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ABSTRACT - In this paper, a predator—prey model with a non-homogeneous transmission functional
response is studied. It is interesting to note that the system is persistent. The purpose of this work is to offer
some mathematical analysis of the dynamics of a two prey one predator system. Criteria for local stability and
global stability of the non- negative equilibria are obtained. Using differential inequality, we obtain sufficient
conditions that ensure the persistence of the system.
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l. INTRODUCTION

Mathematical modelling is frequently an evolving process. Systematic mathematical analysis can often
lead to better understanding of bio-economic models. System of differential equations has, to a certain extent,
successfully described the interactions between species. There exists a huge literature documenting ecological
and mathematical result from the model. Heathcoat et al. [6] proposed some epidemiological model with
nonlinear incidence. Kesh et al. [3] proposed and analyzed a mathematical model of two competing prey and
one predator species where the prey species follow Lotka - Volterra dynamics and predator uptake functions are
ratio dependent. Some works in context of source-sink dynamics are due to Newman et al. [10]. His results
show that the presence of refuge can greatly stabilize a population that otherwise would exhibit chaotic
dynamics. Dubey et al. [2] analyzed a dynamic model for a single species fishery which depends partially on a
logistically growing resource in a two patch environment. Ruan et al. [9] studied the global dynamics of an
epidemic model with vital dynamics and nonlinear incidence rate of saturated mass action. Kar [11] considered
a prey- predator fishery model and discussed the selective harvesting of fishes age or size by incorporating a
time delay in the harvesting terms. Feng [14] considered a differential equation system with diffusion and time
delay which models the dynamics of predator prey interactions within three biological species. Kar et al. [13]
describe a prey predator model with Holling type 1l functional response where harvesting of each species is
taken into consideration. Braza [8] considered a two predator; one prey model in which one predator interferes
significantly with the other predator is analyzed. Kar and Chakraborty [12] considered a prey predator fishery
model with prey dispersal in a two patch environment, one of which is a free fishing zone and other is protected
zone. Sisodia et al. [1] proposed a generalized mathematical model to study the depletion of resources by two
kinds of populations, one is weaker and others stronger. The dynamics of resources is governed by generalized
logistic equation whereas the population of interacting species follows the logistic law. We have formulated and
analyzed two species prey-predator model in which the prey dispersal in a two patch environment. Mehta et al.
[4] considered prey predator model with reserved and unreserved area having modified transmission function. A
model of predator-prey in homogeneous environment with Holling type-I1 functionl response is introduced to
Alebraheen et al. [7]. Recently Mehta et al. [5] describe the epidemic model with an asymptotically
homogeneous transmission function.

In this paper biological equilibria of the system are obtained and criteria for local stability and global
stability of the system derived. We have investigate the model persistence with an asymptotically transmission
function.
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1. MATHEMATICAL MODEL
Mathematical Model considered is based on the predator —prey system WITH MODIFIED change transmission
rate:

dx X

T‘[l = er(I*?ll) —PX,X, —OX,¥,

dx, X @,X,¥

—=sx, (- ) gy, 1
dt 2 Kz) Ty A+Bx, +Cy W
dy X,y

— =b,ox,y+b,0, ————ky.

dr YT * A+Bx, +Cy ky

Where X, , X, denote population densities of prey and y denote population density of the predator. In model (1)

r and s are the intrinsic growth rate of two prey species, K; and K; are their carrying capacities, k is the mortality
rate coefficient of the predator, p, q are inter species interference coefficient of two prey species. b; and b, are
the conversion factors denoting the number of newly born predators for each captured of first and second prey

respectively, ®, is the first prey specie’s searching efficiency and @, is the second type prey specie’s

searching efficiency of the predator |

I1l. EQUILIBRIUM
ANALYSIS
The system (2) has seven equilibrium points, E;(0,0,0),E,(K,,0,0),E,(0,K,,0), Eg(xl'ﬁxz':O),
E,(0,%,.¥),E,(%X,,0,¥).E4(%X,,%,,¥) where three of them, namely E,(0,0,0),E,(K,,0,0), E,(0,K,,0) always
exist. We show the existence of other equilibria as follows:
Existence of E,(x, ,x, ,0)

Here x,",x," are the positive solutions of the following algebraic equations.

r(l— Ii_ll) —px, =0 (3)
s(l1— %) —qx, =0 @

2

Solving (3) and (4) we get

< = sK, (r—pK,) = 1K, (s—qK,)

1

- X, (5)
s —pqk, K, s —pak, K,

Thus the equilibrium E,(x,",x,",0) exists

if (r—pK,) and (s —qK,) are of same sign, that is either

r>pK, and s > qK, (6)
r<pK, and s < gK, (7)

Existence of E,(0,%,,7)

Here E,(0.X,.¥) is the positive solution of the following algebraic equations.

3(177‘72)7 DX,y

y  _ (8
K, (A+Bx, +Cy)

2
X

b, ——2*——— k=0 9

2T A+Bx, +Cy ©
Solving (8) and (9) we get
%, - kA + Cky and 5 — s(A +2BX2)(K2 —Bx,)

b,o, —kB o, K,” —Cs(K, —sx,)

It can be seen that E,(0,X,.¥) exists if

(b,o, —-kB) > k(A +Cx,) .

(10)
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Existence of E.(X,,0,7)

Here X,,§ are the positive solutions of

r(lf;;—t) —o,y=0
(11)
b,ox, —k=0
Solving (11) and (12) we get
~ k . r k
X, = Lv=—-I((1-

b, ©  Kbo
It can be seen that E_(X,,0,¥) exists if
Kbo, >k

)

Existence of E (X,,X,,¥)

Here E (X,.X,,V)is the positive solution of the system of algebraic equations given below:

X
x, (1 *?l)*p}ﬁxz —ox,y=0

X 0,X,V
ex (1— 22y e v—— 22
2( Kz) Py A+Bx, +Cy

XY
A+Bx, +Cy

Solving (15) and (16) and eliminate x, we get

by x,y+b,o, —ky=0

(qr —pax, —o, yQK,K, (A+Bx, + Cy)—sr(K, — %, (A+ Bx, + Cy)+ 10, K, y= 0

when y — 0,then x, —»x,,

where
_ K, (s—gK))
5 —pqkK K,
We note that x,, >0, if the inequalities
r>pK, and s > gK, hold.
Also from the equation (18), we have

dx, L

i S |
dy F~

E =qKL(r-px,)-o,qK K, (A+Bx, +2Cz)+ o,rL and

F, =qBK,K, (1 —o,y) + (st —pgK,K, (A + 2Bx, + Cy) —stBK,

dy

It is clear that — > 0, if either
dz

E>0and F, >0,0r
E <0and F, <0, hold.

Again solving (14) and (15) and eliminate again X, then we get
(1b,o K, —a,b,o, v, — o, "b,vK, —kr)(A +Bx, + Cy) +1b,ox, =0

2014

(12)

(13)

(14)

(15)

(16)

a7

(18)

(19)
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when v —0,then x, - x,,

where
-G, +,sz2 ~4G,G,
X =
2G,
In which

G, =-pb,o,K,B

G, =byo, (1K, B-pK,A-1)

G, =rA(boK, —k)

Clearly G; < 0 and G; > 0 if the inequalities (14) is satisfied.

d D
We also get from the equationﬁ <=
dy D,
Where
A+C
D, = —pb,oK, +1be, __(Arly) =
(A+Bx, +Cy)”
A +Bx,
D, = 0 "b,K, + 10,0, — e 22)
) (A+Bx, +Cy)

It is clear that % <0, if either

D, >0and D, > 0,0r
D, <0and D, <0, hold.
From above conditions we note that x,, < x,, holds. Knowing the value of x,. v , the value ofx, can be

calculated from
< - k(A+Cy)—%,(b,0, —kB)
! (A+BY, +Cy)b,o,

We can see that E (X, V.Zz) exists if x to be positive,

if k(A+Cy) > x,(b,®, —kB) condition is hold.

I11. STABILITY ANALYSIS

Now we check the stability of model (2). For that matrix is

2xr
r— —PX, oy —PX, —0 X
1
J= < . 2sx, @, y(A+Cy) ©,%x,(A+Bx,)
& K, = (A+Bx,+Cy) (A +Bx, +Cy)’
b,c A+C b, A+ Bs
b,y _ 0, V(A +Cy) b,o,X, — 20X, (A+ Kzz)_k
(A +Bx, +Cy)

(A+Bx, +Cy)*

(a) The viariational matrix at equilibrium point E,(0,0,0)

Thus E,1s a saddle point which is stable in y direction and unstable manifold in the x;-x, plane.
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(b) The viariational matrix at equilibrium point E, (XK,.0,0)

-T—A -pK, —o,K,
L= 0 s—qK -2 0
0 0 boK, -k-2x

E, is a saddle point with locally stable manifold in x, direction and with locally unstable manifold in x,-v plane,
it s—qK, >0 and b;o,K, —k > 0 hold, but if s —qK, <0 and b,o,K, —k <0, then E, is locally asymptotically

stable in x; — X; - y plane.

(¢) The viariational matrix at equilibrium point E, (0,K,,0)

r-pK,-A 0 0
K, (A +BK2
: (A+BK,)
0 _bo,K,(A+BK,) Y
(A+BK,)

E is a saddle point with locally stable manifold in x, direction and with locally unstable manifold in x;-y plane

if 1—pK, >0 holds, butifr - pK, <0 , then E, is locally asymptotically stable in x; —x,-y plane.

(d) The viariational matrix at equilibrium point E, (xl*,xz*,O)

2x1x1‘ A . .
r— —-px, —A P% 0%
1
. 28x, .
I = —qx, 2 _qx, —h 0
3 q K, qx,
. box (A+Bx,
0 0 box, — 2%2%, { +, ?Xz )—k—l
(A+Bx, )
 sK (r—pK . 1K, (s—gK
Put Xl :w’xj :&Jhe"js
rs—pgKK, © 1s—pgKK,
st(pK, —1) L psK,(r-pK,)) oK, (r-pK,)
rs—-pakK K, rs—pakK K, rs—pak K,
KoK @K -9 .
=
rs-pqK K, 1s-pgKK,
0 0 bosK(r-al) b,o,qK, (s—qK,)
1s—paK,K, A(rs—-pqK K, ) +B1K, (s—qK,)
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Here sum of two eigen values are
st(pK, —1) N 1s(qK, —s)
rs—pqK K, r1s5-pgK K,

and product of two eigen values are
st(pK, —1r)(qK, —s)
Is— qule

2014

If r>pK, and s >gK, holds, then the sum of two eigen values is negative and product is positive. So that we
can say that E, (xl*,x;,O) exists and is asymptotically stable in x; —x, plane, but if Kr < pK, and s < qK;

holds, then the product of two eigenvalues is negative. Then E,(x,”,x,”,0) exists and in that case it will be

unstable 1n x; — X, plane. Moreover, it will be stable in x,. X,y plane if for the other eigen value of the system is
bosK(r—al) b,0,qK, (s —qK,)
<

s —pgK K, A(rs—-pgKK,) +B1K, (s —qK,)
(e) The viariational matrix at equilibrium point E,(0,X,.¥)
I—px, —Oy-A 0 0
_ 23X,  o,y(A+CY) o,X,(A+BX,)
Ji= X, 5— I — B —
K, (A+Bx,+Cy) (A+Bx, +Cy)
b,y B bze)zYEA - CEI)Z bzcozngA + B_x?;) Y
(A+Bx, +Cy) (A+Bx, +Cy)”
_ kA +Cky _ s(A+Bx,)(K,-Bx
Where X, = Aty and y = it +2 HILS i{z)
Lo, —kB @,K," —Cs(K, —sx,)

E,(0,%,.¥) exists and is asymptotically stable in x, -y plane if the inequality T—pX, —®,J < 0, and

25X, N o, V(A + ()
K, (A+BX,+Cy)

< s holds, then it will be asymptotically stable in x-y-z plane.

(f) The viariational matrix at equilibrium point E.(%,,0,¥)

S __pk kK
Klblwl b10“)1 b1
I, = 0 _ 9k ro, MJFQ),)L 0
bo, o Kbo -k o
1, (1— k ) bzcozr/( AK b, +g) oy
1010 ) Klblml -k 1O

E.(%,0.Z) exists and is asymptotically stable in X;-x,-y plane, if the inequality

gk 1o, / AK b,o,
bo, o Kbo -k o

C
+_r) >s holds .
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(g) The viariational matrix at equilibrium point E (X,.X,.V)

B e . .
r PX, — Oy P, OX,
Kl

T = gk 5_255‘2 g, - o, V(A +Cy) Y _ 0,%,(A+BX,)

¢ : K, '(A+BR, +CY) (A+B%, +C¥)°

: b,0,7(A+CY) . b,o,%,(A+Bg,)
by e bk, ——+E 22— k-

(A+Bx, +Cy) (A+Bx, +Cy)

The stability of the point E,(%,.%,.¥) depends on the determinant and trace of the above Jacobean J. The point

is stable if the det J> 0 and Trace Js < 0.
In the following theorem, we show that all equilibrium point is globally asymptotically stable.

Theorem 1- The interior equilibrium E, is globally asymptotically stable in the interior of the quadrant of the
X;-Xp plane.

Clearly A(X,.X,) ispositive in the interior of the positive quadrant of the x;,X,-

Proof -Let A(X,,X,)=

IXZ

plane.

X
b, (XI’XZ) =X, (1-=-) -pxX,
K,

X
h, (Xl,xz):sx2 (1——==)—qx,X,.
K2

Then
3 3
A(%,.%,) = —— (h,H) + —— (b, H)
Sx, ox,
A( ) L 0
X,,X,)=— — < 0.
v LK x K,

From the above equation, we note that A(X;.X,) does not change sign and is not identically zero in the interior
of the positive quadrant of the xX,,X, plane. In the following theorem, we show that E,is globally

asymptotically stable.
Theorem 2- The interior equilibrium E, 1s globally asymptotically stable in the interior of the quadrant of the

X,,V plane.

. 1 :
Proof -Let H (x,,y)= — Clearly H (x,.¥) is positive in the interior of the positive quadrant of the X,.Vy
Xy
plane.
. X ©,X,¥
hy(x,,y)=sx,(1-—2)———322—
1 (52 = Kz) A+Bx, +Cy
b,0,x,y

———— —kv.
A+Bx, +Cy

hlz (x,.v) =
Then

I B < SR
A(x,, V) =—((hH)+—(h,H)
0X, oy
o,B E b,®,C
— — <
(A+Bx, +Cy)* yK, (A+Bx,+Cy)’

A(X,.y) =

®,ByK, b,0,vK,.C
i Eer————
s

0

when (A+Bx, +Cy)’ —
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From the above equation, we note that A(x,.y) does not change sign and is not identically zero in the interior
of the positive quadrant of the x,y - plane. In the following theorem, we show that E, is globally asymptotically

stable.

Theorem 3- The interior equilibrium £ is globally asymptotically stable in the interior of the quadrant of the

X,y plane.

. 1
Proof - LetH (x,y)= — .Clearly H( X,V ) is positive in the interior of the positive quadrant of the X,y plane.
Xy

. X
h, (x,y) =1x,(I-=H) ~ox,y,
K,

h-z (x,.¥) =box;y —ky.

Then
3 P & u .
A(x,¥y)=—(MhH)+—(h ,H)
OX, oy
.
A(X,.y)=———=<0.

Y
From the above equation, we note that A (x,,y) does not change sign and is not identically zero in the interior

of the positive quadrant of the x,,y plane. In the following theorem, we show that E; is globally asymptotically

stable.
Theorem 4-The interior equilibrium E, is globally asymptotically stable with respect to (x,,X,,y) plane.

Proof-Consider the following positive definite function about E;,

X, X,

W(t)z[xl—xl‘—xfln ,]+dl{x2—x;—x;h1 ‘]+d2(y—y’—ytlnyt]
X y

1 2

Differentiating W with respect to time t along the solutions of model (1), we get

dw T s dgs .2 .
—=—(x,-X, ) ——(x,-X%, ) —0,(v—
dt K1(l p) K2(2 2) (y-¥)
A(Y-y)+B(x, y-x,y A(x, -x, ) -C(x, y—x,y
7m2dl[ (y y )+ (KZ y 1X2y )t ]+0)2d7b7[ (Xl XZ ) (KZ y . Xz) 1) ]
(A+Bx, +Cy)A+Bx,+Cvy) T T(A+Bx, +Cy)A+Bx,+Cy)
d _ *
We choose d, :M
b,(x, —x,)
So that,
dW

r s ds . .
—_— (XX ) —(x,-X, ) —o,(y—
m Kl(l 1) K2(2 2 ) —o(y-Y)

5 (X;Y— Xzy‘)(B(Xz _Xz’) +C(y - y‘)
(A+Bx, +Cy)(A+Bx, +Cy)(y-v)

Hence W is a Lipunov function with respect to Eq(x,,X,.V) .
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IV. CONCLUSION
In this paper, a mathematical model has been discussed with the transmission function, we have analyzed a

prey-predator fishery model change the transmission function in a two patch environment, one is assumed to a
free fishing zone and the other is a reserved zone where fishing and other extractive activities are prohibited.
The population and the resource both the growing logistically. The existence of equilibrium point has been
discussed and local stability and global stability analysis has been carried out by Variational Matrix and
Liapunov function method. It has been observed that, whether in the absence or in the presence of predators, the
fishing populations may be sustained at an appropriate equilibrium level.
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