reproducible and representative for the 

analysis of biomass as sugarcane bagasse, siam weed, shea tree sawdust. 
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I. INTRODUCTION 
The overall efficiency of processes designed to convert lignocellulosic  biomass to ethanol lies on 

determining the compositions of such material. Lignocelluloses mainly consist of cellulose, hemicelluloses, and 

lignin which are bonded together by covalent bonding, various intermolecular bridges, and van der Waals’ 

forces forming a complex structure, making it resistant to enzymatic hydrolysis and insoluble in water [1]. 

Lignocelluloses continue to be investigated as a source of fermentable sugars for biofuel (ethanol) production 

because of their high availability [2]. Lignocellulosic biomass includes all plants and plant derived materials, 

including agricultural crops and trees, wood and wood residues, municipal residues, and other residue materials 

[3]. The Cellulose (40–55% of total feedstock dry matter) is a glucose polymer linked by β-1,4 glycosidic bonds 

with the degree of polymerization from 10,000 in native wood to 1,000 in bleached kraft pulps. The basic 

building block of this linear polymer is cellobiose, a glucose-glucose dimer. Cellulose has a strong tendency to 

form intra-and inter-molecular hydrogen bonds by the hydroxyl groups on the linear cellulose chains, which 

stiffen the straight chain and promote aggregation into a crystalline structure and give cellulose a multitude of 

partially crystalline fiber structures and morphologies. Hydrolysis of cellulose results in individual glucose 

monomer. This process is also known as saccharification. Its density and complexity resist hydrolysis without 

preliminary chemical or mechanical degradation or swelling. In nature, cellulose is usually associated with other 

polysaccharides such as hemicellulose (xylan)/or lignin. It is the skeletal basis of plant cell walls [4]. It contains 

both crystalline (70%) and non-crystalline or amorphous (30%) structure. Hemicellulose (24–40% of total 

feedstock dry matter) is a short, highly branched polymer of five carbon (C5) and six carbon(C6) sugars. 

Specifically hemicellulose contain  xylose (xylose has acidic group glucuronic acid which makes it more 

resistant to enzymatic hydrolysis) and arabinose (C5) and galactose, glucose, and mannose (C6). It is more 

readily hydrolyzed compared to cellulose because of the branched amorphous structure. A major product of 

hemicelluloses hydrolysis is the C5 sugar. The monosaccharides released upon hemicellulose hydrolysis include 

a large fraction of pentoses [5]. Lignin is a highly cross-linked phenyl propylene polymer and the largest non-

carbohydrate fraction of lignocellulose. It’s the third major component of lignocellulosic  biomass. In wood 

biomass it makes  up 25–36% depending on the type of wood. It plays an important role in cell wall structure as 

a permanent bonding agent among plant cells. Unlike cellulose, lignin cannot be depolymerised to its original 

monomers. Lignin and hemicellulose form a sheath that surrounds the cellulosic portion of the biomass. Lignin 

protects lignocellulose against insect attack. This complexity has made it as resistant to detailed chemical 
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characterization as it is to microbial degradation, which greatly impedes the understanding of its effects. 

Cellulose, hemicelluloses, lignin and the other components are ordered in varying composition in the different 

parts of the fibre wall depending on the species of biomass. Extractives include non-structural components that 

are non-chemically bound components of biomass such as sucrose, nitrate/nitrite, protein, ash, chlorophyll, 

waxes. The extractives are removed because they potentially interfere with downstream analysis of biomass 

sample. Gravimetric analysis describes a set of methods for the quantitative determination of a sample or 

material based on the mass of a solid. Mostly, collected dried solids are weighed with an analytical balance. 

When carefully followed especially during weighing, gravimetric method can provide precise analysis. It 

provides very little room for instrumental error. It does not require expensive equipment. Determination of the 

composition of lignocellulosic substrates using gravimetric analysis exists in scientific literature. These included 

the monoethanolamine method [6], the trifluoroacetic acid method [7], concentrated sulphuric acid method [8]. 

Acid and neutral detergent method [9]. These methods are directly applicable to specific lignocelluloses, and the 

sources of the materials [2]. Therefore, the present study aims at a simple, economically viable, and readily 

available procedures devoid of very sophisticated equipment for lignocellulosics compositional analysis. 

Estimations of extractives, cellulose, hemicellulose, lignin, and ash can potentially be performed by gravimetric 

determination.  

The study detailed our investigations using gravimetric method for the compositional analysis of 

lignocellulosic biomass with evaluations on sugar cane bagasse, siam weed, and shea tree sawdust [3,10-12]. 

 

II. MATERIALS AND METHODS 
Chemicals, reagents, and raw biomass materials: All chemicals and reagents used in this study were of 

analytical grade and commercially available. Raw biomass materials were sugar cane bagasse, siam weed, and 

shea tree sawdust. 

 

Preparations of raw biomass: Sugar cane (Saccharum officinarum) was purchased from an open market in 

late November, 2012 from Zaria Town (11
o
04'N  7

o
24'E), Kaduna State, Northern Nigeria. The juice was 

extracted from the sugar cane stalks (local name as Ireke) at a local mill in Ota (6
o
40'N  3

o
14'E), Ogun state, 

Nigeria. The biomass without the juice was air-dried in an open space (average temperature of 35±2 
o
C) for 

three days (8 h per day). The stem of the siam weed (Chromolaena odorata, local name as ewe Akintola or ewe 

Awolowo) was harvested from a nearby fallow land (bush) in Ota, Ogun State, South West, Nigeria [12]. After 

it was harvested, it was sun dried for days. The sample size was reduced to about 2 cm in length for effective 

milling. Size reduction was carried out on both sugarcane bagasse and siam weed by knifing and milling. The 

Shea tree (local name as Igi Ori), Vitellaria paradoxa, was harvested from the forest around Idanre (6
o
51'N  

5
o
06'E), south west, Nigeria in early April 2010. The logs were reduced to different sizes at the central 

processing unit of the local sawmill (Ilepa, Ifo, Nigeria; 6
o
49'N  3

o
12'E) [10]. The residues after this milling 

were used for the compositional analysis. A portion of the materials was screened into different sizes using a 

sieve shaker. While the remaining portion was labeled as unscreened. Fig. 1 shows the biomass materials before 

and after size reduction. 

Compositional analysis of the raw lignocellulosic materials: Each of the biomass materials was subjected 

to compositional analysis using the gravimetric method. Materials used in this study were all unscreened. The 

schematic representation of the step-by-step compositional analysis is as shown in Fig. 2. 

 

Extractives: 2.5 g of dried raw biomass was loaded into the cellulose thimble. With the Soxhlet extractor set up, 

150 mL of acetone was used as solvent for extraction. Residence times for the boiling and rising stages was 

carefully adjusted to 70 
o
C and 25 min respectively on the heating mantle for a 4 h run period. After extraction, 

the sample was air dried at room temperature for few minutes. Constant weight of the extracted material was 

achieved in a convection oven at 105 
o
C. The %(w/w) of the extractives content was evaluated as the difference 

in weight between the raw extractive-laden biomass and extractive-free biomass [13-15]. 

 

Hemicellulose: 1 g of extracted dried biomass was transferred into a 250 mL Erlenmeyer flask. 150 mL of 500 

mol/m
3
 NaOH was added. The mixture was boiled for 3.5 h with distilled water. It was filtered after cooling 

through vacuum filtration and washed until neutral pH. The residue was dried to a constant weight at 105 
o
C in a 

convection oven. The difference between the sample weight before and after this treatment is the hemicellulose 

content (%w/w) of dry biomass [10, 13-15]. 
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Lignin: 0.3 g of dried extracted raw biomass was weighed in glass test tubes and 3 mL of 72% H2SO4 was 

added. The sample was kept at room temperature for 2 h with carefully shaking at 30 min intervals to allow for 

complete hydrolysis. After the initial hydrolysis, 84 mL of distilled water was added. The second step of 

hydrolysis was made to occur in an autoclave for 1 h at 121 °C. The slurry was then cooled at room temperature. 

Hydrolyzates were filtered through vaccum using a filtering crucible. The acid insoluble lignin was determined 

by drying the residues at 105 
o
C and accounting for ash by incinerating the hydrolyzed samples at 575 

o
C in a 

muffle furnace. The acid soluble lignin fraction was determined by measuring the absorbance of the acid 

hydrolyzed samples at 320 nm. The lignin content was calculated as the summation of acid insoluble lignin and 

acid soluble lignin [16]. 

 Cellulose: The cellulose content (%w/w) was calculated by difference, assuming that extractives, 

hemicellulose, lignin, ash, and cellulose are the only components of the entire biomass [13-15]. 
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III. RESULTS AND DISCUSSION 
The basic compositions of the three lignocellulosic materials  is as shown in Table 1. Each experiment 

was replicated twice; reported results indicate the average values of the replicated experiments. Studies have been 

reported for other varieties of sugarcane bagasse (Table 2)[18-22], and shea tree sawdust [10]. To the best of the 

authors knowledge, there is no comprehensive information for Nigeria sugarcane bagasse and siam weed 

varieties. 

Results in this study are comparable to those available in the literature (Table 2). Biomass compositions 

vary according to whether woody or non-woody, geographical locations of materials, methods (procedures) 

developed for analysis, biomass variety, differences in solvents and the part of plants used in the compositional 

analysis. Shea tree composition falls within most  reported values for woody biomass [23]. For example, 

Pettersen [24] reported lignin content for Douglar fir to be 32%(w/w) and for red pine lignin as 29%(w/w), total 

carbohydrate as 63%(w/w). Douglar fir total carbohydrate content was about 67%(w/w) [24].  Sugar cane 

bagasse total carbohydrate content was about 69%(w/w) which is comparable to most other reported values in the 

Fig. 1: Raw biomass before and after size reductions. Sugar cane (a); unscreened sugar cane 

bagasse (b). Siam weed including the leaves (c); unscreened sample of siam weed (d). 

Shea tree (e); screened shea tree sawdust (f). 
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literature (Table 2). Siam weed, an herbaceous plant, has a total carbohydrate content of about 70%(w/w) which 

is comparable to most herbaceous biomass values such as corn stover 61.7%(w/w), wheat straw 58%(w/w)[23].  

 

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

        

Lignocellulosic biomass 

Add 3 mL of 72%H2SO4. Keep at room 

temperature for 2 h. Add 84 mL of water and 

autoclave for 1 h at 121 
o
C. Determine lignin 

content after ashing at 575 
o
C 

 

300 mg of dried extractive-free biomass to determine lignin content 

Add 150 mL of 0.5 mol/L NaOH. Boil for 3.5 

h. Wash sample to pH 7 and after dry sample at 

105 
o
C 

 

1 g of dried extractive-free biomass to determine hemicellulose content 

Soxhlet extraction at 170 
o
C with 150 mL 

acetone 

 

Air dry sample after 4 h extraction. Dry again 

in a convection oven at 105 
o
C. The difference 

in weight before and after is the extractives 

content. 

 

Weigh accurately 2.5 g of raw biomass 

Screened or unscreened 

Calculate cellulose content (%w/w) by difference. Assume that the material contains only cellulose, 

hemicellulose, lignin, ash, and extractives 

Fig. 2:  Schematic representation of the compositional analysis of the lignocellulosic materials 
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Table 1: Compositional analysis of raw lignocelluloses of sugarcane bagasse, siam 

weed, and shea tree sawdust (%w/w) 

 

  Sugarcane bagasse 
[18-22]

 Siam weed
[12]

 Shea tree sawdust
[10]

   

   
Extractives 2.14±0.6 4.8±0.9 1.9±1.7 

    Cellulose 35.28±1.2 40.2±2.3 45.9±9.2 

    Hemicellulose 33.28±0.8 29.9±0.7 20.3±11.5 

    Lignin 25.20±1.1 23.2±5.3 29.9±13.2 

    Ash 4.1±0.3 0.9±3.1 2.04±3.1   

     
 

a
addition of ash, extractives and proteins 

IV. CONCLUSIONS 
This study has highlighted a very simple procedure for compositional analysis of both woody and non-

woody lignocellulosic biomass. Comparable results were obtained for the tested raw materials and those reported 

by scientific literature. The procedures proved to be economically viable for developing countries since 

sophisticated equipment, expensive and scarce chemicals are not required (chemicals for the entire compositional 

analysis are common and readily available on the shelf). By extension, the method can be utilized in most 

established economies of the world because of the reliability and cost-effectiveness of the whole process. 
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