Research Paper

The Use Of Length/Diameter Ratio To Determine The Reliability **Of Permeability Data From Core Samples**

American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN: 2320-0936

Volume-03, Issue-06, pp-186-194

Akintola Sarah. A¹ Oriji, A. Boniface², & Zakka Bala³ ¹Department of Petroleum Engineering University of Port-Harcourt Nigeria ³Department of Petroleum Engineering University of Ibadan Nigeria

Abstract: Petroleum reservoir quality is governed by two important petrophysical parameters namely porosity and permeability. The length of test sample used for permeability measurement can affect the result. To determine the permeability of core samples, the length and cross-sectional area of the sample must be accurately measured. Hence, there should be a standard for testing in the laboratory. For every reservoir, it must be determined to know if the reservoir is permeable or not. The key factors that control permeability data are length and diameter of the core. In testing for reservoir that has not been evaluated, the sample length/diameter ratio is critical to the result that will be achieved. Therefore, it is imperative to determine a reference for testing in all laboratories. This study is conducted in order to confirm an acceptable length/diameter ratio that will serve as a guide during preparation of test samples before commencement of permeability measurement in the laboratory. The length/diameter ratio of core plugs was varied and their permeability determined experimentally using gas permeameter.

Key words: Porosity, Permeability, Darcy law, Core sample, permeameter

INTRODUCTION I.

The reliability of permeability data obtained from core samples is critical to the measurement of permeability using core data. Different length/diameter ratios of core plugs will be used to ascertain a reliable permeability data which can be further used as a standard in comparison with the one obtained from institutions or industrial laboratories.

A rock is said to be permeable if a fluid can pass from one surface to another under the influence of external forces such as gravity and fluid pressure). The definition of rock characterization and permeability is based on measurable quantities as put forth by Darcy. Since, the early stage of oil well production, engineers have recognized that most reservoirs vary in permeability and other rock properties in the lateral direction. First attempt to quantify the areal permeability distribution from observed differences in well production history was that of Kruger in 1961. There are several factors that must be considered as possible sources of error in determining reservoir permeability. From these factors, the most critical is the Core sample which may not be representative of the reservoir rock because of reservoir heterogeneity. Moreover, the core recovery may be incomplete. Permeability of the core may be altered when it is cut, or when it is cleaned and dried in preparation for analysis. This problem is likely to occur when the rock contains reactive clays. Sampling process may be biased. There is also the temptation to select the best parts of the core for analysis, which may not be a good representation of the entire system.

II. MATERIALS AND METHODOLODY

Measurements made using gas (Nitrogen) are preferable because it minimizes fluid-rock reaction and also it is convenient. To determine the reliability of permeability data from core samples, the length and crosssectional area of the sample must be accurately measured and standardized. A core plug of known length and diameter is important in the determination of actual value of permeability.

Open Access

www.ajer.org

A core is a sample of rock from the section generally obtained by drilling into the formation. Normally, cores samples are prepared by cutting cylindrical plugs using a drill press and one-half inch diameter bit. A total of fifty sample plugs were drilled using a drill press of $1\frac{1}{2}$ inches diameter drill bit to drill through a slabbed core surface up to a depth of about 3inches with liquid nitrogen to ensure integrity of the sample. The samples were encapsulated with nickel foil and stainless steel mesh at each end face to prevent grain erosion and then pressurized up to 200psi to maintain sample integrity.

Samples were placed in soxhlet equipment, and toluene was used to clean the oil and the system was allowed to reflux several times until the refluxed solvent is observed to appear colourless. Thereafter methanol was used to replace the toluene and remove salt. The samples after cleaning are then placed in a conventional Oven to dry to a constant weight at about 100° C or 110° C for clean sandstone and 60° C for shaly sandstones until the dry weight was stable. After drying, the Samples are cooled in a desiccators to room temperature prior to measurement.

The gas permeameter is designed to measure the permeability of consolidated cores, when both gas viscosity and core dimensions are known.

The equipment used for gas permeability measurement include: Permeameter, Nitrogen source, Stopwatch, Core holder, Bubble tube and Digital calliper. The temperature is recorded at the beginning of the experiment, The dried samples length and diameter are measured using a digital caliper. Each dried sample is placed in a core holder assembly which consist of rubber boot and stems. The core holder is connected with connecting lines to a gas cylinder. The core is pressurized to 400psi overburden pressure using a regulator to adjust flowing pressure until a laminar flow rate is established.

The resultant flow pressure is recorded from the gauge mounted on the core holder. The gas coming out of the sample drives a soap bubble through a burette. The time it takes for the bubbles to pass through 30cm calibration point on the burette and the volume of gas flow through the burette is measured and recorded using a stopwatch. The test pressure determined by the air regulator is recorded. The flow rate of the gas is determined. The viscosity of the gas is recorded and temperature taken again the barometric pressure at the time of measurement is recorded. The average length of sample and diameter is record and then using Darcy's equation the permeability of the core sample is calculated.

All the samples tested by the procedure described above are re-determined with a decreased length, while keeping the diameter constant, thereby generating a new length/diameter ratio. The permeability results determined by those 'new' samples are compared with the original results obtained from the one with maximum length.

Porosity Determination (Pore volume and Bulk volume)

- 1. Each plug sample was individually placed into a rapid access core holder connected to Ultrapore equipment.
- 2. Helium at a known reference pressure (P₁) and Volume (V_{*Ref*}) was isothermally expanded into the sample's pore space (V_{*Pore*}) and after pressure stabilization; the pressure (P₂) was recorded.
- 3. The sample's pore volume is derived from basic Boyles law.
- 4. The sample's true pore volume was obtained by deducting the volume of screens (for mounted samples only).
- 5. The bulk volume of the sample was determined using the callipered length and diameter of the samples. Grain volume + pore volume.

Porosity is reported as a percentage of the bulk volume as below:

$$\phi = \frac{PoreVolume}{BulkVolume} *100$$

where Ø is porosity, %

RESULTS AND DISCUSSION

Fluid used: Nitrogen gas: Calibrated volume of gas in the burette = 30 cm

Temperature $T = 25^{\circ}C$; Diameter of core = approximately 3.7cm

Varying Length used, L; Viscosity of the gas used = 0.0177cp

$$K = \frac{2000B\mu gQL}{A((Pu+B)2 - (Pd+B)2)}$$
2

The result is computed using Microsoft excel and tabulated in the appendix. From the results obtained using Darcy's law, the direct proportional relationship between the effects of permeability using length variation is observed. At a specified temperature of 25°C with varying pressure for different core samples, the permeability value is directly proportional to the length decreases (Assuming constant volume timed), therefore, the plot of permeability, K against standard length, L gives a scatter plot variation. It is also observed in the plot that there is higher concentration of permeability around 4500millidarcy. The plot of permeability against porosity also show the trend of high permeability with porosity. (See Figure 1)

When the length of the core was changed in order to have a length/diameter ratio of 1:1, there was a change in the permeability value, showing the effect of length variation. The permeability concentration changes from 4500millidarcy to 3500millidarcy when the length was reduced. The cross plot of permeability against porosity also shows that it is permeable around 3500 millidarcy, with given porosity constant.

When the length of the core was changed, to a ratio of 0.5:1, the permeability value drastically dropped, which a great change on the permeability. The plot of permeability against length shows that permeability value concentrated at 1500millidarcy which is far different from the standard length used. The cross plot of permeability against porosity also shows that the permeability is low due to the length of the core that has been reduced beyond limit.

Generally, it is observed from the result that when the length of the core sample is reduced permeability decreases and vice versa. The permeability obtained when standard length is used is almost the same as when the length is equal to diameter, but when the ratio was changed to 0.5:1, the permeability data seems to be unreliable.

III. CONCLUSIONS

This precisely agreed that for a permeability data to be reliable, the minimum length/diameter ratio should be 1:1, which shows that permeability is proportional to length of a core. The minimum length of the tested sample having a specified diameter approximately 3.7cm core has been determined and established which should be a reference for testing in the laboratory noting that samples having length smaller than this established value would give an erroneous result

REFERENCES

- Alpay ,O., "A study of the physical and textural heterogeneity in sedimentary rocks", Ph.D [1]. Dissertation, Purduu, Lafayette Ind, June 1963.
- Arnold, M.D., Gonzalez, H.J and Crawford, D.B, "Estimation of Resrevoir Anisotropy from production [2]. Data "JPE, Aug. 1962
- Avesterran, L.C. and Nurmi, R.O.: "Well Test Design and final Interpretation Improved by Integrates [3]. Well Testing and Geological efforts," SPE 19745, March 1989 Bennion, D.W and Griffiths, J.C., "A stochastic model for predicting variation in reservoir rock
- [4]. properties", SPE Journal March 1966.
- [5]. Testerman, J.D.: "A statistical Reservoir Zonation Technique "JPT (Aug. 1962)

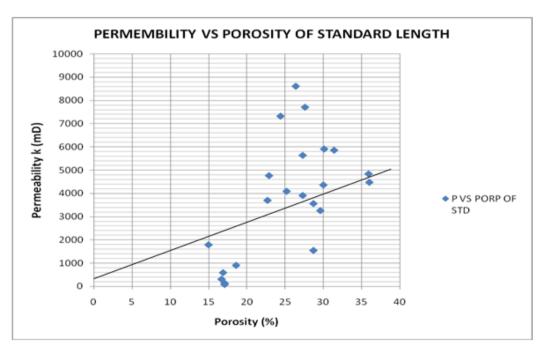
NOMENCLATURE

t = Time of each core samples, sec, v = Calibrated volume, cm³, K_g = Permeability to gas (mD), B= Barometric pressure, atm, Q= Gas flow rate at B, cc/sec, μ_g = Gas viscosity, cp, L= Sample length, cm , P_u = Upstream Pressure, atm, P_d = Downstream Pressure, atm **APPENDIX**

Samp le. No.	Pressu re (P) (atm)	barom etric pressu re (B) (atm)	Temper ature T (⁰ C)	Gas visco sity C _p	volu me tim ed (cc)	Aver age time (s)	Len gth (cm)	Diam eter (cm)	Area (cm ²)	Flow rate Q (cc/s)	Perm. K (millidar cy)
	0.0012	1.0230		0.017			5.93		10.770	0.404069	
53	07	27	25	7	30	72.24	3	3.703	94	767	3262.023
	0.0011	1.0230		0.017			5.56		10.788	0.435411	
77	14	27	25	7	30	67.04	1	3.706	4	695	3564.082
	0.0011	1.0230		0.017			5.87		10.829	0.529091	
5	34	27	25	7	30	55.17	5	3.713	19	898	4477.777
	0.0008	1.0230		0.017			5.52		10.864	0.430912	
16	88	27	25	7	30	67.74	2	3.719	22	312	4363.737
	0.0010	1.0230		0.017					10.835	0.514361	
43	11	27	25	7	30	56.75	4.71	3.714	03	233	3912.611
	0.0008	1.0230		0.017			5.91		10.817	0.493324	
58	15	27	25	7	30	59.17	9	3.711	53	32	5859.971
	0.0005	1.0230		0.017			5.43		10.660	0.520506	
73	45	27	25	7	30	56.08	1	3.684	69	419	8609.572
	0.0008	1.0230		0.017			4.43		10.963	0.446876	
88	64	27	25	7	30	65.32	7	3.736	77	914	3703.340
	0.0004	1.0230		0.017			4.23		10.987	0.533053	
8	96	27	25	7	30	54.76	1	3.74	26	324	7323.364
	0.0006	1.0230		0.017			5.56		11.152	0.561346	
57	43	27	25	7	30	52	5	3.768	39	154	7708.214
	0.0007	1.0230		0.017			6.44		10.934	0.406489	
61	17	27	25	7	30	71.81	3	3.731	44	347	5910.750
	0.0008	1.0230		0.017					10.987	0.471948	
12	64	27	25	7	30	61.85	5.42	3.74	26	262	4767.388
	0.0011	1.0230		0.017			6.08		10.770	0.474171	
68	58	27	25	7	30	61.56	4	3.703	94	54	4091.571
	0.0007	1.0230		0.017			6.08		10.940	0.452838	
20	9	27	25	7	30	64.46	2	3.732	31	97	5638.184
	0.0010	1.0230		0.017			5.66		10.969	0.535498	
6	11	27	25	7	30	54.51	2	3.737	64	074	4836.631
	0.0119	1.0230		0.017			5.28		11.229	0.452067	
51	8	27	25	7	30	64.57	9	3.781	48	524	312.751
	0.0019	1.0230		0.017			4.31		10.800	0.484079	
41	07	27	25	7	30	60.3	2	3.708	05	602	1792.206
	0.0020	1.0230		0.017			4.94		11.432	0.410664	
48	29	27	25	7	30	71.08	9	3.815	34	041	1549.279
	0.0035	1.0230		0.017			4.30		10.829	0.454248	
52	14	27	25	7	30	64.26	8	3.713	19	366	908.655
	0.0264	1.0230		0.017			5.39		11.306	0.441804	
36	1	27	25	7	30	66.07	5	3.794	83	147	139.481
	0.0053	1.0230		0.017			4.39		11.016	0.452207	
38	55	27	25	7	30	64.55	2	3.745	66	591	594.332
	0.0362	1.0230		0.017			3.90		10.823	0.502669	
39	75	27	25	7	30	58.07	2	3.712	36	192	86.884

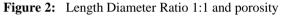
Table 1: Permeability of Samples with Length Conforming with Standard Practice

		Barome			Vol.	Avg.				EK KATIO	
	Press. P (atm)	tric B (atm)	Temp. (⁰ C)	Gas visc. C _p	timed (cc)	time (s)	Lgth (cm)	Diam. (cm)	Area (cm ²)	Flow rate Q (cc/s)	Perm. k (mdarcy)
	0.00120	1.02302							10.7709	0.40406976	
53	7	7	25	0.0177	30	72.24	3.703	3.703	4	7	2035.946
	0.00111	1.02302								0.43541169	
77	4	7	25	0.0177	30	67.04	3.706	3.706	10.7884	5	2375.200
	0.00113	1.02302							10.8291	0.52909189	
5	4	7	25	0.0177	30	55.17	3.713	3.713	9	8	2829.955
	0.00088	1.02302							10.8642	0.43091231	
16	8	7	25	0.0177	30	67.74	3.719	3.719	2	2	2938.924
	0.00101	1.02302							10.8350	0.51436123	
43	1	7	25	0.0177	30	56.75	3.714	3.714	3	3	3085.231
	0.00081	1.02302							10.8175		
58	5	7	25	0.0177	30	59.17	3.711	3.711	3	0.49332432	3673.991
	0.00054	1.02302							10.6606	0.52050641	
73	5	7	25	0.0177	30	56.08	3.684	3.684	9	9	5840.115
	0.00086	1.02302		010177	20	20100	21001	0.001	10.9637	0.44687691	00101110
88	4	7	25	0.0177	30	65.32	3.736	3.736	7	4	3118.251
00	0.00049	1.02302	25	0.0177	50	05.52	5.750	5.750	10.9872	0.53305332	5110.251
8	6	7	25	0.0177	30	54.76	3.74	3.74	6	4	6473.500
0	0.00064	1.02302	25	0.0177	50	54.70	5.74	5.74	11.1523	0.56134615	0475.500
57	3	1.02302 7	25	0.0177	30	52	3.768	3.768	9	4	5219.147
57	0.00071	1.02302	25	0.0177	50	52	5.700	5.700	10.9344	0.40648934	5217.147
61	0.00071	1.02302 7	25	0.0177	30	71.81	3.731	3.731	4	0.40048934 7	3422.785
01	0.00086	1.02302	25	0.0177	50	/1.01	5.751	5.751	10.9872	, 0.47194826	5422.765
12	4	1.02302	25	0.0177	30	61.85	3.74	3.74	6	2	3289.673
12	0.00115	1.02302	23	0.0177	30	01.65	5.74	5.74	10.7709	2	3289.073
68	8	1.02302	25	0.0177	30	61.56	3.703	3.703	4	0.47417154	2490.317
08	0	1.02302	23	0.0177	30	01.50	5.705	5.705	4 10.9403	0.4/41/134	2490.317
20	0.00079		25	0.0177	30	61 16	3.732	3.732		0.45283897	2450 660
20		7 1.02302	23	0.0177	50	64.46	5.752	5.752	1		3459.669
6	0.00101		25	0.0177	30	5151	2 727	2 727	10.9696	0.53549807	2102 245
6	1	7 1.02302	25	0.0177	30	54.51	3.737	3.737	4 11.2294	4	3192.245
51	0.01109		25	0.0177	20	(157	2 701	2 701		0.45206752	222 570
51	0.01198	7	25	0.0177	30	64.57	3.781	3.781	8	4	223.579
4.1	0.00190	1.02302	25	0.0177	20	60 0	2 700	2 700	10.8000	0.48407960	1541 164
41	7	7	25	0.0177	30	60.3	3.708	3.708	5	2	1541.164
10	0.00202	1.02302	25	0.0177	20	71.00	2.015	2.015	11.4323	0.41066404	1104 001
48	9	7	25	0.0177	30	71.08	3.815	3.815	4	1	1194.281
	0.00351	1.02302	0.7	0.0177	20	(1.2.5	0.510	0.510	10.8291	0.45424836	702 174
52	4	7	25	0.0177	30	64.26	3.713	3.713	9	6	783.156
2.5	0.00 (1 (1.02302	25	0.0175	20	< < 0 -	a = a :	2 5 0 <i>i</i>	11.3068	0.44180414	00.000
36	0.02641	7	25	0.0177	30	66.07	3.794	3.794	3	7	98.089
	0.00535	1.02302	a -						11.0166	0.45220759	
38	5	7	25	0.0177	30	64.55	3.745	3.745	6	1	506.779
	0.03627	1.02302							10.8233	0.50266919	82.653586
39	5	7	25	0.0177	30	58.07	3.712	3.712	6	2	15

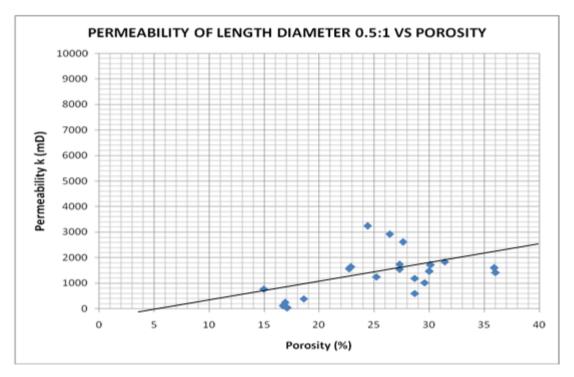
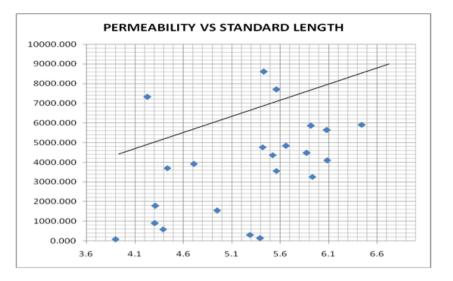
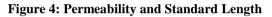
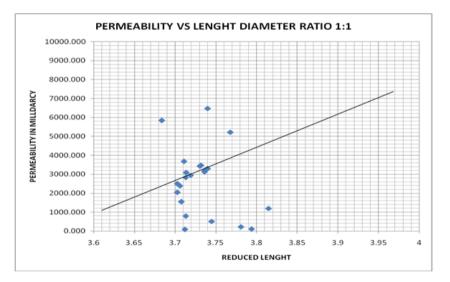

Table 3: PERMEABILITY RESULT OF SAMPLES WITH LENGTH/DIAMETER RATIO OF 0.5:1

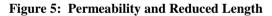
Sampl e No.	Press. P (atm)	Baro metric B (atm)	Temper ature (⁰ C)	Gas viscos ity C _p	volu me time d (cc)	Aver age time (s)	Len gth (cm)	Diam eter (cm)	Area (cm ²)	Flow rate Q (cc/s)	Perm. K (millid arcy)
	0.0012	1.0230		0.017		72.2	1.85		10.770	0.40406	1017.9
53	07	27	25	7	30	4	15	3.703	94	9767	73
	0.0011	1.0230		0.017		67.0	1.85		10.788	0.43541	1187.6
77	14	27	25	7	30	4	3	3.706	4	1695	00
	0.0011	1.0230		0.017		55.1	1.85		10.829	0.52909	1414.9
5	34	27	25	7	30	7	65	3.713	19	1898	78
	0.0008	1.0230		0.017		67.7	1.85		10.864	0.43091	1469.4
16	88	27	25	7	30	4	95	3.719	22	2312	62
	0.0010	1.0230		0.017		56.7	1.85		10.835	0.51436	1542.6
43	11	27	25	7	30	5	7	3.714	03	1233	16
	0.0008	1.0230		0.017		59.1	1.85		10.817	0.49332	1836.9
58	15	27	25	7	30	7	55	3.711	53	432	95
	0.0005	1.0230		0.017		56.0	1.84		10.660	0.52050	2920.0
73	45	27	25	7	30	8	2	3.684	69	6419	57
	0.0008	1.0230		0.017		65.3	1.86		10.963	0.44687	1559.1
88	64	27	25	7	30	2	8	3.736	77	6914	25
00	0.0004	1.0230	20	0.017	20	54.7	Ũ	01100	10.987	0.53305	3236.7
8	96	27	25	7	30	6	1.87	3.74	26	3324	50
0	0.0006	1.0230	25	0.017	50	0	1.88	5.71	11.152	0.56134	2609.5
57	43	27	25	7	30	52	4	3.768	39	6154	73
57	0.0007	1.0230	20	0.017	50	71.8	1.86	5.700	10.934	0.40648	1711.3
61	17	27	25	7	30	1	55	3.731	44	9347	93
01	0.0008	1.0230	25	0.017	50	61.8	55	5.751	10.987	0.47194	1644.8
12	64	27	25	7	30	5	1.87	3.74	26	8262	37
12	0.0011	1.0230	25	0.017	50	61.5	1.85	5.74	10.770	0.47417	1245.1
68	58	27	25	7	30	6	1.05	3.703	94	154	58
00	0.0007	1.0230	25	0.017	50	64.4	1.86	5.705	10.940	0.45283	1729.8
20	9	27	25	7	30	6	6	3.732	31	897	34
20	0.0010	1.0230	25	, 0.017	50	54.5	1.86	5.152	10.969	0.53549	1596.1
6	11	27	25	7	30	1	85	3.737	64	8074	22
0	0.0119	1.0230	25	, 0.017	50	64.5	1.89	5.151	11.229	0.45206	111.79
51	8	27	25	7	30	7	05	3.781	48	7524	0
51	0.0019	1.0230	25	0.017	50	/	1.85	5.761	10.800	0.48407	770.58
41	0.0017	27	25	0.017 7	30	60.3	4	3.708	05	9602	2
41	0.0020	1.0230	25	0.017	50	00.3 71.0	4 1.90	5.708	11.432	0.41066	597.14
48	29	27	25	0.017	30	8	75	3.815	34	4041	1
40	0.0035	1.0230	25	0.017	50	64.2	1.85	5.615	10.829	0.45424	391.57
52	0.0055 14	27	25	0.017	30	04.2 6	1.85 65	3.713	10.829	0.43424 8366	8
52	0.0264	1.0230	23	0.017	50	66.0	1.89	5./15	11.306	0.44180	0
26		27	25		20			2 704	83	0.44180 4147	40.045
36	1		25	7	30	7	7 1.87	3.794			49.045
20	0.0053	1.0230	25	0.017	20	64.5		2715	11.016	0.45220	253.38
38	55	27	25	7	30	5	25	3.745	66	7591	9
20	0.0362	1.0230	25	0.017	20	58.0	1.85	2 710	10.823	0.50266	41 227
39	75	27	25	7	30	7	6	3.712	36	9192	41.327

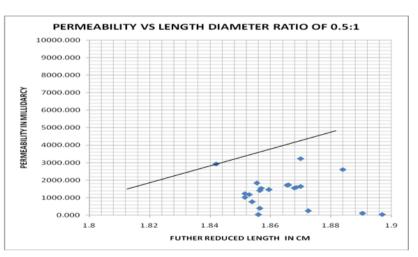
POROSITY	PERMEABILITY(>1:1)	PERMEABILITY(< 1:1)	PERMEABILITY (0.5:1)		
29.6	3262	2035	1018		
28.7	3565	2375	1188		
36	4478	2829	1415		
30	4364	2939	1469		
27.3	3913	3085	1543		
31.4	5860	3674	1837		
26.4	8610	5840	2920		
22.7	3703	3118	1559		
24.4	7323	6473	3237		
27.6	7708	5219	2610		
30.1	5911	3423	1711		
22.9	4767	3290	1645		
25.2	4092	2490	1245		
27.3	5638	3460	1730		
35.9	4839	3192	1596		
16.7	313	224	112		
15	1792	1541	771		
28.7	1549	1194	597		
18.6	909	783	392		
17.1	139	98	49		
16.9	594	507	253		
17.1	86	83	41		


TABLE 4: Porosity Values And Standard Permeability Values At Varying Length/Diameter Ratios

CROSS PLOT SHOWING PERMEABILITY AT STANDARD LENGTH AND POROSITY


Figure 3: Length/Diameter Ratio 0.5:1 and Porosity


2014

