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ABSTRCT : Power series and Chebyshev series approximation methods were used to solve higher order 
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effectiveness of the methods. 
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I. INTRODUCTION: 
 In recent years considerable work has been done both in the development of the technique, its 

theoretical analysis and numerical application in the treatment of Integro – Differential equations, because of it 

wide range of applications in scientific field such as fluid dynamics, solid state physics, plasma physics and 

mathematical biology [2]. Integro – differential equations are classified into various types among which 

Fredholm – integro – differential equation, the focus of this paper. 

Generally, Fredholm – integro – differential equation is of the form 

           

     2                                                                  1-n k   0     ,b    0
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Where 
   x

j
u  are the nth derivatives,   xF ,  tx,k  are given continuous smooth functions,   xu  is the 

unknown function to be determined and 
k

b b, ,a are constants. Because the result of (1) combine the 

differential and integral operators, then it is necessary to define initial conditions as in (2). The Fredholm – 

integro – differential equation of the second kind appear in a variety of scientific application such as the theory 

of signal processing and neural networks [1]. Because of the importance of Fredholm – integro – differential 

equation in scientific research, several numerical methods were used to solve both linear and non – linear 

Fredholm – integro – differential equation such as Tau operational method [8], Haar wavelets method [5], 

Lagrange interpolation method [11] and Differential transformation method [3], just to mention but a few.[11] 

focused on the use of Chebyshev interpolation to solve mixed linear integro – differential equation with 

piecewise interval. Also in [12], Lagrange and Chebyshev interpolation was applied on functional integral 
equation. The use of inverse Fuzzy transforms based on fuzzy partition with combination in collocation 

techniques has been investigated (see [4]). Research has been conducted on the use of Legendre multi-wavelets 

to solve weakly singular Fredholm – integro – differential equations [7]. Power series method was use by [9] to 

solve system of linear and non-linear integro – differential equations and obtain a close form solution if the 

exact solutions are polynomial otherwise produces their Taylor series solution. Chebyshev series has been used 

to solve Fredholm integral equations at three different collocation points [6].In this paper we consider the use of 

power series and Chebyshev series approximation methods to solve higher order Fredholm – integro – 

differential equations using two collocation points. 
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II. POWER SERIES APPROXIMATION METHOD 
 In this section we consider the use of power series approximation solution of the form 

     3                                                                       0  i a    , xa    
i

N

0  i

i

i
 



xu  

Where the coefficients 
i

a  are unknown to be determined. 

Putting (3) in (1) gives, 
 
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(4) can be written in a simpler form as 

  
 
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We integrate the right hand side of (5) and after simplification, the resulting equation is then collocated using 

the following collocation points 
(1)Standard collocation point defined as 

 
 6                                                         1. - N ..., 2, 1,  p    ,*

a - b
  a   p

N
x

p
 

(2)Chebyshev – Guass – Lobatto collocation point defined as 

 7                                                               1. - N ..., 2, 1,  q  ,*
N
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Each of the two collocation points describe above together with the initial condition given in (2) resulted in (N + 

1) linear algebraic equations in (N + 1) unknown constants which are then solved to obtain the unknown 

constants that are substituted in (3) to get the numerical solution of (1). 

 

III. CHEBYSHEV SERIES APPROXIMATION SOLUTION: 
  In this section we consider the use of Chebyshev series approximation solution of the form 

       8                                                         0 n  a  ,x T a  x 
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Where  x 
n

T  is Chebyshev polynomial defined as 
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and it satisfied the recurrence relation 
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Putting (10) in (1), we obtain 

 

 

       11                                dt         t T a tx,k  xF  x T 

b      

a     

N

0  j

nn

j
N

0  j

n  

















n
a  

(11) can be written in a simpler form as 
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Using the same procedure as in 2.0 above and using shift Chebyshev polynomial where applicable, (12) together 

with (2) gives (N + 1) linear algebraic equations in (N + 1) unknown constants. These equations are solved 

using maple 13 to obtain the unknown constants an’s which are then substituted into (8) to get the numerical 

solution of (1). 

IV. NUMERICAL EXAMPLES AND RESULTS: 
 In this section we consider the following examples on linear Fredholm - integro – differential 
equations. These examples have been chosen from [1]. 
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Example 1:  
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Table 1: Numerical solution of example 1 for N = 10 

 
x Exact solution Power series solution Chebyshev series solution 

  Standard Collocation C.G.L Collocation Standard Collocation C.G.L Collocation 

0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 

0.1 1.020000000 1.019987500 1.019987508 1.019855160 1.019853296 

0.2 1.100000000 1.099500000 1.099500027 1.097441281 1.097438523 

0.3 1.270000000 1.269562500 1.269562557 1.267989324 1.267963120 

0.4 1.560000000 1.559963000 1.550000098 1.558530249 1.558512781 

0.5 2.000000000 1.999737500 1.995937649 1.944095018 1.984063738 

0.6 2.620000000 2.619800000 2.617600207 2.595914590 2.606907820 

0.7 3.450000000 3.449812500 3.447812774 3.437419929 3.347742003 

0.8 4.520000000 4.518700000 4.509700350 4.509241993 4.418242167 

0.9 5.860000000 5.858787500 5.849787937 5.678611744 5.759611462 

1.0 7.500000000 7.497500000 7.489800353 7.395160143 7.399962085 

 

Example 2: 
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Table 2: Numerical solution of example 2 for N = 10 

 

x Exact solution Power series solution Chebyshev series solution 

  Standard Collocation C.G.L  Collocation Standard Collocation C.G.L  Collocation 

0 1.000000000 1.000000000 1.000000000 0.999999998 0.999999973 

0.1 1.105170918 1.105170918 1.105170317 1.105170906 1.105170586 

0.2 1.221402758 1.221402759 1.221393616 1.221402664 1.221402328 

0.3 1.349858808 1.349858808 1.349796664 1.349858494 1.349853557 

0.4 1.491824698 1.491824698 1.491779456 1.491824493 1.491822318 

0.5 1.648721271 1.648721270 1.648687634 1.648720056 1.648681450 

0.6 1.822118800 1.822118800 1.822091428 1.822117485 1.822097068 

0.7 2.013752707 2.013752706 2.013736257 2.013751484 2.013735387 

0.8 2.225540928 2.225540929 2.225110041 2.225542106 2.225528215 

0.9 2.459603111 2.459603109 2.459401851 2.459602032 2.459591944 

1.0 2.718281828 2.718281828 2.718165764 2.718304575 2.717964004 
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Example 3: 
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Table 3: Numerical solution of example 3 for N = 10 

 
x Exact solution Power series solution Chebyshev series solution 

  Standard Collocation C.G.L Collocation Standard Collocation C.G.L Collocation 

0 0 0 0 2.538281 10
-11

 2.538237 10
-11

 

0.1 0.095310180 0.095309970 0.095308282 0.094929653 0.094900490 

0.2 0.182321557 0.182320192 0.182285697 0.181952718 0.181969997 

0.3 0.262364265 0.262341612 0.262329925 0.262019395 0.262013595 

0.4 0.336472237 0.336448896 0.336437637 0.336129984 0.336131787 

0.5 0.405465108 0.405437993 0.405430058 0.401196354 0.401908328 

0.6 0.470003629 0.469975523 0.469967299 0.467508962 0.466601689 

0.7 0.530628251 0.530595414 0.530091041 0.528493721 0.528138621 

0.8 0.587786665 0.587608614 0.587374025 0.586233239 0.585401225 

0.9 0.641853886 0.641684342 0.641502316 0.640367171 0.639716176 

1.0 0.693147181 0.692912617 0.692874871 0.691938947 0.691122621 

 

Tables of Errors: 

Table 4: Errors for example 1 

 
 Power series Chebyshev series 

X Standard Collocation C.G.L  Collocation Standard Collocation C.G.L  Collocation 

0 0 0 0 0 

0.1 1.250 10
-5

 1.2492 10
-5
 1.4484 10

-4
 1.46704 10

-4
 

0.2 5.000 10
-4

 4.99973 10
-4

 2.558719 10
-3

 2.561477 10
-3

 

0.3 4.375 10
-4

 4.37443 10
-4

 2.010676 10
-3

 2.036880 10
-3

 

0.4 3.700 10
-4

 9.999902 10
-3

 1.469751 10
-3

 1.487219 10
-3

 

0.5 2.625 10
-4

 4.062351 10
-3

 5.5904982 10
-2
 1.5936262 10

-2
 

0.6 2.000 10
-4

 2.399793 10
-3

 2.4085410 10
-2
 1.3092180 10

-2
 

0.7 1.875 10
-4

 2.187226 10
-3

 1.2580071 10
-2
 1.02257997 10

-1
 

0.8 1.300 10
-3

 1.0299650 10
-2
 1.0758007 10

-2
 1.01757833 10

-1
 

0.9 1.2125 10
-3
 1.0212063 10

-2
 1.81388256 10

-1
 1.00388538 10

-1
 

1.0 2.5000 10
-3
 1.01996468 10

-2
 1.04839857 10

-1
 1.00037915 10

-1
 

 

Table 5: Errors for example 2 

 

 Power series Chebyshev series 

X Standard Collocation C.G.L Collocation Standard Collocation C.G.L Collocation 

0 0 0 2.0 10-9 2.7 10-8 

0.1 0 6.01 10-7 1.2 10-8 3.32 10-7 

0.2 1.0 10-9 9.142 10-6 9.4 10-8 4.23 10-7 

0.3 0 6.2144 10-5 3.14 10-7 5.251 10-6 

0.4 0 4.5242 10-5 2.05 10-7 2.378 10-6 

0.5 1.0 10-9 3.3637 10-5 1.315 10-6 3.9821 10-5 

0.6 0 2.7372 10-5 1.297 10-6 2.1732 10-5 

0.7 1.0 10-9 1.6450 10-5 1.223 10-6 1.7320 10-5 

0.8 1.0 10-9 4.30887 10-4 1.178 10-6 1.2713 10-5 

0.9 2.0 10-9 2.01267 10-4 1.079 10-6 1.1167 10-5 

1.0 0 1.16064 10-4 2.2747 10-5 3.1782 10-4 
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Table 6: Errors for example 3 

 

 Power series Chebyshev series 

X Standard Collocation C.G.L  Collocation Standard Collocation C.G.L Collocation 

0 0 0 2.58281 10-11 2.538237 10-11 

0.1 2.1 10-7 1.898 10-6 3.80527 10-4 4.0969 10-4 

0.2 1.365 10-6 3.586 10-5 3.68839 10-4 3.5156 10-4 

0.3 2.2653 10-5 3.434 10-5 3.44870 10-4 3.5067 10-4 

0.4 2.3341 10-5 3.460 10-5 3.42253 10-4 3.4045 10-4 

0.5 2.7115 10-5 3.505 10-5 4.268754 10-3 3.55678 10-3 

0.6 2.8371 10-5 3.633 10-5 2.494667 10-3 3.40194 10-3 

0.7 3.2837 10-5 5.3721 10-4 2.134530 10-3 2.48963 10-3 

0.8 1.78051 10-4 4.1264 10-4 1.553426 10-3 2.38544 10-3 

0.9 1.69544 10-4 3.5157 10-4 1.486715 10-3 2.13771 10-3 

1.0 2.34564 10-4 2.7231 10-4 1.208234 10-3 2.02456 10-3 

 
 

V. CONCLUSION: 
 Most integro – differential equations are difficult to solve analytically, in many cases it require to 

obtain the approximate solutions, for this purpose we present the solution of higher order linear Fredholm 

integro – differential equations. Our methods are based on Power series and Chebyshev series which reduces a 

linear Fredholm integro – differential equation to a set of linear algebraic equations that can be easily solved by 

computer. The result obtained show that the two methods used can handle those problems effectively as can be 

seen in the tables of errors. 
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