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ABSTRACT: The flexural prediction for concrete ribbed floors has been assessed using the minimum weight 

approach and mathematical techniques for optimization. Results indicate that although both the BS8110 (1997) 

and EC2 (2008) are reliable, they are quite expensive and cost can be further reduced as they currently 

encourage abuse. The BS8110 (1997) and EC2 (2008) were found to be under-estimated by about 27 and 19 

percent respectively. 
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I. INTRODUCTION 
Reinforced concrete is a strong durable building material that can be formed into many varied shapes 

and sizes ranging from a simple rectangular column, to a slender curved dome. Its utility and versatility is 

achieved by combining the best features of concrete and steel. Thus when they are combined, the steel is able to 

provide the tensile strength and probably some of the shear strength while the concrete, strong in compression, 

protects the steel to give durability and fire resistance. The tensile strength of concrete is only about 10 percent 

of the compressive strength. Hence, nearly all reinforced concrete structures are designed on the assumption that 

the concrete does not resist any tensile forces. Reinforcement is designed to carry these tensile forces, which are 

transferred by bond between the interfaces of the two materials (Mosley and Bungney, 1990). 

In long span, solid reinforced concrete slabs of lengths greater than 5 meters, the self-weight becomes 

excessive when compared to the applied dead and imposed loads, resulting in an uneconomic method of 

construction. One major way of overcoming this problem is to use ribbed slabs.  A ribbed slab is a slab which 

voids have been introduced to the underside to reduce dead weight and increase the efficiency of the concrete 

section. A slightly deeper section is required but these stiffer floors facilitate longer spans and provision of 

holes. These longer spans are economic in the range of 8 to 12metres. The saving of materials tends to be offset 

by some complications in formwork (BS8110, 1997). 

When a structure is loaded, it will respond in a manner which depends on the type and magnitude of the 

load and the strength and stiffness of the structure. The satisfaction of these responses depends on the 

requirements which must be satisfied. Such requirements might include safety of the structure against collapse, 

limitation on damage or on deflection or any of a range of other criteria. These requirements are the limit state 

requirements (Melchers, 1987). 

Slabs are major structural elements in structures, other than beams and columns. Standardized and 

optimized slabs can significantly enhance safety and durability of structures. This requires special techniques to 

achieve standardized and optimized slabs which can satisfy all the important design standards. These techniques 

enable the design of the most optimized floors. Structural floor systems made of reinforced concrete are required 

to efficiently transmit the floor loads to the vertical systems through shear, bending and torsion resisting 

capacities. In addition to these requirements of strength, they are required to satisfy the deformation criteria also 

in terms of low deflection and crack width (Melchers, 1987). 

This work elaborates the results obtained from the analytical study carried out on ribbed floor system 

via obtaining the most optimum ribbed slabs design using the BS 8110 (1985; 1997) and EC2 (2008) design 

requirements and propose a comprehensive design using an optimization technique for one of the most 

commonly used slabs in building construction i.e ribbed slabs. An objective function was developed for the 

purpose of achieving an optimum slab design which will fulfill the entire BS 8110 (1985; 1997) and EC2 (2008) 

design requirements and simultaneously save construction cost. 

http://www.ajer.org/
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II. BACKGROUND OF RIBBED/HOLLOW SLABS. 
Ribbed slabs used herein refer to singly reinforced concrete slabs with hollow blocks or voids in them. 

These types of structural plate systems can minimize formwork complexity by using standard modular, reusable 

formwork. Ribbed slab floors are very adaptable for accommodating a range of service openings. According to 

BS8110; 1:1997, hollow or solid blocks may be of any suitable material. When required to contribute to the 

structural strength of a slab, slabs should be made of concrete or burnt clay; Have a characteristic strength of at 

least 14N/mm
2
, measured on the net section, when axially loaded in the direction of compressive stress in the 

slab. When made of fired brick earth, clay or shale, conform to BS3921 (1985), BS EN772-1 (2000), BS EN 

772-3 (1998) and BS EN772-7 (1998). 

 

 2.1 Slabs with Permanent Blocks 

The clear distance between ribs should not be more than 500mm. The width of the rib will be 

determined by consideration of cover, bar spacing and fire requirements. But the depth of the rib excluding the 

topping should not exceed four times the width. If the blocks are suitably manufactured and have adequate 

strength they can be considered to contribute to the strength of the slab in the design calculations, but in many 

designs no such allowance is made. These permanent blocks which are capable of contributing to the structural 

strength if it can be jointed with cement-sand mortar. During construction the hollow tiles should be well soaked 

in water prior to placing the concrete, otherwise shrinkage cracking of the top concrete flange is liable to occur. 

This probably develops strength for topping (Mohammed, 2006). 

 
Fig 1: Permanent Blocks Contributing to Structural Strength. (Source: Mohammed, 2006). 

 

2.2  Concept of Optimization 

The concept of optimization is basic to much of what we do in our daily lives: a desire to do better or 

be the best in one field or another. In engineering we wish to produce the best possible result with the available 

resources. The term optimization has been used in operations management, operations research, and engineering 

for decades. The idea is to use mathematical techniques to arrive at the best solution, given what is being 

optimized (cost, profit, or time, for instance). To optimize a manufacturing system means that the effort to find 

best solutions focuses on finding the most effective use of resources over time. In a highly competitive modern 

world it is no longer sufficient to design a system whose performance of the required task is just satisfactory, it 

is essential to design the best system. Thus in modern design we must use tools which provide the desired 

results in a timely and economical fashion (Vanderplaats, 2009). 

Optimization, or Mathematical Programming, refers to choosing the best element from some set of 

available alternatives (Yang, 2008). In mathematical programming, this means solving problems in which one 

seeks to minimize or maximize a real function by systematically choosing the values of real or integer variables 

from within an allowed set. More generally, it means finding best available values of some objective function 

given a defined domain, including a variety of different types of objective functions and different types of 

domains. 

An optimization problem may be represented in the following way (Avriel, 2003): 

Given: a function f: A  R from some set A to the real numbers  

Sought: an element x0 in A such that f (x0)  ≤  f(x) for all x in A (minimization) or such that f(x0)  ≥  f(x) for all x 

in A (maximization). 

A is some subset of the Euclidean space R
n 

, often specified by a set of constraints, equalities or 

inequalities that the members of A have to satisfy. The domain of A of f is called the search space or the choice 

set, while the elements of A are called feasible solutions. The f function is called an objective function. A 
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feasible solution that maximizes (or minimizes, if that is the goal) the objective function is called an optimal 

solution.  

Generally, when the feasible region, or the objective function of the problem does not present 

convexity, there may be several local minima and maxima, where a local minimum x
*
 is defined as a point for 

which there exists some δ > 0 so that for all x such that 

        x – x
*  

≤ δ; 

The expression 

       f (x
*
) ≤ f (x) 

Holds; that is to say, on some region around x
*
 all of the function values are greater than or equal to the 

value at that point. Local maxima are defined similarly (Avriel, 2003). 

 

2.3 Multi-Objective Optimization 

Adding more than one objective to an optimization problem adds complexity. For example, if you 

wanted to optimize a structural design, you would want a design that is both light and rigid. Since these two 

objectives conflict, a trade-off exists. There will be one lightest design, one stiffest design, and an infinite 

number of designs that are some compromise of weight and stiffness. This set of trade-off designs is known as a 

Pareto set. The curve created plotting weight against stiffness of the best designs is known as the Pareto frontier. 

A design is judged to be Pareto optimal if it is not dominated by other designs: a Pareto optimal design must be 

better than another design in at least one aspect. If it is worse than another design in all respects, then it is 

dominated and is not Pareto optimal (Papalambros and Wilde, 2000). 

 

2.4 Multi-Modal Optimization 

Optimization problems are often multi-modal, that is they possess multiple good solutions 

(Papalambros and Wilde, 2000). They could all be globally good (same cost function value) or there could be a 

mix of globally good and locally good solutions. Obtaining all (or at least some of) the multiple solutions is the 

goal of a multi-modal optimizer. Classical optimization techniques due to their iterative approach do not 

perform satisfactorily when they are used to obtain multiple solutions, since it is not guaranteed that different 

solutions will be obtained even with different starting points in multiple runs of the algorithm. Evolutionary 

Algorithms are however a very popular approach to obtain multiple solutions in a multi-modal optimization task 

(Papalambros and Wilde, 2000). 

 

2.5 Analytical Characterization of Optima 

The extreme value theorem of Karl Weierstrass states that if a real-valued function f is continuous in 

the closed and bounded interval [a,b], then f must attain its maximum and minimum value, each at least once. 

That is, there exist numbers c and d in [a,b] such that (Jerome, 1986): 

                  f (c)  ≥  f (x)  ≥  f (d)    for all x  [ a,b ]. 

A related theorem is the boundedness theorem which states that a continuous function f in the closed 

interval [a,b] is bounded on that interval. That is, there exist real numbers m and M such that: 

                  m  ≤  f (x) ≤  M    for all x  [ a,b ]. 

The extreme value theorem enriches the boundedness theorem by saying that not only is the function 

bounded, but it also attains its least upper bound as its maximum and its greatest lower bound as its minimum 

(Jerome, 1986). 

The satisfiability problem, also called the feasibility problem, is just the problem of finding any 

feasible solution at all without regard to objective value. This can be regarded as the special case of 

mathematical optimization where the objective value is the same for every solution, and thus any solution is 

optimal (Elster, 1993). 

Many optimization algorithms need to start from a feasible point. One way to obtain such a point is to 

relax the feasibility conditions using a slack variable; with enough slack, any starting point is feasible. Then, 

minimize that slack variable until slack is null or negative (Elster, 1993). 

Fermat's theorem states that optima of unconstrained problems are found at stationary points, where the 

first derivative or the gradient of the objective function is zero. More generally, they may be found at critical 

points, where the first derivative or gradient of the objective function is zero or is undefined, or on the boundary 

of the choice set. An equation stating that the first derivative equals zero at an interior optimum is sometimes 

called a 'first-order condition'. 

Optima of inequality-constrained problems are instead found by the Lagrange multiplier method. This 

method calculates a system of inequalities called the 'Karush-Kuhn-Tucker conditions' or 'complementary 

slackness conditions', which may then be used to calculate the optimum. 



American Journal of Engineering Research (AJER) 2015 
 

 
w w w . a j e r . o r g  
 

Page 63 

While the first derivative test identifies points that might be optima, it cannot distinguish a point which 

is a minimum from one that is a maximum or one that is neither. When the objective function is twice 

differentiable, these cases can be distinguished by checking the second derivative or the matrix of second 

derivatives (called the Hessian matrix) in unconstrained problems, or a matrix of second derivatives of the 

objective function and the constraints called the bordered Hessian. The conditions that distinguish maxima and 

minima from other stationary points are sometimes called 'second-order conditions' (Papalambros and Wilde, 

2000). 

 

III. METHODOLOGY 
3.1 Concept of Lagranges Multipliers Method 

This is a popular optimization method. In mathematical optimization, the method of Lagrange 

multipliers (named after Joseph Louis Lagrange) provides a strategy for finding the maximum/minimum of a 

function subject to constraints (Arfken, 1985). 

                 Consider the optimization problem 

f ( x , y) 

Subject to g(x, y) = c 

A new variable (λ) called a Lagrange multiplier is introduced, and the Lagrange function is defined by 

             ( x , y , )  =  f ( x , y)  +   (g ( x , y) – c) 

(λ may be either added or subtracted). If  (x,y)  is a maximum for the original constrained problem, then there 

exists a λ such that  (x,y,λ)  is a stationary point for the Lagrange function (stationary points are those points 

where the partial derivatives of  are zero). However, not all stationary points yield a solution of the original 

problem. Thus, the method of Lagrange multipliers yields a necessary condition for optimality in constrained 

problems (Arfken, 1985). 

Consider the two-dimensional problem introduced above: 

           Maximize f (x, y) 

           Subject to g(x, y) = c 

We can visualize contours of f given by 

             f ( x , y) = d 

For various values of d, and the contour of g given by g(x,y) = c. 

 
Figure 2: Continuous line showing constraint g(x, y) = c. (Source: Arfken, 1985) 

 

The dotted lines are the contours of f (x , y). The point where the continuous line touches the dotted line 

tangentially is our solution. 

Suppose we walk along the contour line with g = c. In general the contour lines of f and g may be 

distinct, so following the contour line for g = c one could intersect with or cross the contour lines of f. This is 

equivalent to saying that while moving along the contour line for g = c the value of f can vary. Only when the 

contour line for g = c meets contour lines of f tangentially, we do not increase or decrease the value of f — that 

is, when the contour lines touch but do not cross. The contour lines of f and g touch when the tangent vectors of 

the contour lines are parallel. Since the gradient of a function is perpendicular to the contour lines, this is the 

same as saying that the gradients of f and g are parallel (Arfken, 1985).  

Thus we want points (x,y)  where g(x,y) = c and 

   x,y f  =   – x,yg, 

Where 

x,y f  =  ( /  , /  ) 

And 

                      x,y g  =  ( /  , /  ) 
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are the respective gradients. The constant λ is required because although the two gradient vectors are parallel, 

the magnitudes of the gradient vectors are generally not equal. 

            To incorporate these conditions into one equation, we introduce an auxiliary function: 

           ( x , y , )  =  f ( x , y) +  (g ( x , y) – c) 

and solve 

          x,y,λ  ( x , y , ) = 0. 

This is the method of Lagrange multipliers. Note that λ  ( x ,y, ) = 0 implies g(x, y) = c. 

 

3.2 Design Procedure 

A ribbed slab floor will be adequately designed to comfortably support a given design load using the 

BS8110 (1985; 1997) and EC2 (2008) code. Using the ultimate moment of resistance of singly reinforced 

concrete slabs, the optimization technique will thus be formulated. The goal here is to obtain the most cost 

effective, smallest and most reliable ribbed concrete slab section. It is important to note here that in order to 

achieve the optimum section, the major variables to be taken into consideration will be the height of slab, 

effective depth, area of reinforcing steel, and depth of concrete in compression. Also, member size restrictions 

will not be imposed. 

 

IV. ANALYSIS AND DESIGN OF A CONTINOUS RIBBED/HOLLOW SLAB 
A sample floor slab, consists of several units of ribbed slab, is simply supported at the ends. The 

effective span is 5.0 m, while the chosen characteristic dead load including finishes and partition is 1.5KN/m
2 

and the characteristic live load is 2.0 kN/m². The distance of the center to the center of the ribs is 300 mm, 

concrete strength fcu = 30N/mm
2
, and characteristic reinforcement, fy = 460N/mm

2
 

 

4.1 Optimization Process 

The optimization of the above designed ribbed floor will thus be commenced using minimum weight 

approach and the Lagrange’s Multipliers Method. The target or aim as earlier mentioned will be to choose the 

most cost effective, smallest, and most effective concrete section and reinforcement. The major variables to be 

considered will be the height of slab, effective depth, area of reinforcing steel, and depth of concrete in 

compression. 

         Since optimization definitely focuses on quantity of materials to be used, the cost function will consist of 

the total sum of the cost of each material multiplied by its unit volume.  

                                                                                                      

Where Vc is total volume of section minus volume of steel 

                                                                                                          

                                                                      

 Since a unit volume is being considered  

                                                                               

  

                                                                                                                                                                                       

  

                                                                                                            

    

                                                                     

                                                                                                                                    

Dividing through by Cc 

                                                                                        

                                                                                                                              

               ƒ   
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Minimize        

Subject to  

                                                                                              

 

                                                                  

 

                                                                                   

 

          Where the value of ρ is restricted by BS8110 (1997) code and EC2 (2008) specifications for singly 

reinforced concrete slabs, the constraint is presented as: 

    

         Equations ,  and  are the ultimate moment of resistance of singly reinforced concrete 

sections presented in terms of concrete and steel strengths respectively according to BS8110 (1997) and EC 

(2008). 
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Since   , Therefore 

                       

                         

                0.95  ρ                                                  

                0.87  ρ                                                              

                                                                      

                                                                        

 

 

                                              

                                                         

                                                     

                                                               

 

 

                                                          

 

                                                                                          

 

                                                                                                     

 

                                                                                                            

 

 

                                                                                                     

 

 

4.2 Applying Lagranges Multipliers Method 
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Substituting λ from equation (33) into (35) 

                                                                                      

   

                                                               

 

          

                     

    

                                                                                                                  

 

 

 

                                                                                                                           

 

Recall                                                                
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                  To optimize K, we obtain its partial derivative with respect to its principal variables R and D    

   –   

 

                                                                                              

 

              

            1   –  2 2   

 

                                                                                              

 

 

 

                                                

                                         

                        

 

                             

 

 

                                      

                                       

                               

 

                                              

 

   = 0 

 

 
          For   
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           For     , 

     

                                                                                                              

 

                          

                                                                                                                         

 

 

 

       
 
                                                                    

 

       
 
                                                                         

 

                                                                    

 

                                                                                    

 

 

            

     

                       

   

 

 

 
 

  =                 

  =                 

 

                                             

      

                                                    

                            



American Journal of Engineering Research (AJER) 2015 
 

 
w w w . a j e r . o r g  
 

Page 70 

          Thus the optimum values of the reinforcement ratio and the parameter K can be derived for any 

combination of reinforcement and concrete strengths from equations (50) and (53) respectively using BS8110, 

(1997) and EC2 (2008).  

4.3    Results of Lagranges Multipliers Optimization Technique 

         Having successfully derived the formula for K, it is now obvious that the under-estimations for the various 

combinations of concrete strength and steel strength can be obtained by substituting each value of K into the 

ultimate moment of resistance formulae. Using the above derived formulae, the ribbed floor slab designed on 

page (25) can now be optimized. From that problem, the respective steel and concrete strengths were:-                               

                                         fy  = 460N/mm
2
  and, 

                                        fcu =  30N/mm
2
 

Therefore from equation  

                   

 

                

 

 
          

                                                                                                      

The ultimate moment for a singly reinforced concrete section is given by BS8110 (1997) as : 

                                                                                                        

 

In order to evaluate the resistance moment, equation (55) is represented as : 

                                                                                                      

 

 

Equating equation (56) to (54) 

          

                                                                                                                   

 

But    30N/mm
2
 , therefore 

                 

                                                                                                                

 

Therefore, for a singly reinforced concrete section made up of grade 30 concrete and steel strength of 

460N/mm
2
, the ultimate method of resistance is under-estimated by about 27.679 percent using the BS8110 

(1997).  

The amount of reduction in the value of under-estimation as indicated in BS8110 (1997) simply shows the 

quantitative value of the quality control and cost savings associated with it. The value of o can be obtained for 

the other reinforced ribbed floor slab concrete sections with various combinations of steel and concrete 

strengths. An objective function value of less than 1 signifies the degree of effectiveness of the optimization 

technique used. The value of D has been taken as 0.06 as an example. 

         Also, steel strengths of 250N/mm
2
 and 460N/mm

2
 will be used by BS8110 (1997) as they are more 

recognized by the code though EC2 (2008) will use steel strengths of 250N/mm
2
 and 500N/mm

2
. Other steel 

strengths may also be used. 

 

Table 1: Data for Percentage Under-Estimation for Various Singly Reinforced 

Ribbed Slab Concrete Sections Using BS8110 (1997). 

 

S/NO 

Steel 

strength 

( fy ) 

N/mm
2
 

Concrete 

strength 

( fcu ) 

N/mm
2
 

 

K
m

opt 

 

o 

Percentage 

Under- 

estimation 

Objective 

Function 

( ƒ ) 

 

 

 

 

20 

25 

3.981617437 

4.972927866 

1.276159435 

1.275109709 

27.6159 

27.5110 

0.51266 

0.45440 
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1 250 30 

40 

50 

60 

5.961481481 

7.927765607 

9.874917709 

11.7966012 

1.273820829 

1.270475258 

1.266015091 

1.260320641 

27.3821 

27.0475 

26.6015 

26.0321 

0.41098 

0.34921 

0.30623 

0.27385 

 

 

2 

 

 

460 

20 

25 

30 

40 

50 

60 

3.985792558 

4.98098076 

5.97537042 

7.961121098 

9.941719533 

11.91574158 

1.277497615 

1.277174554 

1.276788511 

1.275820689 

1.274579427 

1.273049314 

27.7498 

27.7175 

27.6789 

27.5821 

27.4579 

27.3049 

0.52102 

0.46380 

0.42136 

0.36137 

0.32002 

0.28919 

 

Table 2: Data for Percentage Under-Estimation for Various Singly Reinforced 

Ribbed Slab Concrete Sections Using EC2 (2008). 

 

S/NO 

Steel 

strength 

( fy ) 

N/mm
2
 

Concrete 

strength 

( fcu ) 

N/mm
2
 

 

K
m

opt 

 

o 

Percentage 

Under- 

estimation 

Objective 

Function 

( ƒ ) 

 

 

1 

 

 

250 

20 

25 

30 

40 

50 

60 

3.985256748 

4.976778921 

5.965020821 

7.928516621 

9.868844856 

11.77803431 

1.193190643 

1.192042855 

1.190622918 

1.186903686 

1.181897588 

1.175452526 

19.3191 

19.2043 

19.0623 

18.6904 

18.1898 

17.5453 

0.51065 

0.45220 

0.40860 

0.34649 

0.30317 

0.27046 

 

 

2 

 

 

500 

20 

25 

30 

40 

50 

60 

3.990389914 

4.986761303 

5.98234541 

7.970513496 

9.953557843 

11.93004164 

1.194727519 

1.194433845 

1.19408092 

1.193190643 

1.192042855 

1.190622918 

19.4728 

19.4434 

19.4081 

19.3191 

19.2043 

19.0623 

0.52067 

0.46348 

0.42106 

0.36109 

0.31975 

0.28893 

 

V. CONCLUSION AND RECOMMENDATION 
From the results, it is obvious that optimization is possible as the current ultimate limit allowed by 

BS8110 (1997) and EC2 (2008) favors structure reliability over cost minimization.  As observed in table 1 and 2 

above, an under-estimation of averagely about 27 percent was deduced using BS8110 (1997) while the EC2 

(2008) had a lesser under-estimation percentage value of about 19 percent. For a major construction project, 

optimization could greatly reduce cost in terms of material usage. 

It is also important to note that the under-estimation allowed by the British standard code and the EC2 

(2008) create accommodation for uncertainties in engineering design like human errors, variations in material 

strength and variations in wind loading. It also ensures that high expense is traded by safety and reliability of the 

structure. 
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