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Abstract: - A Genetic Algorithm optimization model was developed to find the optimum gravity dam section for 

dynamic loadings developed due to earthquakes excitations for a reservoir-dam-foundation system. The ANN 

model developed by Al-Suhaili et al. (2014), was used for estimating the developed stresses in the dam body 

and the developed hydrodynamic pressures, for a three groups of non-dimensional input variables concerning 

the dam section geometry, material properties and earthquake excitation properties. Some of these variables are 

inputs (non-decision) , while those concerning the dam section geometry are the decision variables.  A 

MATLAB code was written for the developed model. Results show that the minimum size of population that 

should be generated randomly at the beginning in order to obtain a stable optimum solution is 30000. The effect 

of each of the non-decision variable on the optimum dimensions of the dam section was investigated. Different 

variables were found have different effects on the optimum solution. 

 

I. INTRODUCTION 
The dynamic behavior of a reservoir-dam-foundation system under dynamic earthquake loadings with 

consideration of interactions, between these three media, is of crucial importance to the dam safety analysis. An 

optimum dam section that satisfies the safety constraints with minimum area is the aim of the dam designer to 

ensure safety with minimum cost. 

Simoes and Lapa (1994) used the maximum entropy formalism to obtain a Pareto solution indirectly by the 

unconstrained optimization of a scalar function. They posed the shape optimization of a concrete gravity dam as 

a multi objective optimization with goals of minimum volume of concrete, stresses and maximum safety against 

overturning and sliding. The earthquake response of gravity dam included dam reservoir and dam foundation 

interactions.They showed that the response to the vertical component of ground motion was especially 

significant for low height dams; it could even exceed the response to horizontal component.  

A new hydraulic structure optimization method with a unified, easy operation and good optimizes effectiveness 

was developed by Wu et al. (2008). For static loading conditions they solved the interface problem between 

exterior Particle Swarm Optimization (PSO) program of C language and ANSYS software and combined them 

to apply them to the shape optimization of concrete gravity dam. The results show that the PSO method can 

solve the difficulty to get differential coefficient and the weak ability to seek global optimization of traditional 

optimization methods. It improves the efficiency of optimization and can solve the optimization problem with 

discrete variables. 

Lin et al. (2010) combined the genetic algorithms (GA) technique with the ANSYS Parametric Design 

Language in an effort to apply them to the shape optimization of the concrete gravity dam under static loading 

conditions. The results show that the new algorithm inherited the advantage of genetic algorithm in that it can 

search randomly instead of relying on the gradient information, and was also marked by a precision common in 

ANSYS. Also it was proved that the algorithm can not only improve computing speed, but also improve the 

accuracy of the algorithm by introducing the finite element method.  
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Khosravi and HeydariIn (2013) developed a procedure for modeling the geometry shape of concrete gravity 

dams considering dam-reservoir-foundation rock interaction with employing real values of the geometry 

variables. They established a 2D finite element model for the modal analysis of Concrete gravity dam-reservoir-

foundation rock system with APDL language programming. The foundation rock was assumed to be mass less 

in which only the effects of foundation flexibility are considered and the inertia and damping effects of the 

foundation rock were neglected. They assumed that the foundation rock is extended to one and a half times the 

dam height in upstream, downstream and downward directions. The dam body was assumed to be 

homogeneous, isotropic and elastic properties for mass concrete. The foundation rock is idealized as a 

homogenous, isotropic media. The foundation model was constructed using solid elements arranged on 

semicircles having a radius one and a half times base of the dam. The impounded water was taken as in viscid 

and compressible fluid. 

Investigating the previous researches, indicate the absence of a general optimization model for an 

optimum dam section, that minimize the massive dam concrete volume, while satisfying the constraints that do 

not violate the conditions of stresses developed in the dam body and factors of safety against overturning and 

sliding due to dynamic excitation with dam-reservoir-foundation interaction to be within the accepted limits. 

Hence, it is essential to develop a model that perform this task, in forms of non-dimensional input and output 

variables. The needed model is to be general, easy to apply for any concrete gravity dam, assigned an elevation 

given as input and decided according to the hydrological study. 

 

II. THEORY OF GENETIC ALGORITHMS 
Genetic Algorithms (GA) are direct, parallel, stochastic method for global search and optimization, 

which imitates the evolution of the living beings, described by Charles Darwin. GA is part of the group of 

Evolutionary Algorithms (EA). The evolutionary algorithms use the three main principles of the natural 

evolution: reproduction, natural selection and diversity of the species, maintained by the differences of each 

generation with the previous. 

Genetic Algorithms work with a set of individuals, representing possible solutions of the task. The 

selection principle is applied by using a criterion, giving an evaluation for the individual with respect to the 

desired solution. The best-suited individuals create the next generation, Popov (2005). 

The main components of GA are:  

 

1-Chromosomes: For the genetic algorithms, the chromosomes represent set of genes, which code the 

independent variables. Every chromosome represents a solution of the given problem. Individual and vector of 

variables will be used as other words for chromosomes. The genes could be boolean, integers, floating point or 

string variables, as well as any combination of the above. A set of different chromosomes (individuals) forms a 

generation. By means of evolutionary operators, like selection, recombination and mutation an offspring 

population is created. 

 

2-Selection:In the nature, the selection of individuals is performed by survival of the fittest. The more one 

individual is adapted to the environment - the bigger are its chances to survive and create an offspring and thus 

transfer its genes to the next population. In EA the selection of the best individuals is based on an evaluation of 

fitness function or fitness functions. Examples for such fitness function are the sum of the square error between 

the wanted system response and the real one; the distance of the poles of the closed-loop system to the desired 

poles, etc. If the optimization problem is a minimization one, than individuals with small value of the fitness 

function will have bigger chances for recombination and respectively for generating offspring. 

 

3-Recombination:The first step in the reproduction process is the recombination (cross-over). In it the genes of 

the parents are used to form an entirely new group of chromosomes. The typical recombination for the GA is an 

operation requiring two parents, but schemes with more parent area also possible. Two of the most widely used 

algorithms are Conventional (Scattered) Cross-over and Blending (Intermediate) Cross-over. 

 

4- Mutation:The newly created chromosomes by means of selection and cross-over population can be further 

subject  to mutation. Mutation means, that some elements of the DNA are changed. Those changes are caused 

mainly by mistakes during the copy process of the parent’s genes. In the terms of GA, mutation means random 

change of the value of a gene in the population. The chromosome, which gene will be changed and the gene 

itself are chosen by random as well. 
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III. OPTIMIZATION MODEL FORMULATION 
The general schematic section geometry of a gravity dam is shown in Figure (1) below: 

Where, 

H: total dam height. 

hw: water height in the reservoir. 

hu: upstream dam face slope height. 

hd: downstream dam back slope height. 

B: total dam base width. 

bu: upstream dam face slope width. 

bc: dam crest width. 

bd: downstream dam back slope width. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic presentation of the dam-reservoir-foundation system analyzed dynamically using ANSYS. 

The adopted objective function is to minimize the volume of dam,this implies the minimization of the dam 

section area, as given in Equation (1). 

Min A{[(bu*hu)/2] + (bc*H) + [(bd*hd)/2]}                                                              (1) 

This objective function given by Equation (1) is subject to a number of constraints. These constraints can be 

subdivided into input variables constraints, output variables constraints and overall stability constraints. 

a) Input Variables Constraints:These constraints are set according to practical aspects and standards given 

by engineer manual of dam design, Novak et.al.(2007), EM 1110-2-2200(1995), Chahar(2013)and USGS 

(2013): 

0.75 ≤ B/H ≤ 0.85                                                                                        (2) 

0.85 ≤ hw/H ≤ 0.95                                                                              (3) 

0.50 ≤ hu/H ≤ 0.70                                                                                        (4) 

0.80 ≤ hd/H ≤ 0.90                                                                                        (5) 

0.063 ≤ bu/B ≤ 0.088                                                                                    (6) 

0.093 ≤ bc/B ≤ 0.15                                                                                      (7) 

0.788 ≤ bd/B ≤ 0.84                                                                               (8) 

0.00 ≤ ax/g ≤ 0.30                                                                                 (9) 

0.00 ≤ ay/g ≤ 0.25                                                                                 (10) 

0.50 ≤ w/wn ≤ 1.10                                                                               (11) 

0.50≤ Es/Ec ≤ 2.00                                                                                    (12) 

0.875≤ ρs/ρc ≤ 1.125                                                                                  (13) 

FOSot> 1.5                                                                                                (14) 

FOSs> 1.5                                                                                                (15) 
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b) Output Constraints: The output constraints adopted are related to the criteria that the maximum 

developed shear, compressive and tensile stresses do not exceeds their respective allowable stresses, ACI Code 

(2011): 

T/Ta< 1                                                                                                      (16) 

S1t/Sta< 1                                                                                                    (17) 

S1c/Sca< 1                                                                                                   (18) 

S2t/Sta< 1                                                                                                    (19) 

S2c/Sca< 1                                                                                                   (20) 

S3t/Sta< 1                                                                                                    (21) 

S3c/Sca< 1                                                                                                   (22) 

Str/Stru < 1                                                                                                  (23) 

c) Overall Stability Constraints: The overall stability of the dam section includes factors of safety against 

overturning and that against sliding.The overturning of the dam section takes place when the resultant force at 

any section cuts the base of the dam downstream of the toe. In this case the resultant moment at the toe becomes 

clockwise (or -ve). On the other hand, if the resultant cuts the base within the body of the dam, there will be no 

overturning. For stability requirements, the dam must be safe against overturning. The factor of safety against 

overturning is defined as the ratio of the righting moment (+ ve MR) to the overturning moments   (-ve M0) about 

the toe.The factor of safety against overturning should not be less than 1.5 (FOSot> 1.5), Punmia&Lal (2005). 

Equations (24) gives the factor of safety against overturning. 

 

                                                          (24) 

 

Factor of safety against sliding is generally calculated by one of the following three methods; sliding 

resistance method, shear friction method and limit equilibrium method. The sliding resistance method calculates 

a coefficient of friction, (μ), by dividing the sum of horizontal forces parallel to the sliding plane by the sum of 

effective vertical forces normal to the sliding plane. The coefficient calculated in this way should be smaller 

than an allowable coefficient of friction (μall), USACE (1981). As described in the US corps of engineering 

“Experience of the early dam designers had shown that shearing resistance of very competent foundation 

material need not to be investigated if the ratio of horizontal forces to vertical forces (ΣH/ΣV) is such that a 

reasonable safety factor against sliding results”. The maximum ratio of (ΣH/ΣV) is set at 0.65 for static loading 

conditions and 0.85 for seismic conditions, Iqbal (2012). Equations (25) gives the equation for the factor of 

safety against sliding which should not be less than 1.5 (FOSs> 1.5).  

 

                                                                                             (25) 

 

IV. THE GENETIC ALGORITHM APPLICATION 
 The optimization model formulated above is used to obtain the optimum solution. The MATLAB 

programming language was used to write a program to apply the Genetic Algorithm technique to find the 

optimum section of the gravity dam for any set of non-decision input variables. Figure (2) shows the schematic 

of the Genetic Algorithm model flowchart. This model is solved using the genetic algorithm procedure 

explained in steps in section below. 
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Figure 2: Schematic Genetic Algorithm model flowchart. 
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Figure 2: continued 
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V. OBTAINING STABLE OPTIMUM SOLUTION 
 Since the genetic optimization process includes the generation of a population of random solutions, the 

optimum solution obtained for a given input values will change for each run if the size of the population is 

relatively low. Hence, it is important to obtain the minimum required size of population that should be generated 

randomly at the first step to obtain a stable optimum solution, i.e., getting the same solution even though the run 

is repeated, for the same set of input data. This minimum size is depended on the phenomena for which the 

genetic algorithm model is applied, and the number of variables involved. Hence, this size is to be found by a 

trial and error procedure. 

 The Genetic Algorithm procedure used herein is explained in the following steps. Knowing that in this 

procedure the estimation of the output variables for a given set of input variables is required for a large number 

of randomly generated feasible solutions (chromosomes), or those resulted from the cross-over and mutation 

processes. For this purpose, the developed and verified ANN model by Al-Suhaili et al.(2014) is used as a direct 

method of estimation  instead of the long process of modeling each case using the ANSYS software. The steps 

of the Genetic Algorithm procedure are those usually adopted in such models and as listed below and shown in a 

flowchart in the appendix: 

1- Generate randomly an np (number of population) of feasible solutions with respect to the input variables 

constraints. 

2- Estimation of the fitness function (objective function) of each set of input variables for feasible solutions 

with respect to output variables using the following steps: 

a) Apply standardization process for the generated input variables. 

b) Apply the developed ANN model to estimate the standardized output variables using the feed-forward 

process and model parameters. 

c) Apply anti-standardization process to the output variables and check the feasibility of the output variables, 

ignoring the infeasible solution that violates Equations (14) to (23), (the output variables constraints). 

d) Check the solution left in step (b) for feasibility of the overall stability, ignoring these solutions that violate 

the overall stability constraints, Equations (24) and (25). 

3- Creation of mating pool with frequencies of each feasible solution obtained in step (2) above according to 

its fitness function. 

4- Apply the cross-over process. The cross-over process adopted here in is the serial method that making 

cross-over with each two solution, serial (1 and 2, 3 and 4, and so on) which are considered as the parents 

that each couple produce a couple of offsprings. The cross over position (cp) can be change from (2 to 6) 

since the number of input variables containing the dam section geometry are (7). The probability of cross 

over (pc) can have different values, (pc = 100%, 90%,…..). 

5- The output variables for the produced offspring population solutions was estimated using the procedure of 

step (2) and only those feasible solutions will be kept. 

6- The population produced from the feasible solutions of offspring and those of parents will be mixed to 

generate a new feasible population. 

7- The objective function (fitness function) will be obtained for each solution of the two mixed populations 

and sorted into ascending order, and only the first (np) solution will be kept for a next iteration of steps (2) 

to (7). 

8- After completing the iterations for any number of iteration selected, the optimum solution will be the first 

one. 

9- A further process of the Genetic Algorithm can be performed which is the mutation process. This can be 

done after the completion of the iterations by selecting for example the first (10) solutions. That means we 

have (90) variables to be muted. The usual mutation probability is              (pm = 0.05), that means (4) 

numbers will be muted. The mutation process is to change their values by an amount called mutation level 

(ml), for example ±0.01. This level is set according to the order of magnitude of the variables. The (4) 

numbers selected for mutation is a random process that is to generate a four random number range from (1) 

to (90).  

 

VI. ILLUSTRATION OF RESULTS 
 Since the genetic algorithm optimization method needs first the generation of (np) random solutions, it 

is needed to find the minimum required (np) value that gives a stable optimum solution, i.e., ignored differences 

in the objective function values for different runs with the same data input. This (np) value is dependent on the 

physical phenomenon that is under optimization, hence will be found by trial and error. A dam example is used 

for illustration of the model application, is of (100m) height subject to horizontal and vertical excitation equal to 

(ax/g = 0.25) and (ay/g = 0.2) respectively, with earthquake frequency to the natural frequency ratio equal (w/wn 

= 1.0). The modulus of elasticity and density ratios are (Es/Ec = 0.8) and (ρs/ρc = 0.9) respectively.  Table (1) 
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gives the objective function for the optimum solution for three different runs, and different values of the 

generated (np). The cross-over position was held constant at (cp) equal to four. It is obvious that as the (np) 

value increases the differences in the objective functions for the runs was decreased and the final (np) value that 

gives the stable solution is 30000. Hence, this value will be adopted in the further analysis. 

 

Table 1: Effects of the number of the population (np) on the objective function. 

np 
Objective Function, (Area -m2-)  

Run 1 Run 2 Run 3 

500 3900.048 4012.433 4056.273 

1000 3816.635 3730.952 3899.299 

3000 3826.213 3814.389 3720.883 

5000 3757.099 3629.661 3725.686 

8000 3728.983 3593.522 3650.425 

10000 3596.001 3704.253 3662.584 

15000 3529.465 3679.242 3607.222 

20000 3529.760 3655.887 3487.915 

25000 3559.387 3495.583 3633.377 

30000 3591.269 3593.197 3590.797 

 

 As the decision variables for the optimization model are seven, hence the cross-over position effect on 

the optimum solution should be investigated. This value can be set as (2, 3, 4, 5 and 6). Table (2) shows the 

variation of the optimum objective function for these values of (cp), for the same example shown in Table (1), 

with (np) equal to 30000. As shown in this table the cross-over position equal to four gives minimum objective 

function, so it will be used in the optimization model to obtain the optimum dimensions.  

 

Table 2: Effect of the cross over position (cp) of the G. A. on the objective function. 

np cp 
Objective Function 

Area (m
2
)  

30000 

2 3593.865 

3 3605.988 

4 3593.197 

5 3652.562 

6 3685.605 

Table (3) shows the results of the optimum dimensions obtained from the optimization model for three different 

heights dams with various non-decision inputs. 

 

Table 3: Optimum dimensions for three different dams using G.A. model. 

Variable 

Type 

Variable 

Name 
Case 1 Case 2 Case 3 

N
o

n
-D

ec
is

io
n

 I
n

p
u

ts
  

H  50 100 150 

ax/g 0.15 0.25 0.30 

ay/g 0.10 0.20 0.15 

w/wn 0.70 1.00 0.50 

Es/Ec 0.50 0.80 1.50 

ρs /ρc 0.80 0.90 1.00 

O
p

ti
m

u
m

 

O
u

tp
u

ts
*

 hw 42.552 88.963 127.676 

B 38.420 76.180 113.555 

hu 29.075 67.652 101.640 

hd 40.897 85.287 130.946 
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Variable 

Type 

Variable 

Name 
Case 1 Case 2 Case 3 

bu 2.511 4.939 7.519 

bc 3.884 9.369 10.801 

bd 32.025 61.871 95.234 

FOSO 1.640 1.616 1.629 

FOSS 1.533 1.521 1.541 

Obj. Fun. 885.554 3742.374 8237.590 

*All dimensions in meter. 

Tables (4) to (9) shows the investigation of the effect of each non-decision variable on the optimum dimensions 

of the dam section, by using the same dam section with various decision variables at each time. 

 As shown in those tables the objective function (cross-section area) always is directly proportional to each non-

decision variable. The dam base width to height ratio (B/H), the water height to dam height ratio (hw/H) and the 

upstream slope height to dam height ratio (hu/H) are inversely proportional to dam height only and directly 

proportional to other non-decision variables. The downstream slope height to dam height ratio (hd/H) is 

wobbling with the increase of horizontal and vertical accelerations and foundation modulus of elasticity and 

inversely proportional to other non-decision variables. Also the upstream slope width to dam base width ratio 

(bu/B) is inversely proportional to dam height only and directly proportional to other non-decision variables, 

while the downstream slope width to dam base width ratio (bd/B) is directly proportional to dam height only and 

inversely proportional to other non-decision variables. Finally the crest width to dam base width ratio (bc/B) is 

always directly proportional to each non-decision variable.    
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VII. CONCLUSIONS 
From the research conducted herein, the following conclusion can be deduced: 

1- The Genetic Algorithm optimization model cannot give stable optimum solution for the dam-reservoir-

foundation system subject to dynamic loading ,unless a minimum number of initial populations generated 

are (30000).  

2- A sensitivity analysis of the position of the cross-over process was performed to select the best cross-over 

position for the Genetic Algorithm optimum solution. The position of cross-over which gives the most 

optimum solution is (4), i.e. cross-over of (bu/B, bc/B and bd/B).     

3- It was found that the cross-over probability and mutation probability values have little effect on the 

optimization process. 

4- The results show that the optimum solution (optimum dimensions) for the dam cross-section is to be highly 

affected by any change in the non-decision variables, direct or inverse proportionality were obtained   with 

varying rates. 
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