American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-03, Issue-05, pp-296-305 www.ajer.org

Research Paper

Open Access

Design Study for Single Stage High Pressure Turbine of Gas Turbine Engines

Ajoko, Tolumoye John

Department of Mechanical/Marine Engineering, Faculty of Engineering. Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.

Abstract: - The research paper is a design study to reduce multiple stages of High Pressure Turbine (HPT) to maintain the same thrust – to – weight ratio of gas turbines. This current approach of gas turbine design is to reduce cost and weight of the component. The preliminary design for the turbomachinery features three different gas turbines such as AL-2LF-3, GT - 26, and SK30 - GT. The research survey used to fulfill this task is an Advance Mathematical Modeling Principles; based on the Inlet Annulus Design Analysis, Prediction of Turbine Efficiency using Smith's Efficiency Correlation Chart, Design Analysis for the Outlet Annulus and a design study for Turbine Free Vortex. The ability to determine this aerodynamic geometry of the HPT stage(s) of gas turbine is the peak of the research.

Nevertheless, study results revealed that a single stage HPT deriving a corresponding compressor can produce the same and needed aerodynamic performance of the gas turbine. Thus, all conditions required in the design of HPT stage were met having turbine stage efficiency within the range of $1.0 < (\Delta H/U^2) < 2.5$ and 0.5 < (Va/U) < 0.8; fulfilling Smith's Efficiency Prediction Law. A corresponding Mach number for the three engines of study are 0.51, 0.46 and 0.52 respectively. This is a clear indication to prevent the choking condition of the compressible flow at the minimum area along the duck of the gas turbine.

Keywords: - HPT, Mach Number, stage isentropic efficiency, Thrust(Power), Turbomachinery

I.

INTRODUCTION

Developing and acquiring good knowledge of the functions of an axial high pressure turbine (HPT) component is important to its designers and proficient users that are accessible to the performance of gas turbine engines. The ambitious performance role of any axial turbine component of gas turbine engine is to drive a corresponding axial compressor for gas pipeline or external load purposes. Thus, this understanding will expose designers the advantages and limitations likely to be encounter in its design/manufacturing processes. One major objective of these preliminary aerodynamic design studies of the axial turbine is targeted to yield high isentropic efficiency for the turbine, because the technical quality of any machine is best described by its efficiency [1]. Another challenging constrains leading to this study is the weight, cost, fuel consumption, emissions from engine, durability and how reliable the gas turbine engine is, regardless of its area of application.

Considerable solution to remedy these limitations is the reduction of turbine stages to produce the same output thrust or power for aero and industrial gas turbine machines respectively. To maintain availability of the designed axial high pressure turbine component of gas turbine, the test and comparison of specific fuel consumption to the initially manufactured engine is necessary. Many scholars have contributed excellently on the design analysis for gas turbine components. According to [2] preliminary detail calculation of gas turbine components helps the designer to understand the characteristic dimensions and gas angles in compressor stages using a real gas turbine model. This analysis allows the estimation of inlet and outlet cross-sectional area and number of the corresponding stages needed in a compressor. However, designing a turbine component to attain high thermodynamic efficiency, heat addition into the inlet temperature of the component should be as high as possible [3]. This employs a corresponding cooling component to cater for any excess or over-heating problems. Meanwhile, there is an inherent exchange between increasing a cycle temperature and the cooling penalties in the cycle; knowing that cooling flows can impact the overall thermal efficiency of the engine, therefore losses that increase cooling flow can have a cycle penalty [3].

www.ajer.org

2014

The current approach in aero gas-turbine engine design is to increase the thrust-to-weight ratio and stage pressure ratio leading to compressor design with higher aerodynamic loads and reducing the number of blades and stages and thus diminishing the overall size and weight of the machine. Hence, the pressure rise per stage and the efficiency must be increased and aerodynamic stability of a compressor is limited by the behavior of the tip leakage flows or the hub corner stall when the operating point gets closer to the stall or surge limit [4,5]. Knowing the performance role of a turbine component in gas turbine engine as a compressor driving mechanism, may also needs a corresponding design to meet the target of its counterpart. The advancement of turbo-compression technology is a reflection of a higher work capacity per stage as a result of increases in rotor speed, aerodynamic loading; meanwhile an incremental performance enhancement can be made through geometric optimization and improved design methods [6,7].

The optimization techniques give direct control on the performance parameters of the gas turbine which allows the designer to explore the design space to achieve a given objective. One possible design objective is to minimize flow losses, which can be measured by the total pressure loss (or entropy generation) [8]. Thus, minimizing flow losses can be achieved by proper reshaping of the blade profile. The consistency in gas turbine operation relies on the structural integrity of its rotating parts. Thus, the design analysis and testing of component cycle is intensely a rigorous phase that ensures the well-being of the final product satisfying the requirement of the manufacturer [9]. This design process of an axial flow turbine still remains a very complex, fussy, multidisciplinary task where aero-thermodynamic issues, aero-mechanical, technological, structural, noise related cases, emission and other prevalent matters are considered simultaneously which leads to very challenging problems for the designer. This is true fact mostly for aircraft engines with stringent demands for low weight, high strength and extended life [10,11].

In respect of handling this complexity, the stage designing process of an axial high pressure turbine component of gas turbine engine as treated in this paper is supported with an Advance Mathematical Modeling Principles and conclusion is drawn based on Smith's Efficiency Correlation method of turbine stage efficiency prediction.

II. GEOMETRIC DESCRIPTION OF ENGINES OF STUDY

The general arrangement for turbine component representing a HPT used for model development is shown in figure 1 below. Both single and double spool aero gas turbines are considered for the purpose of this study. The importance of this research is to carry out a feasibility test for a single stage preliminary design for the HPT.

Figure 1: A simple Gas Turbine Cycle as Aero and Industrial one Spool Gas Turbine Engines

III. DESIGN SPECIFICATIONS

The design specifications for the engines of study are in table 1 which are available in [12,13,14] highlights the needed parameters for subsequent design analysis. However, in the design process of the axial turbine, some assumptions were considered. They are such as:- Constant Vortex Flow, 50% Reaction at Blade Mid Height, Straight Sided Annulus Walls, Constant Axial Velocity, Constant Mean Diameter and a Constant Shaft Speed.

www.ajer.org Page 297

Manufacturer	Model	Turbine	Mean	Shaft	Polytropic	TET	Turbine	Turbine	Specific	Gamma
		Inlet Flow	Diameter	Speed	Efficiency		Inlet	Work	Heat	
		Mach No	(Dm)				Mass	(TW)	(Cp)	
			m	(rpm)		(K)	Flow(kg/s)	(MW)	KJ/KgK	
LYULKA	AL-2LF-3	0.3	1.72	3000	0.9	562	25.497	3.84	1277	1.29
ALSTOM	GT-26	0.3	2.95	3000	0.9	1757	622.79	288.3	9756	1.4
ROLLS- ROYCE	SK30 - GT	0.3	2.75	3001	0.9	1158.34	93.6	20	3562	1.32

Table 1: Turbine Design Specifications

IV. DESIGN ANALYSIS

The designing of HP turbine with high engine thermal efficiency is usually constrained by high temperature environment, thereby needs a subsequent cooling effect. Also, the load carrying capacity of the turbine disc is a major concern. Therefore, designing this component needs some harmonizing technology to put all these limitations into consideration for suitable and effective design work. With respect to this study, some design parameters were calculated from the performance specifications of the real engine as classified on table 1 above.

They are the hot mass flow from the combustor to the inlet of the turbine, the turbine entry temperature (TET), turbine work (TW) etc; whereas a preliminary assumption of the engine ambient condition and fuel caloric value (FCV) are taken as 101.325KPa, 288K and 43MJ/Kg, respectively. Meanwhile, a 5% combustor pressure loss and 2% pressure drop at turbine exit are considered likewise.

V. INLET ANNULUS GEOMETRY

Figure 2: High Pressure Turbine Annulus Diagram

The governing equations with respect to the calculation of the Inlet Annulus Geometry of an axial HP turbine is given in equations (i) to (v):

$P_3 = PR \cdot P_{amt} \cdot Percentage of combustor pressure loss$	(i)
$A = \frac{W \cdot \sqrt{T3}}{0 - R^2} \qquad \dots$	(ii)
$h = \frac{\frac{Q \cdot PS}{A}}{P} \dots$	(iii)
Dtip = Dm + h	(iv)
Dhub = Dm - h	(v)

VI. ANALYSIS FOR THE PREDICTION OF TURBINE EFFICIENCY

The isentropic efficiency of the component is generally used as a true measure of the engine's performance. Hence, Smith's chart correlation method of turbine efficiency prediction is considered for the study. This industrial based technique recognized that whilst the designer would always attempt to minimize loss components, the major factors affecting turbine efficiency would always be design levels of gas velocity and deflection.

www.ajer.org

According to the Smith's correlated turbine efficiency chart, measurements from stage loading coefficient $(\Delta H/U^2)$ and flow coefficient (Va/U) are connected and traced to the efficiency correlation curves; where the best turbine efficiency are taken. Meanwhile, Smith's Chart correlation always recommends a value of minus 2% from the read value for a test of accuracy and best stage design efficient for turbine. Equations (vi) to (viii) are analytical expressions used for the determination of axial turbine efficiency:

$\Delta T =$	Turbine W •	Power Cp			 	 	(vi)
Umea	n =	ŘPM •	$\frac{\pi \bullet Dm}{50}$		 	 	(vii)
ΔH/U	$J^2 =$	Cpga	$\tilde{s} \cdot \Delta T/_{U2}$	•••••	 	 	(viii)

VII. OUTLET ANNULUS GEOMETRY

A LI	Figure 5: Velocity Diagram
$\Delta V_{W} = \begin{bmatrix} \Delta \Pi \\ \bullet \end{bmatrix} \bullet \begin{bmatrix} U \\ \bullet \end{bmatrix}$	(ix)
$Vw_3 = \Delta Vw - Umean^{\Omega}/2$	(x)
$\alpha_3 = \tan^{-1} (V w_3 / V_a) \dots$	(xi)
$v_3 = V_a / \cos \alpha_3$	(xii)
$\mathbf{R} = \begin{bmatrix} 1 - \frac{\Delta T}{\eta \text{ isent . x Tin}} \end{bmatrix}^{\Upsilon/(\Upsilon-1)} \dots$	(xiii)
P3 = Pin x R	(xiv)
Aann = $A_3/\cos\alpha_3$	(xv)

In order to increase a design power, there will be increase in NGV turning and exit whirl angle. However, the process stage require cooling for the production of high thermal efficiency will keep the trailing edge of the high (α_0) NGV to be thinner and this occurrence happens when $\alpha_0 = 70 - 72^\circ$ approximately [11]. The above mathematical expressions, equations (ix) – (xv)] are the basic will-power for outlet annulus geometry analysis.

VIII. RESULTS

Results are presented in the tables (tables 2-5) using the relationships provided from the governing equations above. Meanwhile, appropriate values of the mass flow function Q or ($W\sqrt{T/AP}$), velocity function (Va $/\sqrt{T_3}$) and stage isentropic efficiency (nisent) of turbine component are extracts from isentropic flow chart of dry air and Smith's Efficiency correlation chart [15]. These charts are equally presented in Annex – A; whereas, a work done factor (Ω) of 0.98 was considered in the analysis.

Engine	Pressure	Ambient	5%	Turbine	Values	Turbine	TET	Annulus	Annulus	Height	Tip	Hub	Dhub/Dtip
Model	Ratio	Pressure	Pressure	Inlet	of Q For	Inlet		Area	Mean	of	Diameter	Diameter	Ratio
		(P ₁)	loss @ CC	Pressure	M = 0.3	Mass		А	Diameter	Annulus	Dtip	Dhub	
				(P _{in})		Flow			Dm	h			
LYULKA AL-21F-3	3.6	101325	0.95	346532	0.019	25.5	562	0.09	1.72	0.017	1.74	1.71	0.981
ALSTOM GT - 26	33.9	101325	0.95	3263172	0.020	622.8	1757	0.41	2.95	0.044	2.99	2.91	0.971
Rolls Royce SK30 GT	11.0	101325	0.95	1058846	0.019	93.6	1158	0.16	2.75	0.018	2.77	2.73	0.987

Table 2: Inlet Annulus Design

2014

Engine Model	power	Mass flow	Specific Heat	Temp Drop	Shaft Speed	Dmean	Umean	$\Delta H/U^2$	Va⁄√T ₃	TET	Va	Va/Umean	nisent (%)
	(MW)	(kg/s)	CP; (kJ/kgK)	ΔT; (°K)	(īpm)	(m)	(m/s)		from table				(from Smith's Chart)
LYULKA AL-21F-3	3.84	25.5	1277	117.94	3000	1.72	270.21	2.062	5.74	562	135.96	0.503	89.0
ALSTOM GT - 26	288.3	622.8	9756	47.45	3000	2.95	463.45	2.155	5.96	1757	249.82	0.539	88.5
Rolls Royce SK30 GT	40	93.6	1158.34	368.93	3000	2.75	432.03	2.290	5.80	1545.3	227.92	0.528	87.9

Table 3: Prediction of Turbine Efficiency

Table 4: Design Analysis for Outlet Annulus

Engine	Temp	T ₃	$\Delta V w$	Vw_3	α3	V_3	$V_3\!/\!\sqrt{T_3}$	M3 = value	Q3 = value	\mathbf{P}_3	A_3	Area of	Annulus	Dtip	Dhub	hub/tip
Engine Model	Drop							matching	matching			Annulus	height			ratio
	(ΔT)							to $V_3/\sqrt{T_3}$	to V ₃ /√T ₃			(Aann)	h			
								From table	From table							
LYULKA AL-21F-3	117.90	444	568.74	149.26	47.67	201.90	9.58	0.51	0.029	105093.85	0.174	0.259	0.048	1.77	1.67	0.946
ALSTOM GT - 26	47.45	1710	1019.24	277.90	48.05	373.76	9.04	0.46	0.028	2927745.95	0.310	0.464	0.050	3	2.9	0.967
Rolls Royce SK30 GT	368.90	1176	1009.37	288.67	55.64	403.83	11.77	0.62	0.034	286984.61	0.332	0.589	0.068	2.82	2.68	0.952

Engine Model	DOOT		TID
LYULKA - AL-21F-3	1.60	BMH 1.72	1.75
D (NGV EXII) D (ROOT Exit)	1.09	1.72	1.75
Va	135.96	135.96	135.96
Vw, mean	149.26	149.26	149.26
Vwo Mean	419.48	419.48	419.48
$Vw_0 = Vw_0$ Mean • (Dmean /D) D @ NGV Exit	427.53	419.63	411.72
$q_0 = \tan^{-1}(Vw_0/Va)$	72.36	72.05	71 73
$Vw_2 = Vw_2$ Mean • (Dmean /D) D @ Rotor Exit	153.54	149.38	145.22
$\alpha_2 = \tan^{-1}(Vw_2/Va)$	48.48	47.69	46.89
$U = Umean \cdot (D / Dmean); D @ Rotor Exit$	262.23	269.74	277.25
$V_0 = V_a / \cos \alpha_0$	563.91	432.25	300.59
Nozzle Acceleration. $Va / V_{in} = V_0 / V_a$	4.15	3.18	2.21
$V_1 = \sqrt{[V_a^2 + (V_w - U)^2]}$	214.03	202.63	191.22
$\alpha_1 = \cos^{-1}(Va/V_1)$	50.56	47.62	44.68
$V_2 = \sqrt{[V_3^2 + (U + V_{W_3})^2]}$	437.43	440.62	443.81
$\propto_2 = \cos^{-1}(Va / V_2)$	71.89	72.03	72.16
Rotor Acceleration, V2/V1	2.04	2.18	2.32
Engine Model			
ALSTOM - GT - 26	ROOT	BMH	TIP
D (NGV Exit)	2.90	2.95	2.99
D (ROOT Exit)	2.89	2.95	3.01
Va	249.82	249.82	249.82
Vw ₃ mean	277.90	277.90	277.90
Vw ₀ Mean	741.34	741.34	741.34
Vw ₀ = Vw ₀ Mean • (Dmean /D) D @ NGV Exit	753.31	741.53	729.75
$\alpha_0 = \tan^{-1}(Vw_0/Va)$	71.65	71.38	71.10
Vw ₃ = Vw ₃ Mean • (Dmean /D) D @ Rotor Exit	282.72	277.98	273.25
$\alpha_3 = \tan^{-1}(Vw_3/Va)$	48.53	48.05	47.56
U = Umean • (D /Dmean); D @ Rotor Exit	265.15	269.74	274.34
$V0 = Va / cos \alpha_0$	1036.18	794.26	552.34
Nozzle Acceleration, $Va / V_{in} = V_0 / V_a$	4.15	3.18	2.22
$V_1 = \sqrt{[V_a^2 + (Vw_0 - U)^2]}$	548.38	533.91	519.43
$\propto_1 = \cos^{-1}(Va/V_1)$	62.90	62.08	61.25
$V_2 = \sqrt{[V_a^2 + (U + V_{W_3})^2]}$	602.13	602.01	601.88
$\propto_2 = \cos^{-1}(Va / V_2)$	65.49	65.49	65.48
Rotor Acceleration, V2/V1	1.10	1.13	1.16

Table 5: Turbine Free	Vortex D	esign
-----------------------	----------	-------

Engine Model			
Rolls Royce - SK30 GT	ROOT	BMH	TIP
D (NGV Exit)	2.71	2.75	2.79
D (ROOT Exit)	2.66	2.75	2.84
Va	227.92	227.92	227.92
Vw ₃ mean	288.67	288.67	288.67
Vw ₀ Mean	720.70	720.70	720.70
Vw ₀ = Vw ₀ Mean • (Dmean /D) D @ NGV Exit	732.17	720.88	709.58
$\alpha_0 = \tan^{-1}(Vw_0/Va)$	72.71	72.45	72.19
Vw3 = Vw3 Mean • (Dmean /D) D @ Rotor Exit	298.74	289.00	279.26
$\alpha_3 = \tan^{-1}(Vw_3/Va)$	56.55	55.65	54.75
U = Umean • (D /Dmean); D @ Rotor Exit	260.65	269.74	278.83
$V0 = Va / cos \alpha_0$	945.35	724.64	503.92
Nozzle Acceleration, $Va / V_{in} = V_0 / V_a$	4.15	3.18	2.21
$V_1 = \sqrt{[V_a^2 + (V_w - U)^2]}$	514.23	492.60	470.97
$\alpha_1 = \cos^{-1}(Va/V_1)$	67.43	66.33	65.23
$V_2 = \sqrt{[V_a^2 + (U + Vw_3)^2]}$	593.17	592.56	591.95
$\propto_2 = \cos^{-1}(Va / V_2)$	67.40	67.375	67.35
Rotor Acceleration, V2/V1	1.15	1.20	1.26

IX. DISCUSSION OF RESULTS

The preliminary design results for the axial HPT component performance of the turbomachinery as shown above conforms yielding the best stage efficiency performance from the Smith's chart where the stage loading coefficient (Δ H/U²) is plotted against the flow coefficient (Va/U). As seen on the tabulated results and in Annex – A; the stage isentropic efficiency for the three engine of study; AL-2LF-3, GT – 26 and SK30 – GT are 89.0%, 88.5% and 87.9% respectively. Also, this moderate values implies low gas velocities and reduction of excessive frictional losses. This satisfies a single stage arrangement in the HPT component design. It is an indication that multiple stage can be replaced with a single stage arrangement of axial HPT using the ideas of the above systematic design study.

Another point of concern is the corresponding Mach numbers for the three engine of study; that is $M_3 = 0.51$, 0.46 and 0.52 for AL-2LF-3, GT – 26 and SK30 – GT from the outlet annulus design which is less than 1. This shows that the inlet mass flow of the HPT and TET is in order. Thus, acknowledging that one key phenomenon for compressible flow is choking; where a Mach number of 1 is reached at the minimum area along a duck. Again, is the modality of increasing the design power of the component which has to do with the exit whirl angle and the effect of turns in the NGV. In order to maintain these conditions to keep high thermal efficiency production; the gas angle, α_0 design analyses were ensured to be at an approved range of (70 – 72°) according to literature review [11]. Therefore, an estimated result of α_0 from table 5 above for AL-2LF-3 is 72.71° at Root, 72.45° at Blade Mid Height (BMH) and 72.19° at tip; while for GT – 26 is 71.65° at Root, 71.38° at BMH and 71.1° at tip and for SK30 – GT is 72.71° at Root, 72.45° at BMH and 72.19° at tip.

X. CONCLUSION

The line of best efficiency for turbine design indicates that the optimum turbines are at the ranges of: $1.0 < (\Delta H/U^2) < 2.5$ and 0.5 < (Va/U) < 0.8; and the maximum range efficiency line follows the Smith's efficiency prediction law: $(\Delta H/U^2) = 6.5(Va/U) - 2.90$. Results of the HP turbine stage efficiency from study responds to Smith's efficiency figures quoted in his correlation. The HP turbine stages frequently appear on the left hand side of the Smith's chart of the best efficiency line; consequently, it is expected that turbine efficiency appears on same side and this is accomplished from the research study. The Mach number at the blade inlet hub from the design analysis of the study is less than 0.7 as stated in [16] is to ensure that there is acceleration relative to the blade all the way through the blade passage.

Results of NGV exit angle is satisfied because it maintains the range angle of 65° - 73° to guarantees decrease in pressure losses. Meanwhile, the analysis of the hub – tip ratio is greater than 0.5 from its design to minimize secondary losses; however, less than 0.85 though with reduced blade height. Therefore, the redesigning of a multiple stages to a single stage HPT component achieves the same performance as the original engine.

XI. ACKNOWLEDGEMENT

I sincerely appreciate all staff and colleagues of the department of Mechanical Engineering and the entire faculty of Engineering in my university, Niger Delta University for their encouragement.

REFERENCES

- [1] Neumayer, F., Performance testing of a first and second Transonic Turbine Stages, *ASME TURBO*, 2002, GT-2002-30336.
- [2] Tadeusz, C., Sabastian, L., Sabastain, R., Algorithm for Design Calculation of Axial flow Gas Turbine Compressor – Compression with GTD – 350 Compressor Design, *Institute of Power Engineering and Turbomachinery*, 2011.
- [3] Cyrus, B. M., Mustapher, A. C., Hatim, M. M., Gas Turbine Performance Deterioration, *Proceedings of the 30th Turbomachinery Symposium*, 2009, 139-175.
- [4] Marty, J., Castillon, L., Boniface, J.C., Burguburu, S., Godard A., Numerical and Experimental Investigations of Flow Control in Axial Compressors, *Journal for Aerospace lab*, Issue 6. AL06-09, 2013.
- [5] Hubrich, K., Bölcs, A., Ott, P., Boundary Layer Suction via a Slot in a Transonic Compressor -Numerical Parameter Study and First Experiments. *Proceedings of 2004 ASME Turbo EXPO*, 2004, GT2004-53758.
- [6] Dang, T. Q., Van, Rooij M., Larosiliere, L. M., Design of Aspirated Compressor Blades Using Three-Dimensional Inverse Method, *Proceedings of ASME and International Gas Turbine Institute Turbo Expo*, 2003, GT-2003-38492.
- [7] George, S. D., Aerodynamic Shape Design and Optimization: Status and Trends, *Journal of Aircraft*, Vol. 29, N0. 6, 1992, 1020 1026.
- [8] Mengistu, T., Ghaly, W., Global Optimization Methods for the Aerodynamic Shape Design of Transonic Cascades, 2003.
- [9] Girish, M., William, A. C., Dongbin, X., Design Optimization of a High Pressure Turbine Blade using Generalized Polynomial Chaos (gPC), 10th World Congress on Structural and Multi-disciplinary Optimization, Orlando, Florida – USA, 2013.
- [10] Benini, E., Three Dimensional Multi-Objective Optimization of a Transonic Compressor Rotor, *Journal of Propulsion and Power*, Vol. 20, No. 3, 2004, 559 565, ISSN: 0748 4658.
- [11] Ramsden, K.W., Turbomachinery Design Manuel Volume 1 and 2 Cranfield University, (Unpublished Thermal Power MSc Course notes), 2008.
- [12] Alstom Power, GT-26 Industrial Engine Specifications [online] Available: <u>http://www.power.alstom.com</u>, (March 18th, 2014).
- [13] Rolls-Royce, RB211 GT61 and SK30 GT Industrial Gas Turbine Engine Specification [Online] Available: <u>http://www.rollsroyce.com</u>, (April 3rd, 2014).
- [14] LYULKA AL-21F-3, Military Turbojet/Turbofan Specification [Online] Available: <u>http://www.jet-engine.net/miltfspec.html</u>, (April12th, 2014).
- [15] Smith, S.F., A Simple Correlation of Turbine Efficiency, *Journal of the Royal Aeronautical Society*, 1969.
- [16] Walsh, P. P., & Fletcher, P., Gas Turbine Performance. (2nd ed). Oxford: Blackwell Science, 159-206, 200

Notation and Units

- A = the Cross sectional Area of the Annulus (m^2)
- h = the height of the Annulus (m)
- W = mass flow (Kg/s)
- $T_3 =$ turbine entry temperature (K)
- P_3 = Inlet pressure to the turbine (KPa)
- Q = mass flow function (JKg/K)
- PR = Pressure Ratio

Pamt = Ambient Pressure (KPa) Dm = Mean diameter of the Annulus (m) U = Blade Speed (m/s) V = velocity (m/s) W= Mass Flow (kg/s) BHM = Blade Mid Height

ANNEX – A

Efficiency Correlation Chart (SINGLE STAGE TURBINES)

						207		CAMMA =	1.29			
				GAS CON	STANT -	201		Oranina	Seal .			
		- D/- 1	V/ Beat 7	1000 0 1	1000 0	A/A'		Mach No	TIL	PIP	V/Root.T	1000 Q
Mach No	in	Pip	VIRCOLI	1000 02	0.000	Infinitie		0.255	1.0094	1.0426	4.884	18.474
0.000	1.0000	1.0000	0,000	0.000	0.000	117 1807		0,260	1.0098	1.0443	4.978	18.773
0.005	1.0000	1.0000	0.096	0.330	0.000	#8 6628		0.255	1.0102	1.0461	5.073	17.070
0.010	1.0000	1.0001	0.192	0.670	0.070	30 0847		0.270	1.0106	1.0479	5.168	17.366
0.015	1.0000	1.0001	0.289	1.005	1.000	20 2015		0.275	1.0110	1.0497	5.263	17.680
0.020	1.0001	1.0003	0,385	1.341	1,341	22 4442		0.280	1.0114	1.0516	5.357	17.953
0.026	1.0001	1.0004	0.481	1.6/6	1.0/0	10 5300		0.285	1.0118	1.0535	5.452	18.244
0.030	1.0001	1.0006	0.677	2010	2.011	16 7616		0 290	1.0122	1.0554	5.546	18.534
0.035	1.0002	1.0008	0.673	2.345	2.347	14.00/08		0.295	1.0126	1.0574	5.841	18.822
0.040	1.0002	1.0010	0.770	2.6/9	2.002	17.0350		0.300	1.0131	1.0594	5.735	19,109
0,045	1.0003	1.0013	0.866	3.013	3.017	41 7947		0.305	1.0135	1.0614	5.829	19.395
0.050	1.0004	1.0018	0.962	3.347	0.000	10 6711		0.310	1.0130	1.0635	5.924	19.678
0.055	1.0004	1.0020	1,058	3.681	3.688	10.0/11	-1. m	0.315	1.0144	1.0658	6.018	19,960
0.050	1.0005	1.0023	1.154	4.014	4.024	9.7851		0.370	10148	1.0678	6.112	20.241
0.065	1.0006	1.0027	1.250	4.347	4.309	9.0350		0.925	1.0153	1 0699	6.206	20.520
0.070	1.0007	1.0032	1.346	4.880	4.695	8.3934		0.920	1 0158	1 0722	8,300	20,797
0.075	1.0008	1.0036	1.443	5.012	5.030	7.8371		0.235	1 0163	1 0744	6.394	21.073
0.080	1.0009	1.0041	1.539	5.344	5.386	7.3506		0.000	1 0468	1 0767	8,488	21.347
0.085	1.0010	1.0047	1.635	5.675	5.702	6.9214		0.340	1.0179	1 0791	5.582	21.619
0.090	1.0012	1 0052	1.731	6.008	6.037	6.5402		0.345	1.0170	1 0815	6 675	21.889
0.095	1.0013	1.0058	1.827	6.336	6,373	6.1992		0.350	1.0170	1 0839	6.759	22,158
0.100	1.0015	1.0065	1.923	5,665	6.709	5.8926		0.555	1.0105	1 0000	6 883	22 425
0 105	1.0016	1.0071	2.019	6.995	7.045	5,6153		0.360	1.0100	1.0000	E 956	22 690
0 110	1.0018	1.0078	2,115	7.324	7.381	5.3633		0.365	1.0143	1.0004	7.050	22.954
0 115	1.0019	1.0086	2.211	7.652	7.717	5.1334		0.370	1.0199	1.0214	7 143	23 215
0 120	1.0021	1.0093	2.307	7.979	8.054	4.9228		0.375	1.0204	1.0930	7 236	23 475
0 125	1 0023	1 0101	2.402	8.306	8.390	4.7292		0.380	1.0209	1.0300	7 330	29 793
0 130	1 0025	1.0109	2.498	8.632	8.726	4.5506		0.385	1.0215	1.0992	7.000	22 080
0 135	1 0020	1.0118	2.594	8,957	9.063	4.3854	• •	0.390	1.0221	1.1019	7 542	24 243
0.140	1 0028	1.0127	2.680	9,281	\$.399	4.2321		0.395	1.0226	1.1046	7,510	24 498
0446	1 0020	1 0136	2 786	9.608	9.736	4.0895		0.400	1.0232	1.1074	7.000	24.746
0.160	1 0033	1.0145	2,882	9.928	10.073	3.9565		0.405	1.0238	1.1102	7.702	24.140
0.150	1.0036	1 0156	2 977	10 250	10,410	3.8322		0.410	1.0244	1.1131	1.795	24,984
0.100	1.0035	1 0166	3.073	10.571	10.747	3.7158		0.415	1.0250	1.1160	1.887	25.241
0.100	1.0030	1 1 0177	3 169	10 891	11.084	3,6065		0.420	1.0256	1.1189	7.980	25.486
0.185	1.0039	1.0188	3 264	11 211	11.421	3.5038		0.425	1.026.2	1.1215	8.073	25.725
0.170	1.0044	1 0100	3 360	11.529	11,759	3,4071		0.430	1.0268	1.1249	8.165	25.965
0.1/5	1.0044	1 0214	3455	11.848	12.096	3,3158		0.435	1.0274	1.1280	8.257	26,208
0.180	1.0047	1.0211	9.661	12 163	12.434	3.2295		0.440	1.0281	1,1311	8.350	28.444
0.185	1.0050	1.0223	2 848	12 473	12 771	3.1479		0.445	1.0287	1.1342	8.442	28.679
0.190	1.0052	1.0200	2 742	12 793	18 109	3.0705		0.450	1.0294	1.1374	8.634	26.912
0,195	1.0055	1.0248	2.037	13 100	13 447	2,9971		0.455	1.0300	1.1406	8.626	27.142
0,200	1.0058	1.0261	3.037	19 419	12 786	2 9274		0.460	1.0307	1.1439	8.718	27.371
0.205	1.0061	1.0274	3.933	12 720	14 174	2 8611		0,465	1.0314	1.1472	8.810	27.598
0,210	1.0064	1 1.0268	4.028	14 020	14 462	2 7979		0.470	1.0320	1.1508	8.902	27.822
0.215	1.0067	1.0302	4.123	44.345	14 801	2 7377	2.1	0.475	1.0327	1.1540	8,994	28.044
0.220	1.0070	1.0316	4.218	14.348	14.001	2000		0.490	1.0334	1.1574	9.085	28.266
0.225	1.0073	1.0331	4.314	14.655	15,140	2.0003		0.485	1.0341	1.1609	9.177	28.483
0.230	1.0077	1 1.0346	4.409	14.982	15.479	2.02.04		0.490	1 0348	1,1644	9.268	28.699
0.235	1.0080	1.0361	4.504	15.267	15,818	2.0/20		0.495	1.0365	1.1680	9.360	28.913
0.240	1.0084	1.0377	4.590	15.571	10.157	2.0227	10	0.500	1.0363	1,1716	9.451	29,125
	4 0007	1 1 0393	4 694	1 15.873	10.497	2.4/40				the second se	and the second s	

A/A 2.3844 2.3419 2.3012 2.2620 2.2243 2.1880 2.1530 2.1194 2.0869

2.0658

1.0061 1.0070

17.176 17.516 17.857 18.197 18.538 18.538 18.878 19.219 19.56

20.24

20.928 21.270 21.612 21.955 22.291 22.291 22.291 23.922 23.973 24.017 24.017 25.965 24.391 25.965 24.391 25.965 24.391 25.965 25.965 24.961 25.966 25.965 27.473 27.473 27.421 28.565 28.565 28.565 28.565 28.565 28.565 28.565 28.565 28.565 28.565 29.565 20.555 20.565 20.5555 20.5555 20.5555 20.5555 20.5555 20.5555 20.5555 20.55555 20.5555

2014

GAS	CONSTANT =
CIAG	CONSTANT -

287

GAMNA = 1.29

Mach No	T/t	PIp	V/RootT	1000.0	1000.0	4.145
0.500	1.0363	1 1716	9.451	20.125	24.404	AIA
0.505	1.0370	1.1753	9.542	20.120	34.124	1.3957
0.510	1.0577	1,1790	9.853	29.542	34,457	1,3390
0,515	1.0365	1,1828	9.724	29.749	34,001	1.3090
0,520	1.0392	1,1886	9.815	20.051	36,103	1.0004
0.525	1.0400	1,1904	9,906	30 152	35,555	1 1.5 115
0.530	1.0407	1,1943	9.995	30 351	30.004	1.0047
0.535	1.0415	1.1983	10.087	30.548	30,240	1.2942
0.540	1.0423	1,2023	10 177	30.742	35.061	1,2539
0.545	1.0431	1,2063	10.268	30,935	37.247	1,2000
0.550	1.0439	1.2104	10.358	31 125	37.512	1,2686
0.555	1.0447	1.2145	10.448	31 313	38,001	1.2520
0.560	1.0455	1.2187	10.538	31 400	30,001	1.2044
0.565	1.0463	1.2230	10.628	31,682	39.745	1 2308
0.570	1.0471	1.2272	10.718	31 883	30.104	1 2320
0.575	1.0479	1.2316	10.608	32.043	39,483	1,2060
0.580	1.0488	1.2360	10.897	32 219	39,822	1 2101
0.585	1.0495	1.2404	10.987	32 394	40 182	1 2438
0.590	1.0505	1.2449	11.076	32 585	40.541	1 2062
0.595	1.0513	1.2494	11.165	32,737	40,902	1 1990
0.600	1.0522	1.2540	11,255	32,904	41.262	1 1035
0.605	1.0531	1.2588	11.344	33.070	41.824	1 1878
0.610	1.0540	1.2833	11.433	33.234	41.985	1 1815
0.615	1.0548	1.2681	11.522	33.395	42 347	1,1762
0.620	1.0667	1.2729	11.610	33.554	42,709	1,1707
0.625	1.0586	1.2777	11.699	33,710	43.072	1.1652
0.830	1.0578	1.2825	11.788	33.865	43.436	1,1598
0.635	1 0585	1.2575	11.878	34,017	43,799	1.1547
0.640	1.0594	1.2925	11.964	34.167	44,163	1.1497
0.645	1.0603	1.2975	12.052	34.314	44,528	1.1447
0.650	1.0613	1.3028	12.141	34.460	44.893	1,1399
0.666	1.0622	1.3079	12.228	34.503	45,258	1,1352
0.660	1.0632	1.3132	12.318	34,744	45,624	1,1306
0.565	1.0841	1.9186	12.404	34.882	45.991	1,1261
0.870	1.0651	1.3238	12.492	35.019	46.358	1.1217
0,875	1.0661	1.3282	12.579	35.153	46.725	1.1174
0.680	1.0670	1.3347	12,868	35.285	47.093	1.1132
0.000	1.0680	1,3402	12.754	35.414	47.481	1.1092
0.090	1,0500	1.3467	12.841	35,541	47.830	1.1052
0.000	1.0700	1.3614	12.928	35,667	48.196	1,1013 \
0.700	1.0711	1.3671	13.015	36,789	48.569	1.0975
0.700	1.0721	1.3626	13,101	36,910	46.939	1.0638
0.715	1.0/31	1.3665	13.188	38.028	49.310	1.0903
0.730	1.0741	1.3745	13.274	36.145	49.681	1.0868
0.726	1.0752	1.3804	13.361	36,258	50.052	1.0833
0.720	1.0762	1.3064	13.447	36.37D	50.424	1.0600
0.795	1.0773	1.3825	13.533	36.480	50.797	1,0768
0.740	1.0704	1.3688	13.019	36,687	51.170	1.0735
0.745	1,0139	1.4048	13.705	30.892	51.544	1.0708
0.760	1,0000	1.4110	15.791	36.795	51,918	1.0576
0.150	1.0016	1.91/3	13,876	36.095	52.293	1.0846

GAS CONSTANT =	287

Mach No	T/t	PIP	V/Root.T	1000 Q	1000 g	A/A'
0.000	1.0000	1,0000	0.000	0.000	0,000	Infinity
0.005	1.0000	1.0000	0.097	0.339	0.339	116.7820
0.010	1.0000	1.0001	0,195	D.678	0.678	58.3936
0.015	1.0000	1.0001	0.292	1.017	1.017	38.9319
0.020	1.0001	1,0003	0.389	1.356	1.356	29.2019
0.025	1,0001	1.0004	0.487	1.69%	1.696	23.3645
0.030	1.0001	1.0006	0.584	2.035	2.035	19.4736
0.035	1.0002	1.0008	0.681	2.372	2.374	16.6946
0.040	1.0003	1.0011	0.778	2,710	2.713	14.6111
0.045	1.0003	1.0013	0.876	3.048	3.052	12,9908
0.050	1.0004	1.0017	0.973	3.386	3.392	11.6950
0.055	1.0005	1.0020	1.070	3,723	3,731	10.6350
0.060	1.0008	1.0024	1,167	4.061	4.070	8,7520
0.055	1.0007	1.0028	1,265	4.397	4,410	9.0051
0.070	1.0008	1 0032	1.362	4.734	4,749	. 8.3652
0.075	1 0009	1.0037	1.459	5.070	5.089	7,8108
0.080	1.0010	1.0042	1 556	5.405	5.428	7.3259
0.085	1 0012	1 0048	1653	5740	5 768	6 8983
0.000	1 0013	1 0054	1 754	8.075	6 10B	6.5183
0.095	1.0014	1 0080	1 848	8409	6 447	6 1786
0.000	1.0016	1 0068	1 945	6743	6 787	5 8730
0.100	1.0018	1 0073	2042	7 076	7 127	5 5986
0.110	1.0010	1 0090	2 430	7408	7 467	5 3455
0.115	1.0021	1 0098	2 236	7 740	7 807	5 1165
0.110	1.0023	1 0005	2 323	8.071	8 148	4'9056
0,120	1.0020	1.0000	2.000	0.071	0.140	4 7127
0.125	1.0023	1.0104	2.400	0.401	0,400	4.7 51
0.130	1.0027	1.0112	2.521	0.130	0.020	4.0001
0.135	1.0029	1.0121	2.024	9.009	0.500	4.0/11
0,140	1.0031	1.0130	2021	9.307	. 9.909	42100
0.145	1.0034	1.0150	2.018	8.110	0.000	4.0/02
0.150	1.0030	1.0149	2.914	10,041	10.191	3.0100
0.135	1.0038	1.0100	3.011	10.307	10.002	2,0100
0.160	1.0041	1.0170	3,106	10.691	10.875	3.7059
0.165	1.0044	1.0181	3.200	11.015	11.214	3.3930
0.170	1.0046	1.0192	3.301	11.330	11.000	3.4920
0.175	1.0049	1.0204	3.388	11,600	11.097	3.3902
0.180	1.0052	1.0210	3.494	11.961	12.2.58	3.3003
0.185	1.0055	1.0228	3.591	12,500	12.001	0.2193
0.190	1.0058	1.0240	3.687	12,619	12.923	3.1380
0.195	1.0081	1.0253	3.784	12.937	-13,200	3.0609
0.200	1.0064	1.0267	3.880	13.234	13.507	2.9678
0.205	1.0087	1.0220	3.9//	13.509	13.849	2.9183
0 210	1,0074	1.0284	4.0/3	13.843	14.292	2.0523
0.215	1.0074	1.0309	4.109	14.197	14.035	2.7893
0.220	1.0077	1.0323	4.266	14.509	14.978	2.7294
0.225	1.0081	1.0338	4.362	14.819	15.321	2.6/21
0.230	1.0086	1.0354	4.458	15.129	15.664	2.6175
0.235	1.0088	1.0370	4.554	15,437	18.008	2.5652
0.240	1.0092	1.0366	4.650	15.744	46.351	2.5152
0.245	1.0096	1.0402	4.746	16.050	16.695	2.4673
0.250	1.0100	1.0419	4.842	16.354	17.039	7.4214

0.755 0.760 0.765 0.770 0.775		e Prp	V/RDOLT	1902 D	1000 c	\$1.4*
0.760 0.765 0.770 0.775	1.0827	1.4237	13.962	36.964	52 888	1.0518
0.765 0.770 0.775	1.0838	1.4301	14.047	37.090	53.044	1.0604
0.770	1.0849	1.4386	14.132	37,164	53.420	1 0564
0.775	1.0860	1,4432	14.217	37.276	53,796	1.0538
0.700	1.0871	1.4498	14.302	37.365	54,174	1.0512
0.780	1.0882	1.4585	14.387	37,453	54,551	1.0468
0,785	1.0584	1.4633	14.472	37.538	54,930	1.0464
0.795	1.0905	1.4701	14.555	37.621	55.309	1.0441
0.900	1.0010	1.47/0	14,541	37.702	55,688	1.0419
0.805	1.0840	1.4040	14.725	37.781	56,068	1.0367
0.810	1 0951	1.4911	14,809	37.858	56.448	1.0376
0.815	1.0963	1.6064	14,093	37.932	56.529	1.0355
0.820	1.0975	1,5128	15.061	38.005	57.211	1.0336
0.825	1.0987	15199	15.144	36.0/5	57,593	1.0316
0.830	1.0969	1.5273	15,228	38-250	57.976	1.0288
0.835	1.1011	1.5348	15.311	38 274	56.309	1.0280
0.840	1.1023	1.5423	15394	38 336	00,743	1.0253
0.845	1.1035	1.5500	15,477	39,396	59.512	1.0293
5,850	1.1048	1,5577	15.560	38.463	59,897	1.0230
0.865	1.1060	1,5854	15,643	38,509	80 283	1,0200
0.880	1.1072	1.5733	15.726	38.563	59,670	10185
0.865	1.1065	1.5812	15.808	38.615	61.057	10:73
0.870	1.1098	1,5892	15,891	38.664	61.445	1 0159
0.875	1.1110	1.5973	15,973	38.712	61,833	10147
0.880	1.1123	1.6054	16.055	38,758	62 222	10:35
0.885	1.1136	1.5136	16.137	38.901	62,812	1.0123
0.890	1.1149	1.5220	16,219	38.843	63.002	1.0113
0.395	1.1161	1.6303	16,500	38.883	63,393	1.0102
0.900	1.1175	1.6388	16,382	38.921	83,784	1.0082
0.900	1.1188	1.6474	16.483	38.966	64.176	1.0083
0.915	1.1209	1.6560	16.545	38.990	64.568	1,0074
0.900	1 1 2 2 7	1.6647	16,626	39.022	64.96	1,0086
0.925	1 1241	1.6730	10.101	39.062	65,365	1.0058
0.930	1.1254	1.6014	181.061	39.080	65.749	1.0051
0.935	1 1289	1 2006	10.000 1	39.106	66.144	1.0044
0.940	1,1281	1 7006	10.945	39,131	56.540	1.0038
0.945	1,1295	17188	17 100	39.133	66.935	1.0032
0.950	1.1309	1 7982	17 186	30,174	67.333	1.0027
0.955	1.1322	1,7376	17 209	30.702	97.730	10085
0.960	1.1236	1.74/5	17 349	10 224	90.120	1.0018
0.965	1.1350	1,7566	17.428	39,237	88.024	1.0014
0.970	1.1364	1,7683	17,508	39.249	66 326	1,00011
0.975	1.1378	1,7761	17.587	39,258	89 727	1,0006
0.980	1.1393	1,7860	17.657	39,296	70.128	1.0004
0.985	1.1407	1.7950	17,748	30.272	70.550	1,0002
0.990	1.1421	1,8060	17.824	39.Z/7	70.632	1,9001
0.965	1.1436	1.8161	17.903	39.279	71.335	1.0000
	1.1450	1.8263	17.982	39.290	71.738	1 9000

Mach No	TIL	Pip	V/Root.T	1000 Q	1000 q	A/A*
0.255	1.0104	1.0436	4.938	16.657	17.383	2.3774
0.260	1.0108	1.0454	5.033	16,958	17.728	2.3351
0.285	1.0112	1.0472	5.129	17,258	18.072	2.2945
0.270	1.0117	1.0490	5.225	17.557	18,417	2.2554
0.275	1.0121	1.0509	5,320	17.854	18.762	2.2179
0.280	1.0125	1.0528	5,416	18.150	19.108	2.1818
0.285	1.0130	1.0547	5.511	18.444	19.453	2.1470
0.250	1.0135	1.0567	5.607	18.737	19,799	2.1134
0.295	1.0139	1.0587	5,702	19.028	20.145	2.0811
0.300	1.0144	1.0608	5,798	19.318	20.491	2.0499
0.305	1.0149	1.0628	5.893	19.608	20,638	2.0198
0.310	1.0154	1.0650	5.988	19,892	21.185	1.9907
0.315	1.0159	1.0671	6.083	20,177	21.532	1.9828
0.320	1.0164	1.0693	6.178	20,460	21.879	1.9354
0.325	1.0169	1.0716	6.273	20.742	22,228	1.9092
0 330	1.0174	1.0739	6.368	21.022	22.574	1.8837
0.335	1 0180	1.0762	6,463	21,300	22.922	1.8591
0.340	1 0185	1 0785	6.557	21 576	23 270	1.8353
0.345	1 0190	1 0809	6 652	21 851	23,619	1.8123
0.950	1.0105	1 0834	6 747	22 124	23.968	1,7899
0.955	1 0202	1 0858	6 841	22 395	24 317	1,7682
0.360	1 0207	1 0583	6 935	22 684	24 666	1.7472
0.365	1.0213	1 0000	7 030	22 932	25 016	1 7268
0.330	1.0210	1 0935	7 194	23 197	25 366	1 7071
0.070	1.0219	1.0000	7 740	03.464	95 746	1 6870
0.375	1.0225	1.0001	7313	23.401	26.067	1 6392
0.380	1.0231	1.0900	7.000	23.009	26.001	1 6511
0.305	1.0237	1.1013	7.400	20.000	20.410	1 6305
0.390	1,0243	1.1043	7.500	24.241	27 100	1 6164
0.395	1.0250	1.1071	7,094	24.490	27.120	1.5008
0,400	1.0250	1.1030	1.000	24.702	27.912	1.5937
0.405	1.0262	1.1120	7./01	25.004	27.024	1.5690
0.410	1.0208	1.1107	1.075	25.200	20.117	4 55 37
0.415	1.0276	1.118/	1.966	20.503	20.000	1.0027
0.420	1.0282	1.1217	8.062	25.750	28.603	1.0010
0.425	1.0289	1,1247	8.155	20,890	29.230	1.0234
0.430	1.0296	1.12/8	8.248	26.237	29.590	1.5093
0.435	1.0303	1.1309	8,341	25.4/8	29,049	1,4900
0.440	1.0310	1.1341	8.434	26.716	30.299	1.4822
0.445	1.0317	1.1373	8.527	26.953	30.653	1,4692
0.450	1.0324	1.1408	B.620	27.187	31.009	1.4005
0.455	1.0331	1.1439	8.713	27.419	31,364	1.4442
0,460	1.0399	1.1472	8.806	27.649	31.720	1.4322
0.465	1.0346	1.1503	8.898	27.878	32.076	1,4205
0.470	1.0353	1.1540	8,990	28.104	32.433	1.4090
0.475	1.0361	1.1575	9.083	28.328	32.790	1.3979
0.480	1.0389	1.1611	9.175	28.549	33.147	1.3870
0.485	1.0376	1.1648	9,267	28.769	33.505	1.3765
0.490	1.0384	1.1682	9.359	28.987	33.853	1.3661
0.495	1.0392	1.1719	9.451	29,202	34.222	1.3560
0.500	1.0400	1.1756	9.543	29.415	34.581	1.3462

www.ajer.org

Search No 7/1 P/p V/RootT 1000 G 1000 g A/A* 0.500 1.0400 1.1784 9.643 28.415 34.581 1.3452 0.510 1.0400 1.1784 9.635 28.262 34.940 1.3385 0.510 1.0446 1.1822 9.728 28.855 35.300 1.3273 0.522 1.0433 1.1620 9.618 20.044 36.020 1.3082 0.525 1.0444 1.1986 10.000 20.448 36.020 1.3082 0.555 1.0449 1.1986 10.022 30.448 37.104 1.2830 0.555 1.0449 1.2150 10.645 31.612 37.629 1.2670 0.545 1.0475 1.2111 10.364 31.616 38.551 1.2620 0.355 1.0443 1.2153 10.517 32.169 36.464 1.2640 0.3570 1.0520 1.2328 10.807 32.277 40.746 1.2244

Mach No	T/t	P/p	V/Root.T	1000 Q	1000 0	T ATAS
0.755	1.0912	1,4334	14 068	37 315	69.487	1 10020
0.760	1.0924	1.4400	14.153	37 411	53 871	1.0012
0.765	1.0938	1.4466	14 238	37 505	54.960	1.0000
0.770	1.0949	1.4533	14 323	37 607	54,200	1.0558
0,775	1.0961	1.4601	14 409	37 667	54.041	1.0032
0.780	1.0973	1,4899	14 409	37.774	00,027	1.0507
0.786	1.0986	14739	14 577	37.000	65.413	1.0483
0.790	1.0999	1 4808	14 883	37.000	00.000	1.0459
0.795	1.1011	1 4879	14 748	38.040	50.105	1.043/
0.800	1.1024	1.4950	14.890	20.403	30.575	1.0414
0.805	1,1037	1,5022	14 914	39 170	50,800	1.0363
0.810	1,1050	1.5095	14 000	30.178	57,304	1.03/2
0.815	1,1083	1.5168	15,082	30.204	0/./44	1.0362
0.820	1.1075	1 5242	15 185	30.320	68.135	1.0332
0.825	1.1089	1.5317	15 940	30 465	50.520	1.0313
0.830	1.1102	1,5393	16 939	30.400	00.910	1.0295
0.835	1.1116	1.5489	TEALE	20.001	09.010	1.02//
0.840	1.1129	1.5546	18 498	39.390	69.703	1.0260
0.845	1.1142	1 6824	45 584	90 747	00.09/	1.0244
0.850	1.1156	1.5703	15.664	98 775	00,401	1.0228
0.855	1.1170	1.5782	15746	38 820	60.000	1.0213
0.860	1,1183	1.5882	15,820	38 584	01.202	1.0168
0.885	1.1197	1.5943	18.911	38 0 36	83.075	1.0184
0.670	1.1211	1.6025	15 693	38 085	02.070	1.0170
0.876	1,1225	1.6107	18.075	30.033	04.972	1.0108
0.880	1.1239	1.6190	18.156	39.078	69 280	1.0140
0.885	1.1253	1.6274	16,238	30 122	03.200	1.0133
0.690	1.1267	1.6359	18319	39 169	84,000	1.0122
0.885	1.1282	1.6445	18,401	39 203	84 470	1.0111
0.900	1.1296	1.8532	16 482	39.241	64 871	1,0001
0.905	1.1310	1.6819	18.563	39 276	85 279	1.0081
0.910	1.1325	1.6707	18.544	39 310	85 878	1.0002
0.915	1.1340	1.6796	16,724	39 342	88 070	1.0074
0.920	1,1354	1.6888	18 805	39 372	691.80	1.0000
0.925	1.1369	1.8977	16.885	39.400	26 584	1.0061
0.930	1.1384	1.7068	18 965	39 428	87 204	1.0001
0.935	1.1399	1.7161	17.046	39 450	87 700	1 0039
0,940	1.1414	1.7254	17.125	39.473	68 108	1 0030
0.945	1.1429	1,7348	17.205	504.02	88 514	1.0002
0.950	1.1444	1.7443	17.285	39 517	88 007	1.0027
0.955	1.1459	1.7540	17.364	39.528	80 331	1 0019
0.960	1.1475	1.7636	17 443	30 543	80 741	1.0016
0.965	1.1490	1.7734	17.522	30 857	70.154	1.0014
0.970	1.1605	1,7833	17,801	39,569	70.562	1.0001
0.976	1.1521	1,7933	17.690	39.576	70.973	1 0005
0.980	1.1637	1.8033	17,759	39 585	71 396	1 0000
0.986	1.1652	1.8135	17.837	39,591	71,799	1,0003
0.990	1.1668	1.8237	17.916	39,599	79 019	1.0002
0.995	1.1594	1.8341	17,994	39,598	72 827	1.0000
1.000	1,1600	1 8445	18 070	50 500		1.0000

Mach No	T/t	P/p	V/Root.T	1000 Q	1000 g	A/A*
0.000	1.0000	1,0000	0.000	0.000	0.000	Infinity
0.005	1.0000	1.0000	0.100	0.349	0349	116 7425
0.010	1.0000	1.0001	0.200	D 899	0.698	67 8738
0.015	1.0000	1 0002	0.301	1 048	1.048	38 5866
0.020	1.0001	1.0003	0.401	1 307	1 397	28 0421
0.025	1.0001	1.0004	0.501	1 745	1 746	23 1668
0.030	1.0002	1.0005	0.601	2 094	2 095	10 3005
0.035	1 0002	1.0009	0.701	2443	2 445	HE EARS
0.040	1.0003	1.0011	0.802	2.791	2 794	14 4815
0.045	1.0004	1.0014	0.902	3 139	3 1 6 4	12.8757
0.050	1.0005	1.0018	1 002	3 487	8498	11 5014
0.055	1.0006	1.0021	1 102	3.834	3 843	105410
0.060	1.0007	1.0025	1 202	4182	4 192	0 6660
0.065	1.0008	1.0030	1.302	4.528	4 542	89267
0.070 4	1.0010	1.0034	1.402	4 875	4 801	8 2015
0.075	1.0011	1.0039	1,503	5 221	5 244	77491
0.080	1.0013	1.0045	1,603	5 566	5 591	72618
0.005	1.0014	1.0051	1.703	5911	5.941	6 8378
0.090	1.0018	1.0057	1.803	6 255	6 291	64919
0.095	1.0018	1.0083	1 903	6 599	S BA1	6 1247
0.100	1.0020	1.0070	2.002	8 943	8 991	58218
0,108	1.0022	1.0077	2 102	7 285	7942	6 5480
0.110	1.0024	1.0085	2 202	7 827	7 692	6 2002
0.115	1.0025	1.0093	2 302	7.969	8 043	50722
0.120	1.0028	1.0101	2.402	8 509	8 999	48643
0.125	1.0081	1.0110	2,502	8 649	8 744	46792
0,130	1.0034	1.0119	2.601	8,988	9 095	44989
0,135	1.0038	1.0128	2,701	9.326	9446	4 3337
0.140	1.0039	1.0158	2,801	9 884	9 797	41824
0.146	1.0042	1.0148	2,900	10 004	10 149	4 0418
0.150	1.0045	1.0168	3.000	10.336	10 500	3 8103
0,156	1.0048	1.0169	8.100	10.671	10.852	3 7977
0.160	1.0051	1.0160	3,199	11.005	11 203	36727
0.185	1.0084	1.0192	3.295	11.338	11 555	3 5540
0.170	1.0058	1.0204	3.398	11 670	11 908	3 4635
0.175	1.0081	1.0216	3.497	12 001	12 260	3 3660
0.180	1.0065	1.0229	3.898	12 330	12 612	3 2779
0.185	1.0068	1.0242	3.685	12 859	12 985	3 1929
0.190	1.0072	1.0268	3 795	12 087	13 318	31129
0.195	1.0078	1.0269	5.894	13.313	13.871	3.0359
0.200	1.0080	1.0285	3.993	15.699	14 024	2 9635
0.205	1.0084	1.0297	4.092	13.663	14 978	2 8947
0.210	1.0088	1.0312	4,191	14.286	14 732	2 8293
0.215	1.0092	1.0327	4.280	14.507	15 086	2 7670
0.220	1.0097	1.0343	4.389	14.928	15.440	2,7076
0.225	1.0101	1.0359	4.487	15.247	15 794	2,6509
0.230	1.0105	1.0375	4.586	15.566	18.149	2,5968
0.235	1.0110	1.0392	4.685	15.881	18,604	2.6451
0.240	1,0115	1.0409	4.783	16,190	18.859	2,4956
0.245	1.0120	1.0427	4.882	18.510	17.214	2.4482
0.250	1.0125	1 0444	4 600	10 000	17	h 4007

GAS CONSTANT =

287

GAMMA =

1.4

Mach No	T/t	Pip	Y/Root.T	1000 Q	1000 q	A/A*
0.255	1.0130	1.0463	5.079	17.133	17,925	2.3591
0.260	1.0135	1.0481	5.177	17.442	18.282	2.3173
0.265	1.0140	1.0500	5.275	17.750	18.638	2.2771
0.270	1.0146	1.0520	5.373	18.056	18.995	2.2385
0.275	1.0151	1.0539	5.471	18.361	19.352	2.2013
0.280	1.0157	1.0560	5.569	18.564	19,709	2.1858
0.285	1.0162	1.0560	5.667	18.966	20.086	2.1311
0.290	1.0168	1.0601	5.765	19.266	20.424	2.0979
0.295	1.0174	1.0623	5.862	19.564	20,782	2.0859
0.300	1.0180	1.0644	5.960	19.861	21.141	2.0351
0.305	1.0186	1.0668	6.05B	20.156	21.499	2.0053
0.310	1.0192	1.0589	6.155	20,149	21,858	1.9765
0.315	1.0198	1.0712	6.252	20.741	22,218	1.9467
0.320	1.0205	1.0735	6.350	21.031	22 577	1.9219
0.325	1.0211	1.0759	6.447	21.319	22.937	1,8959
0.390	1.0218	1.0783	6.544	21.505	23.298	1.8707
0.335	1.0224	1.0808	6.641	21.890	23.850	1.8464
0,340	1.0231	1.0833	6,738	22.173	24 020	1 8229
0.345	1.0238	1.0858	6.835	22 454	24.381	1 8001
0.350	1.0245	1.0884	6.931	22.733	24 749	1 7780
0.355	1.0252	1.0910	7 028	23.010	25 105	1 7585
0.360	1.0259	1.0937	7 124	23 284	28 467	1 7358
0.365	1 0266	1.0964	7 724	23 550	25 83/3	1 7154
0.370	1.0274	1.0992	7317	23 830	25 103	1 6981
0.375	1.0281	1.1019	7413	24 100	28 587	1 8771
0.380	1.0289	1 1048	7.509	74 388	26.921	1 6887
0.385	1.0296	1 1077	7 605	24 633	97 28M	1 8409
0.390	1.0304	1 1106	7 701	24 867	27 840	1 8224
0.395	1.0312	1.1135	7 797	25 149	28.015	1 6085
0.400	1.0320	1 1166	7 893	25 418	28 301	1 6901
0.405	1 0328	1 1196	7 988	25 678	25 747	1 5749
0.410	1.0336	1 1227	8 084	25 931	29 1 1 1	1 8507
0.415	1.0344	1 1258	8 170	28 185	20,110	1 8418
0.420	1.0353	1 1290	8.274	28 438	20 847	1 6280
0.425	1.0361	1 1323	8 369	28 888	30 218	18146
0 430	1.0370	1 1355	8 484	28 033	30 693	1 5007
0 435	10378	1 1388	6.650	57 176	30.064	1 4970
0.440	1.0387	1 1422	8.854	27 421	31 320	1.4740
0.445	1 0398	1 1458	A 748	27 682	31 890	1 48.12
0.450	1.0405	1 1401	A 843	27 900	32 080	1 4487
0.455	1.0414	1 1528	8 987	28 137	32 430	1 4365
0.460	10478	1 1581	ema	38 974	99 801	1 4348
0.485	10430	11807	0 428	20.07	49.4 95	1.4240
0.470	1 0442	1.1854	8 220	28.433	33 544	1 4019
0475	1.0461	1 1670	9.314	50 044	39.046	1 3009
0.480	1.0481	1 1708	8407	20 207	34 389	1 3905
0.485	1 0470	1 1748	9501	20 510	34 887	1 3407
0.490	10480	1 1784	8 504	20.711	34.002	1.359/
0.496	1.0490	1 1823	GREA	20.751	35.030	1.3080
0.600	1 0500	1 1992	0.704	20.000	30.408	1.0450

287

GAMMA = 1.32

2014