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Abstract: - This paper is concerned with the investigation of the Helmholtz type equation with the Dirichlet
boundary conditions in polar co-ordinates .We present a numerical method for solving this equation and obtain
the matrix form of equations. For our purpose define the mesh points in the r— 6 plane by the points of
intersection of the circles r = ih, (i = 1, ..., n) and the straight lines 6 = j66,j = 0,1,2, ...
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l. INTRODUCTION

Many physical problems involve solving elliptic equations with circular boundaries. Finite difference
problems involving circular boundaries usually are solved more conveniently in polar co-ordinates than
Cartesian co-ordinates. In this case, we first transform the rectangular coordinate system into the convenient
polar or cylindrical coordinates. In the present paper, we consider Helmholtz equation

Uy + Uy, + AU = F(x,y)

With the Dirichlet boundary conditions on Q, where A is a positive real constant. The Helmholtz

equation or reduced wave equation is an elliptic partial differential equation. It takes its name from the German
physicist Hermann Helmholtz (1821-1894), a researcher in acoustics, electromagnetism, and physiology. This
equation occurs when we are looking for mono frequency or time harmonic solutions for the wave equation.
A. S. Fokas introduced a new method for solving boundary value problems for linear and for integrable
nonlinear PDEs [1]. Daniel ben-Avraham and Athanassios S. Fokas applied this method to the Helmholtz
equation [2]. We want to solve this problem in polar co-ordinates. K. Mohseni and T. Colonius presented a
numerical treatment of polar coordinate singularities [4]. There are other methods to solve pure problems in
polar or cylindrical coordinates [6, 3]. In the next section, we present a finite difference scheme for solution of
Helmbholtz equation.

1. FINITE DIFFERENCE SCHEME
Let us consider E.q (1) on Q = {(x,y)|x? + y? < 1} with the Dirichlet U = g boundary conditions
on Q. Note that if A=0, the Helmholtz differential equation reduces to Laplace equation
Uy + Uy, = F(x,y) In this paper, we only consider those solutions U of (1) which are defined and analytic in

the real variables x, y for domain Q in the plane R?. By using the polar coordinate transformation x = r cos8
and y = rsing wherer = (x> + y?)/2 and 6 = arctan%, and setting u(r,0) = U(x,y) and f(r,0) = F(x,y)
E.q (1) becomes:

1 1
urr_l_;ur.l_ﬁueg-{-lu:f(’r,g) 0<T<1,0<9<27T

For non-zero values of r there is no problem, but at » = 0 the right side appears to contain singularities. In this
case, we can replace the polar co-ordinate form of equation by its Cartesian equivalent. In the present paper, we
choose a grid which the grid points are in the r — 6 plane as follow:
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6, = jA® j=01,..m+1
The notations w;;, f;; and g; are used for the finite difference apprOX|mat|ons of u(r;, 6;), f(r;, 6;)and g(6;)
respectively.
By using the central difference scheme for E.q (1) we have:
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where a; = A~ 2 = ;s By

The linear system of equations is as follows:
AU=B
where A is a mn X mn matrix which can be written in partitioned form as:

A= i A, B Cz i
\ An—l n 1/
fori =1,2,...,n we have: A B
4
/ 4 21 + DZ(AD)? \
| 4 4 |
=| @i+ 1)2(A9)2 4 21 + 1)2(A0)? |
| - . |
\ i + 1)2(A0)? “i/
And 4, = (1 - 2; Vi @A C; = (1 + )Ime B also is a column vector determined by the boundary
values as follow:
b,
B= bf
b,
where
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wherei =2,..,n—1and
1 4
f(1,,61) = (1 + m) Unt1l = G F 12 (G)E Y0

1
f(1,0;) = (1 + 2n—+1) Uni12

o
=
I

1 4
\f(rn! O) — (1 + 2n—+1) Un+tm = 2 1)2(AG)2 Ynm+1
A is a tridiagonal and invertible matrix, therefore this system has a unique solution. There are a lot of methods
for solution these linear system equations; you can see [5].

1. CONCLUSION
Our purpose in this article is solving the Dirichlet problems for the Helmholtz equation. Here, a
numerical method for solving this problem is investigated. We first obtain Helmholtz equation in polar co-
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ordinate. Afterwards, we present an implicit scheme and obtain the matrix form of this equation. Finally, the
obtained system can be solved by various methods.
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