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Abstract: - This paper deals with under-determined blind audio source separation, which is solved using sparse 

representations. The sparse component analysis (SCA) framework is a powerful method for achieving this. First, 

the mixing matrix is estimated in the discrete cosine transform (DCT) domain by a clustering algorithm. Then a 

dictionary is learned by an adaptive learning algorithm. Here, the Greedy Adaptive Dictionary (GAD) algorithm 

is utilized. Using the estimated mixing matrix and the learned dictionary, the sources are recovered adopting l2-

minimization technique called Orthogonal Matching Pursuit (OMP) as the sparse signal recovery method. 

 

Index Terms: - Blind audio source separation, Sparse component analysis, dictionary learning, sparsity. 

 

I. INTRODUCTION 

Over the past two decades, blind source separation (BSS) has attracted a lot of attention in the signal 

processing community, owing to its wide range of potential applications, such as in telecommunications, 

biomedical engineering, and speech enhancement (Hyvarinen et al., 2001; Cichocki and Amari, 2003). BSS 

aims to estimate the unknown sources from their observations without or with little prior knowledge about the 

channels through which the sources propagate to the sensors. The instantaneous model of BSS can be described 

as: 

𝑋 = 𝐴 𝑆                                                                                 (1) 
 

where 𝐴 ∈  𝑅𝑀𝑋𝑁 is the unknown mixing matrix assumed to be full row rank, 𝑋 ∈  𝑅𝑀𝑋𝑇 is the observed data 

matrix whose row vector xi is the ith sensor signal having T samples at discrete time instants t=1,…,T, and 

𝑆 ∈  𝑅𝑁𝑋𝑇 is the unknown source matrix containing N source vectors. The objective of BSS is to estimate S 

from X, without knowing A. 

Many algorithms have been successfully developed for blind source separation, especially for the 

exactly or over determined cases where the number of mixtures is no smaller than that of the sources. 

Independent component analysis (ICA) is a well-known family of BSS techniques based on the assumption that 

the source signals are statistically independent. However, ICA does not work in the underdetermined case, 

where the number of mixtures is smaller than that of the sources. 

Underdetermined blind speech separation is an ill-posed inverse problem, due to the lack of sufficient 

observations, i.e. the number of unknown speech sources to be separated is greater than the number of observed 

mixtures. Several approaches have been developed to address this problem, such as the higher order statistics 

based method in (Comon, 1998), the sparse representations based technique in (Zibulevsky and Pearlmutter, 

2001; Bofill and Zibulevsky, 2001). Good reviews on using sparse component analysis for source separation can 

be found in (Gribonval and Lesage, 2006; Sudhakar, 2011). 

The key idea of sparse signal representation is to assume that the sources are sparse, or can be 

decomposed into the combination of a small number of signal components. By sparse, we mean that most values 

in the signal or its transformed coefficients are zero, except for a few nonzero values. These signal components 

are called atoms or code words, and the collection of all the atoms is referred to as a dictionary. Finding the 

sparsest representation (i.e. the non-zero coefficients) which best approximates the observation is often an NP-

hard problem (Donoho, 2006).  

In this work, the observed mixture is transformed by applying short-time DCT and the mixing matrix is 

estimated by clustering. Also here, sparse coding based on learned dictionary is used to solve the problem of 
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underdetermined blind speech separation. In particular, we propose a novel algorithm in which the BSS model is 

reformulated to a sparse signal recovery model. As a result, any of the state-of-the-art sparse signal recovery 

algorithms could be incorporated into this model to solve the underdetermined blind speech separation problem, 

with various separation performance and computational efficiency. This proposition was motivated by the 

failure of time domain algorithm called T-ABCD [1], in solving underdetermined BSS cases. It is an ICA 

framework along with k-means clustering [2], which found good results in determined cases. 

 

II. PROPOSED METHOD 
A. Outline  

1. Apply short-time DCT to the mixture signal in X, for say, taking data frames of duration 25-35ms and an 

overlap of 10-15ms. 

2. Estimate the mixing matrix, Ȃ by K-means clustering of the normalized DCT coefficients. 

3. A dictionary, Φ is learned on the transformed mixture signal by Greedy Adaptive Dictionary (GAD) 

algorithm. 

4. Using Ȃ and Φ, separate the sources by sparse signal recovery method, by reformulating the BSS problem 

into compressive sensing problem. 

5. Reconstruction of separated sources by inverting the transform and the time domain signals are finally 

obtained. 

The flow of the method is depicted in fig.1. 

 
Fig .1 Flow of the proposed method. 

B. Steps in detail  

The transformed coefficients are undergone the three stage processing. It includes the mixing matrix estimation, 

dictionary learning and the source separation. 

i. Mixing matrix estimation 

  The short-time DCT coefficients obtained in the first step are divided into k equal parts. Here k is equal 

to the number of sources and compute the mean values of each part as the initial centers. Run the K-means 

clustering algorithm to update iteratively the k centers until convergence and compute the column vectors of the 

estimated mixing matrix Ȃ as the final centers. 

ii. Adaptive dictionary learning 

The dictionary atoms are obtained by using greedy adaptive dictionary (GAD) learning algorithm [3]. These 

obtained atoms can represent the features of the observed signal. GAD learns the dictionary atoms based on an 

iterative process using the sparsity index defined as follows: 

𝜎𝑗 =  
 𝑥𝑘 1

 𝑥𝑘 2

                                                                                         (2) 

where  .  1  and  .  2denote the l1 and l2- norm respectively and xk is the column vector of the matrix containing 

the short-time DCT coefficients. The sparsity index measures the sparsity of a signal, where the smaller σj , the 

sparser the signal vector xk. The GAD algorithm begins with the definition of a residual matrix R
d
. This is first 

initialized to the transformed input matrix. The dictionary is then built by selecting the residual vector that has 

the lowest sparsity index. Then it is normalized and added to the dictionary. Finally, the new residual is 

computed for all the columns. The process is repeated until the number of obtained atoms reaches a pre-

determined value.  

iii. Separating sources by sparse signal recovery 

In the separating stage, with the estimated mixing matrix Ȃ, the underdetermined blind speech separation 

problem is formulated as a sparse signal recovery problem [4]. Equation (1) can be expanded as: 

 
𝑋1

⋮
𝑋𝑀

 =  

𝑎11 … 𝑎1𝑁

⋮ ⋱ ⋮
𝑎𝑀1 … 𝑎𝑀𝑁

  
𝑆1

⋮
𝑆𝑁

                                                 (3) 
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where xi (i=1,…,M) are the mixtures, sj (j=1,…,N) are the sources, and aij is the ijth element of the mixing 

matrix A. Rewriting the above equation as follows, 

 

 
 
 
 
 

𝑥1(1)
⋮

𝑥1(𝑇)
⋮
⋮

𝑥𝑀(1)
⋮

𝑥𝑀(𝑇) 

 
 
 
 
 

=  
Λ11 … Λ1𝑁

⋮ ⋱ ⋮
Λ𝑀1 … Λ𝑀𝑁

 

 

 
 
 
 
 

𝑠1(1)
⋮

𝑠1(𝑇)
⋮
⋮

𝑠𝑁(1)
⋮

𝑠𝑁(𝑇) 

 
 
 
 
 

                    (4) 

where T is the length of the signal, Λij ϵ R
TxT 

is a diagonal matrix whose diagonal elements are all equal to aij. 

Let b= vec (X
T
), f= vec (S

T
), where vec is an operator stacking the column vectors of a matrix into a single 

vector. Equation (4) can be written in a compact form as: 

𝑏 = 𝑀 𝑓                                                                                   (5) 
The above equation can be interpreted as a sparse signal recovery problem in a compressed sensing model, in 

which M is the measurement matrix and b is the compressed vector of samples in f. Therefore, a sparse 

representation in the transform domain can be employed for f: 

 

𝑓 =  Φ 𝑦                                                                                 (6) 
 

where Φ is a transform dictionary and y contains the weighting coefficients in the Φ domain. Combining (5) and 

(6), we have 

 

𝑏 = 𝑀 Φ𝑦                                                                             (7) 
  

In eq.(7) if y  is sparse ,the signal f can be recovered from the measurement b using an optimization process. 

This indicates that source estimation in the underdetermined problem can be achieved by computing y in (7) 

using sparse signal recovery (i.e. sparse coding) methods.  

Here the l2 –minimization is adopted to find the sparse solution y. Specifically, OMP (Orthogonal Matching 

Pursuit) is used here. The orthogonal matching pursuit (OMP) (Pati et al.,1993) was developed to improve the 

MP (Matching Pursuit) by projecting the signal vector to the subspace spanned by the atoms selected as in MP 

via the same method. The basic idea of MP is to represent a signal as a weighted sum of atoms using Eq. (8) 

which involves finding the ―best matching‖ projections of multidimensional data onto an overcomplete 

dictionary, 

 

𝑏 =  𝑦𝑖𝑞𝛾𝑖

𝑘

𝑖=1

+ 𝑟 𝑘                                                             (8) 

where 𝑟(𝑘) is a residual after k iterations, and 𝑞𝛾𝑖  is the atom of 𝑀Φ that has the largest inner product with the 

residual. At stage i, it identifies the dictionary atom that best correlates with the residual then subtract its 

contribution as follows, 

𝑟(𝑖+1) =  𝑟(𝑖) − 𝑦𝑖𝑞𝑦𝑖                                                            (9) 

where 𝑦𝑖 =  𝑟(𝑖), 𝑞𝛾𝑖  and  ,   is an inner product operation. Then the process is repeated until the signal is 

satisfactorily decomposed. However, as opposed to MP, OMP maintains full backward orthogonality of the 

residual at each step when updating the coefficients: 

 

𝑏 =  𝑦𝑖𝑞𝛾𝑖 + 𝑟(𝑘)

𝑘

𝑖=1

, 𝑠. 𝑡.  𝑟(𝑘), 𝑞𝛾𝑖  = 0                           (10) 

As proven in (Pati et al., 1993) the necessary number of iterations for OMP to converge is no greater than the 

number  of atoms in the dictionary, while MP does not possess this property.  The eq. (6) can then be written as: 
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𝑠1(1)
⋮

𝑠1(𝑇)
⋮

𝑠𝑀(1)
⋮

𝑠𝑀(𝑇) 

 
 
 
 

=  
𝐷1

⋱
𝐷𝑀

 

 

 
 
 
 

𝑦1(1)
⋮

𝑦1(𝑇)
⋮

𝑦𝑀(1)
⋮

𝑦𝑀(𝑇) 

 
 
 
 

                        (11) 

where D1,...,DM are identical dictionaries, S1,…,SM are the sources recovered and y1,…,yM are the sparse 

solutions. Finally, the estimates of separated sources are obtained by inverting the transform. 

 

III. RESULTS AND DISCUSSION 
The proposed algorithm was tested for various types of speech and music signals. For objective quality 

assessment three performance criteria defined in the BSSEVAL toolbox [4] was used to evaluate the estimated 

source signals. These criteria are the signal to distortion ratio (SDR), the source to interference ratio (SIR) and 

the source to artifacts ratio (SAR) [5], defined respectively as: 

𝑆𝐷𝑅 = 10 log10

 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  
2

 𝑒𝑖𝑛𝑡𝑒𝑟𝑓 + 𝑒𝑛𝑜𝑖𝑠𝑒 + 𝑒𝑎𝑟𝑡𝑖𝑓  
2                   (12) 

 𝑆𝐼𝑅 =   10 log10

 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  
2

 𝑒𝑖𝑛𝑡𝑒𝑟𝑓  
2                                                 (13) 

𝑆𝐴𝑅 = 10 log10

 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑒𝑖𝑛𝑡𝑒𝑟𝑓 + 𝑒𝑛𝑜𝑖𝑠𝑒  
2

 𝑒𝑎𝑟𝑡𝑖𝑓 
2                   (14) 

 

The experimental results are shown in the table 1.  

 

TABLE 1 Separation performance measures 

Sl.no. Mixture  SIR 
(dB) 

SAR 

(dB) 
SDR 

(dB) 

1. I am_female_30s 0.0001 -79 0 

Poem _male 0.42 -44 -24.6 

2. Henry_theater_male  -3.16 -29 -44 

Poem _male -165 -169 -156 

3. Music _signal_guitar 2.46 -28.6 -49.5 

Male _speech 0.00 -29 -26 

 

The sources for the test are taken from [7]. The computational efficiency is improved when compared 

to STFT based and predefined dictionary based methods [6]. In general, separation performance highly depends 

on the mixing process. In this context, the accuracy of estimated mixing matrix is challenging.  

The frame wise processing of data tremendously reduces the computation time whereas DCT provides good 

compression, so that less number of samples are undergone processing. The results are promising, even for this 

higher rate of compression. Also, the adaptive dictionary learns atoms with much faster rate compared to K-

SVD [8]. 

 

IV. CONCLUSIONS 
A multi-stage system for underdetermined blind speech separation using sparse coding with adaptive 

dictionary learning is presented. Numerical experiments have shown the competitive separation performance by 

the proposed method. The proposed method builds a new framework for underdetermined BSS, and offers great 

potential to accommodate the sparse signal recovery and adaptive dictionary learning algorithms to the source 

separation problems. This study has also shown the benefit of using learned dictionaries for underdetermined 

BSS, and the advantage of using the frame wise processing to improve the computational efficiency. Moreover, 

the framework of the proposed method provides a friendly structure to test the performance of other dictionary 

learning and signal recovery algorithms, specifically l1 minimization techniques, in source separation 

applications in the future. 
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