American Journal of Engineering Research (AJER) e-ISSN: 2320-0847 p-ISSN : 2320-0936 Volume-03, Issue-05, pp-169-179 www.ajer.org

Research Paper

The Expected Number of Real Zeros of Random Polynomial

A. K. Mansingh¹, P.K.Mishra²

¹ Department of Basic Science and Humanities, MITM, BPUT, BBSR, ODISHA, INDIA. ² Department of Basic Science and Humanities, CET, BPUT, BBSR, ODISHA, INDIA.

Abstract:- In this paper we have estimated the number of real zeros of $Q_n(Z) = \sum_{j=0}^n X_j z^j, z \in Z$ which is a random Gaussian polynomial satisfying the normal distribution with mean zero and variance one i.e. $E(X_j) = 0$ and $E(X_j)^2 = 1$ for $j \ge 0$. Much research works has been done on the same polynomial with different co-efficients satisfying the above condition and found that the expected number of zeros is approximated to $\binom{2}{\pi}\log n$ as $n \to \infty$ in the interval $(-\infty, \infty)$. Our present work is to estimate the number of zeros in the interval [0, 1] and found that the expected number of real zeros of the above polynomial under same conditions is $ENn[0,1] \sim \binom{1}{2\pi}\log n$ as $n \to \infty$. Our result gives better approximation as compared to results given by Yoshihara [6]

Keywords: - Independent identically distributed random variables, random algebraic polynomial, random algebraic equation, real roots.

INTRODUCTION

Let X₀, X₁.....X_n be a stationary Gaussian process satisfying $E(X_j) = 0$ and $E(X_j)^2 = 1$ for $j \ge 0$ as sufficient conditions. Then the expected number of real zeros of the above polynomial $Q_n(z) = \sum_{j=0}^n X_j z^j$ is $\frac{1}{2\pi} (\log n)$ as n tends to infinity. The expected number of zeros of a random trigonometric polynomial has been studied by Dunnage[1] and estimated the number of zeros in the interval [0,1] which is approximated to $(1/2\pi)\log n$ where $n \to \infty$ but in the same problem we consider a polynomial which is piece wise continuous and differentiable in the same interval and used normal distribution with mean zero and variance one and applied Gaussian process. Ibragimov and Maslova [2] had worked with same mean and variance under different conditions and had got the expected number of zeros in the same interval to the result of Dunnage [1]. Let us consider the Gaussian polynomial

 $Q_{n}(z) = \sum_{j=0}^{n} X_{j} z^{j}$ (1)

www.ajer.org

2014

Open Access

Which is a piece-wise continuous and differentiable polynomial within a closed interval [0, 1] and satisfying same conditions. Suppose that there is an interval [-b,b], $0 \le t \le \pi$, where $f(\theta)$ is uniformly approximated by the partial sums, $S_n f(\theta)$ of its Fourier series

development, and $0 \le m \le f(\theta) \le M \le \infty$, $\theta \in [-\pi, \pi]$ where m and M are the lower and upper bounds of $f(\theta)$. Then the expected number of real zeros of the above polynomial is $ENn\{[0,1]\} \sim (1/2\pi)\log n$ as $n \to \infty$.

Let the number of zeros of the above polynomial is denoted by EN_{n} . The main aim of our work is to estimate $ENn \{[0,1]\}$.

Now we have partitioning the interval [0, 1] into three different sub intervals namely I_n^{1} , I_n^{2} & I_n^{3} the details of partitions are given bellow,

$$I_{n}^{1} = \left[0, (1 - \frac{1}{\sqrt{\log n}})\right]$$
$$I_{n}^{2} = \left[(1 - \frac{1}{\sqrt{\log n}}), (1 - \frac{\log \log n}{n})\right]$$
$$I_{n}^{3} = \left[(1 - \frac{\log \log n}{n}), 1\right]$$

For $n \ge 3$,

Let N_n (a,b) be the number of sign changes of a piece-wise linear approximation to $Q_n(x)$. First we estimate $EN_n(I_n^2)$. Then at last section we have approximated $EN_n(I_n^1)$ and $EN_n(I_n^3)$ and found that the expected number of zeros of both the intervals are equivalent to $\sigma(\log n)$ as n tends to infinity

i.e. $\text{EN}_{n}(I_{n}^{1}) + \text{EN}_{n}(I_{3}^{3}) = \sigma(\log n)$

COVARIANCE ESTIMATES:

Let $k_n(x,y)=E\{Q_n(x)Q_n(y)\}$ and $r_n(x,y)=Cor\{Q_n(x), Q_n(y)\}$. We estimate $k_n(x,y)$ and $r_n(x,y)$ for x,y satisfying certain conditions. For $x \in I_n^2$ we derive upper and lower bounds for $k_n(x,x)$.

Let $T_n(\theta)$ be a trigonometric polynomial of order n with real coefficients. Suppose we define

$$T_{n}(\theta) = \sum_{v=-n}^{n} c_{v} e^{iv\theta}, \ \theta \in [-\pi, \pi] \text{ and } c_{v} \in \mathbb{R}$$

$$(2)$$

$$G(T_{n}, x) = 2\pi \left(\sum_{v=0}^{n} c_{v} x^{v} - c_{0}/2 \right)$$
(3)

Then

$$k^{a}(T_{n}, x, y) = \frac{G(T_{n}, x) + G(T_{n}, y)}{1 - xy} \qquad xy \in (0, 1]$$

$$r'(x, y) = \frac{(1 - x^{2})^{\frac{y}{2}}(1 - y^{2})^{\frac{y}{2}}}{1 - xy} \qquad x, y \in (0, 1]$$

Taking $0 \le d \le r'(x, y) \le \infty$

We estimate $k_n(x,y)$ satisfying the conditions

$$0 < d < \infty \text{ And } x, y \in I_n^2$$

We know from co-variance estimates
$$\sup_{\substack{x,y \in I_n^2\\r'(x,y) \ge d > 0}} |r_n(x, y) - r'(x, y)| \to 0 \text{ as } n \to \infty$$

For
$$\mathbf{x}, \mathbf{y} \in \boldsymbol{I}_n^1 \cup \boldsymbol{I}_n^2$$
 we have

THEOREM -1 Suppose that $f(\theta)$ can be uniformly approximated by the partial sums of its Fourier series development $f(\theta) \le A < \infty, \theta \in [-\pi, \pi]$ & f(0)>0. If there is a constant α and an integer N₀ such that $G(S_n f, x) \ge \alpha > 0$ for $n \ge N_0$, $x \in [0,1]$ Applying co-variance estimates

to find mean and variance of the series $\sum_{j=0}^{m} a_j X_j$ we have

$$E\left(\sum_{j=0}^{m} a_{j}X_{j}\right)^{2} \leq 2\pi A \sum_{j=0}^{m} a_{j}^{2} \quad \text{for } m \geq 0 \text{ and } k_{n}(x, y) = \int_{-\pi}^{\pi} \left(\sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta}\right) \left(\sum_{\nu=0}^{n} y^{\nu} e^{i\nu\theta}\right) f(\theta) d\theta$$

$$Let k(x, y) = E\left\{Q(x)Q(y)\right\} = \lim_{n \to \infty} k_{n}(x, y)$$

$$= \int_{-\pi}^{\pi} \left(1 - x e^{-i\theta}\right)^{-1} \left(1 - y e^{i\theta}\right)^{-1} f(\theta) d\theta \qquad (4)$$

$$Let T_{m}(\theta) = \sum_{\nu=-m}^{m} c_{\nu} e^{i\nu\theta} \qquad (5)$$

We have by Cauchy's residue theorem that $\int dt$

 $\int_{-\pi}^{\pi} e^{iv\theta} \left(1 - x e^{-i\theta} \right)^{-1} \left(1 - y e^{i\theta} \right)^{-1} d\theta = 2\pi x^{\nu} (1 - xy)^{-1}$

And
$$\int_{-\pi}^{\pi} e^{-i\nu\theta} \left(1 - xe^{-i\theta}\right)^{-1} \left(1 - ye^{i\theta}\right)^{-1} d\theta = 2\pi y^{\nu} (1 - xy)^{-1}$$
$$\left|h(x, y) - \int_{-b}^{b} \left(1 - xe^{-i\theta}\right)^{-1} \left(1 - ye^{i\theta}\right)^{-1} g(\theta) d\theta\right| \le C$$
(6)

Where C is a constant depending on B and b.

Taking m=n in equation (5) we have m=n and $T_n(\theta)=S_nf(\theta)$, where $S_nf(\theta)$ is the nth partial sum of the Fourier series development of $f(\theta)$. Now for x, $y \in [0,1]$ we have

$$\left| k_{n}(x, y) - k^{a}(S_{n}f, x, y) \right| \leq J_{0}$$
(7)
Where $J_{0} = J_{1} + J_{2} + J_{3} + J_{4}$ and

2014

$$J_{I} = \left| k^{a} (S_{n} f, x, y) - \int_{-b}^{b} (1 - x e^{-i\theta})^{-1} (1 - y e^{i\theta})^{-1} S_{n} f(\theta) d\theta \right|$$
(8)

$$J_{2} = \left| k(x, y) - \int_{-b}^{b} (1 - xe^{-i\theta})^{-1} (1 - ye^{i\theta})^{-1} f(\theta) d\theta \right|$$
(9)

$$J_{3} = \left| \int_{-b}^{b} \left(1 - xe^{-i\theta} \right)^{-1} \left(1 - ye^{i\theta} \right)^{-1} \left(S_{n}f(\theta) - f(\theta)d\theta \right) \right|$$
(10)

$$J_{4} = |k_{n}(x, y) - k(x, y)|$$
(11)

From the conditions of Zygmund [7] we found that there is a constant B not depending on n such that

$$\int_{-\pi}^{\pi} |S_n f(\theta)| d\theta \le B < \infty, \text{ for all } n \ge 0. \& g(\theta) = S_n f(\theta) \text{ gives } J_1 \le C < \infty$$

Where C depends on b and B & $g(\theta) = f(\theta)$ gives

Let
$$a(n) = \sup_{\theta \in [-b,b]} |S_n f(\theta) - f(\theta)|$$

By Cauchy's inequality we have

$$J_{3} \leq \frac{2\pi a(n)}{(1-x^{2})^{1/2}(1-y^{2})^{1/2}} \qquad \left| k_{n}(x,y) - k^{a}(S_{n}f,x,y) \right|$$

$$\leq C \left(1 + \frac{a(n) + x^{n+1} + y^{n+1} + (xy)^{n+1}}{(1-x^{2})^{1/2}(1-y^{2})^{1/2}} \right)$$

For $x, y \in [0,1]$ and where C is a constant depending upon b, A and B So

$$\left|k_{n}(x, y) - k^{a}(S_{n}f, x, y)\right| \leq \frac{w(n)}{\left(1 - x^{2}\right)^{1/2} \left(1 - y^{2}\right)^{1/2}}$$
(12)

Where $w(n) \to 0$ as $n \to \infty$ For $x, y \in I_n^1 \cup I_n^2$

Now
$$G(S_n f, x) = \frac{1}{2} + \sum_{\nu=1}^n r_{\nu} x^{\nu}$$
 (13)

We show that there is a constant $\alpha > 0$ and an integer N₀ such that $G(S_n f, x) \ge \alpha > 0$ when $x \in \mathbf{I}_n^2$, $n \ge N_0$ From Abel's Theorem and Titchmarsh[4] conditions we see that $G(S_n f, x)$ is uniformly convergent for $x \in [0,1]$ and

$$\lim_{x \to 1^{-}} G(S_{\infty}f, x) = \frac{1}{2} + \sum_{\nu=1}^{n} r_{\nu} = \pi f(0)$$
(14)

PRROF OF THEOREM -2 Using the two conditions $f(\theta) \le A < \infty, \theta \in [-\pi, \pi]$ and f(0)>0 of Theorem-1 and applying the uniform convergence of the series within a certain interval $S_n f(\theta) \theta \in [-\pi, \pi]$ and $\pi S_n f(0) = G(S_n f, 0)$ by adopting similar procedure as in the proof of Theorem -1 we see that $J_1=J_2=0$ holds for $x \in I_n^1 \cup I_n^2$. For some μ we construct an

www.ajer.org

2014

interval $\theta \in [-\pi, \pi]$ and $f(\theta) \ge \mu > 0$. Such an interval exists as $f(\theta)$ is continuous at $\theta=0$ and f(0)>0. We consider the case when $x \in (1-(\log n)^{-1/2}, 1)$ and x=1 separately. The following inequality holds for $x, y \in [0,1)$

 $\sup_{0 < b \le |\theta| \le \pi} \left| 1 - xe^{-i\theta} \right|^{-1} \le \left(1 - \cos^2 b \right)^{-1/2}, \pi/2 \ge b > 0 \quad \sup_{0 < b \le |\theta| \le \pi} \left| 1 - xe^{-i\theta} \right|^{-1} \le 1 \quad \text{for} \quad \pi \ge b > \pi/2 \quad \text{we}$

have

$$\sup_{0 < b \le |\theta| \le \pi} \left| \sum_{v=0}^{n} x^{v} e^{-iv\theta} \right| \text{ for } \mathbf{x} \in [0,1)$$

Substitution in k_n(x,x) with $|1 - xe^{-iv\theta}|^2$ replaced by $\left|\sum_{\nu=0}^{n} x^{\nu}e^{-i\nu\theta}\right|^2$

We got

$$\left| \mathbf{k}_{n}(\mathbf{x},\mathbf{x}) - \int_{-b}^{b} \left| \sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta} \right|^{2} f(\theta) d\theta \right| \le \mathbf{C} \quad \mathbf{x} \in [0,1]$$

$$(15)$$

Substitute $f(\theta) = 1/2\pi$ in (15) we have

$$\left|\int_{-\pi}^{\pi}\left|\sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta}\right|^{2} d\theta - \int_{-b}^{b}\left|\sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta}\right|^{2} d\theta \le C$$

$$(16)$$

Where C depends only on b and A.

By simple calculation we have

$$\int_{-\pi}^{\pi} \left| \sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta} \right|^{2} d\theta = 2\pi \sum_{\nu=0}^{n} x^{2\nu}, \ x \in [0,1]$$
(17)

$$\int_{-b}^{b} \left| \sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta} \right|^2 d\theta \sim 2\pi \sum_{\nu=0}^{n} x^{2\nu}, \mathbf{n} \to \infty$$
(18)

and $x \in [1 - (\log n)^{-1/2}, 1]$.

From our construction of [-b,b] we have

$$\int_{-b}^{b} \left| \sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta} \right|^{2} f(\theta) d\theta \ge \mu \int_{-b}^{b} \left| \sum_{\nu=0}^{n} x^{\nu} e^{-i\nu\theta} \right|^{2} d\theta$$

$$\tag{19}$$

So the desired result follows for $x \in [1 - (\log n)^{-1/2}, 1]$. When x=1 we have

$$k_n(1,1) = n+1+2\sum_{j=1}^n (n-j+1)r_j = 2\pi(n+1)\sigma_n f(0)$$
(20)

www.ajer.org

Page 173

Where $\sigma_n f(\theta)$ is the nth Cesaro sum associated with $f(\theta)$. As $f(\theta)$ is continuous at $\theta=0$ we have $\sigma_n f(0) \rightarrow f(0)$ as $n \rightarrow \infty$. Hence we

have
$$E\left(\sum_{j=0}^{m} a_{j} x_{j}\right)^{2} = \int_{-\pi}^{\pi} \left(\sum_{\nu=0}^{m} a_{\nu} e^{-i\nu\theta}\right) \left(\sum_{\nu=0}^{m} a_{\nu} e^{i\nu\theta}\right) f(\theta) d\theta$$

given that $f(\theta) \le A < \infty$. Then by using Cauchy's inequality we have

$$E\left(\sum_{j=0}^{m}a_{j}x_{j}\right)^{2} \leq A\int_{-\pi}^{\pi}\left|\sum_{\nu=0}^{m}a_{\nu}e^{-i\nu\theta}\right|^{2}d\theta$$
(21)

By simple calculation we have

$$\int_{-\pi}^{\pi} \left| \sum_{\nu=0}^{m} a_{\nu} e^{-i\nu\theta} \right|^2 d\theta = 2\pi \sum_{j=0}^{m} a_j^2$$
(22)

GENERAL APPROXIMATION FORMULA : - For $x \in [a, b]$ we approximate $Q_n(x)$ by a process which linearly interpolates between $Q_n(a)$ and $Q_n(b)$. It is convenient to count the sign changes of this process in [a,b] by

$$N_n(a,b) = \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \operatorname{sgn}\left\{Q_n(a)Q_n(b)\right\}$$
(23)

Where $sgn{x} = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$

The results of this section depend on an upper bound for the number of zeros of $Q_n(x)$ in an interval [a,b]. Define the event

$$U_k = Q_n(x)$$
 has k more zeros in [a, b] (24)

For any interval $[a,b] \subseteq [0,1]$ let

$$\gamma = (b-a)(1-b)^{-1}, \quad b \in [0,1-(n+1)^{-1}], \quad \text{and}$$

 $\gamma = (n+1)(b-a), \quad b \in [1-(n+1)^{-1},1],$

LEMMA -1 let $\gamma < 2^{-30}$ and

(i) $f(\theta)$ is continuous at $\theta=0$

(ii)
$$f(0) > 0$$

(iii)
$$f(\theta) \le A < \infty, \theta \in [-\pi, \pi]$$

Then there is an integer N_1 and an absolute constant C such that

 $P(U_k) < C\gamma^{3k/5}$ $n \ge N_1$ $k \ge 0$

COROLLARY-1 Under the conditions of Lemma-1 we have

$$EN_n(a,b) - EN_n([a,b]) | < C\gamma^{6/5}, n \ge N_1$$

Where C is an absolute constant.

Now we have to estimate the number of zeros in the three sub intervals.

(A). ESTIMATION OF NUMBER OF ZEROS IN THE INTERVAL:- \boldsymbol{I}_{n}^{1}

LEMMA -2 Let X₀, X₁.....X_n be a set of n points satisfying $E(X_j) = 0$ and $E(X_j)^2 = 1$ for $j \ge 0$.

(i)Let us consider a function $f(\theta)$ which is uniformly approximated by the partial sums, $S_n f(\theta)$ in the interval $[-\pi,\pi]$

(ii) In the interval $0 \le m \le f(\theta) \le M \le \infty$ and $\theta \in [-\pi, \pi]$ where m and M are the lower and upper bounds of $f(\theta)$. Then expected number of real zeros in the interval

$$I_n^{-1} = \left[0, \left(1 - \frac{1}{\sqrt{\log n}}\right) \right] \text{ is } ENn(\boldsymbol{I}_n^{-1}) \le \left(C^{1/2} / 2\pi\right) \log \log n \quad n \ge 2$$

$$(25)$$

Where C is a finite constant

PROOF: - From the Kac-Rice [3] formula and using the postulates of Shankar [4] which states that

$$EN_{n}([a,b]) = (\frac{1}{\pi}) \int_{a}^{b} C_{n}^{1/2} B_{n}^{-1/2} (1 - R_{n}^{2})^{2} dx$$
(26)

$$B_{n} = E(Q_{n}(x))^{2}, C_{n} = E(Q_{n}'(x))^{2}$$
(27)

$$R_n = Cor(Q_n(x), Q_n'(x))$$
(28)

Where
$$\frac{\mathrm{d}}{\mathrm{d}x}Q_n(x) = Q_n^{\prime}(x)$$

Now we have to find an upper bound for C_n/B_n with $x \in \prod_{n=1}^{n}$

We represent $B_n = k_n(x,x)$ by Noting that $f(\theta) \ge m > 0, \theta \in [-\pi,\pi]$ and applying Lemma-1 gives $B_n \ge 2\pi n \sum_{\nu=0}^n x^{2\nu}$ for $x \in [1,0]$ From Lemma-2 we have $C_n \le 2\pi A \left(\sum_{\nu=1}^n \nu^2 x^{2(\nu-1)} a_\nu e^{i\nu\theta} \right)$ summing $\sum_{\nu=1}^n x^{2\nu}$ and using that $\sum_{\nu=1}^n \nu^2 x^{2(\nu-1)} \le 2(1-x^2)^{-3}$ $x \in [0,1)$ (29)

$$C_{n}/B_{n} \leq (2A/m)(1-x^{2(n+1)})^{-1}(1-x^{2})^{-2}$$

$$x^{2(n+1)} < 1, x \in \prod_{n=1}^{n} \text{ for } n \geq 2$$
(30)

and
$$\sup_{x \in \mathbf{I}_n^l} x^{2(n+1)} \to 0, x \in \mathbf{I}_n^l as \quad n \to \infty$$
 We deduce that $(1 - x^{2(n+1)})^{-1}$ is bounded above by a constant. So

$$C_n/B_n \le (1-x)^{-2}$$
 $n \ge 2$ and $x \in \mathbf{I}_n^1$ (31)

Substituting the value of C_n/B_n and using the relation $(1 - R_n^2) \le 1$ gives the expected number of zeros in the interval \mathbf{I}_n^1 is $ENn(\mathbf{I}_n^1) \le (C^{1/2}/2\pi)\log\log n$ for $n \ge 2$ (32) Hence the theorem is proved.

LEMMA-3 Let X₀, X₁.....X_n be a set of n stationary points satisfying $E(X_j) = 0$ and $E(X_j)^2 = 1$. for $j \ge 0$ Suppose that (i) there is an interval $[-\pi, \pi]$ and there is a constant

 α such that $\frac{1}{2} + \sum_{j=1}^{n} r_j x^j \ge \alpha > 0$ $x \in [0,1]$ $n \ge N_0$, for some integer N₀ there is a

constant C such that

$$EN_n(\boldsymbol{I}_n^1) \leq \left(\frac{C^{1/2}}{2\pi}\right) \log \log n \text{ for } n \geq N_5$$

PROOF: To find an upper bound for C_n/B_n , $x \in I_n^1$ and applying Lemma-1 and Lemma-2 we have $G(S_n f, x) = \frac{1}{2} + \sum_{j=1}^n r_j x^j \ge \alpha > 0$ for $n \ge N_0$ (33)

Let N_n be any integer

So the conditions of Theorem-2 are satisfied. From Theorem-2 and any $C \in (0,1)$ we have an integer N₄ such that

$$B_n = k_n(x, x) > CK^a(S_n f, x, x), \quad n \ge N_4 \quad \& \ x \in \prod_n^1$$
(34)
Where C being any constant and $C \in (0, 1)$

From LEMMA-2 we have

$$K^{a}(S_{n}f, x, x) = 2 \frac{G(S_{n}f, x)}{1 - x^{2}}$$

But $G(S_{n}f, x) \ge \alpha > 0$ for $n \ge N_{0}$. So
 $B_{n} > \frac{2\alpha C}{1 - x^{2}}, n \ge N_{5} = \max(N_{0}, N_{4})$ (35)

In the same way as in Lemma- 2 we have

 $B_n/C_n \le (1-x)^{-2}$, $n \ge N_5 = \max(N_0, N_4)$. Then the expected number of zeros in the interval $\prod_{n=1}^{3}$ is

$$EN_{n}\left(\boldsymbol{I}_{n}^{1}\right) \leq \left(\frac{C^{1/2}}{2\pi}\right) \log \log n \text{ for } n \geq N_{5}$$
(36)

Hence the theorem is proved.

LEMMA-4 Let $(Z_j, j \ge 0)$ be a stationary sequence of uniformly mixing random variables with zero mean and

(i) $E \left| Z_{j} \right|^{2+\delta} < \infty \text{ for } \delta > 0$ (ii). $E \left(\sum_{j=0}^{n} Z_{j} \right)^{2} \to \infty \text{ as } n \to \infty$

Then there exists a constant C such that

$$E\left|\sum_{j=0}^{n} Z_{j}\right|^{2+\delta} \leq C\left|E\left(\sum_{j=0}^{n} Z_{j}\right)^{2}\right|^{1+\delta/2}$$

THEOREM-2 Let X_0, X_1, \dots, X_n be a set of n stationary real-valued uniformly mixing Gaussian process with $E(X_j) = 0$ and $E(X_j)^2 = 1$ for $j \ge 0$ satisfying (i)

 $\sum_{k=1}^{\infty} \phi^{1/2}(k) < \infty$ and (ii) $f(\Theta) > 0$ and also satisfied by the sequence $\{(-1)^{j} X_{j}, j \ge 0\}$.

We have $EN_n(I_n^1) \le C(\log n)^{1/2} \log \log n$ Where C is a constant

Where C is a constant.

PROOF: Choose C such that

 $P(|X_0| \ge c) = q < 1 \text{ and Choose the events } B_0 = (|X_0| < c) \text{ and } B_k = (|X_0| < c..., |X_{k-1}| < c, |X_k| \ge c) \text{ and } k = 1,...,n.$ $B = (|X_0| < c..., |X_n| < c)$ Let 0 < r < R.

Using the argument of Ibragimov and Maslova[2] $W_{1} = 14$

We obtain.

$$EN_{n}([-r,r]) \leq \sum_{k=1}^{n} kP(B_{k}) + nP(B) + (\log R/r)^{-1} \sum_{k=0}^{n} \int_{B_{k}} H_{s}dP \text{ Where}$$

$$H_{s} = \log\left(\sup_{0 \in [-\pi,\pi]} (k!c)^{-1} \left| Q_{n}^{(k)}(\mathbf{R}_{e}^{i\theta}) \right| \right)$$
(37)

Here $Q_n^{(k)}(x)$ is the kth derivative of $Q_n(x)$ with respect to x. We estimate P(B_k) and P(B)

Define a sequence of random variables $(Z_k, k=0, n)$ by

$$Z_{k} = \begin{cases} 1 - q & |\mathbf{X}_{k}| \ge c \\ -q & |\mathbf{X}_{k}| < c \end{cases}$$

Now for k=1....n we have

$$B_{k} = \left(\left(\sum_{j=0}^{k=1} Z_{j} = -kq \right) \cap \left(Z_{k} = 1-q \right) \right) and$$

 $B_0 = (Z_0 = 1 - q)$

We show that the conditions of Lemma-4 are satisfied by $(Z_k, k \ge 0)$ with $\mathcal{S} = 4$ Clearly $(Z_k, k \ge 0)$ is a stationary sequence of uniformly random variables with mixing coefficient $\phi(j)$.

Using Ibragimov [2] and $\sum_{j=1}^{\infty} \phi^{1/2}(j) < \infty$ (38)

gives
$$E\left(\sum_{j=0}^{n-1} Z_j\right)^2 \sim n \quad as \quad n \to \infty$$
 (39)

So condition (i) & (ii) is satisfied. Using, Markov's inequality and Lemma-4 with $\delta = 4$ gives

$$P(B_k) \le P\left(\left|\sum_{j=0}^n Z_j\right| \ge kq/2\right) < C/k^3 \text{ for } C < \infty \text{ and } k \ge 1 \text{ And } \sum_{k=1}^\infty kP(B_k) < \infty$$

2014

In the same way

$$P(B) \le P\left(\left|\sum_{j=0}^{n} Z_{j}\right| \ge q(n+1)/2\right) < C/n^{3}, C < \infty$$

$$\tag{40}$$

And $nP(B) \rightarrow 0$, $n \rightarrow \infty$

We estimate the final term in using the method of Ibragimov and Maslova [2] $\int_{B_k} H_s dP \leq P(B_k) \log w_k + P(B_k) \log T + C(1+i_0) \exp(-i_0)$ (41)

Where C is a constant, $i_0 = \ln(T)$ and T>0 Then

$$W_{k} = E\left(\sum_{j=k}^{n} \frac{j(j-1)...(j-k+1)R^{j-k}}{k!c} |X_{j}|\right) \text{ Taking T to be the following function of k}$$
$$T = \begin{cases} 1, \quad k = 0\\ k^{1+\varepsilon}, \quad k \ge 1 \qquad \text{for} \quad \varepsilon > 0 \qquad \text{using Kac-rice formula and noting that} \end{cases}$$

$$W_k < C(1-R)^{-k-1}c^{-1}$$
 $0 \le R < 1$ we have

$$\sum_{k=0}^{n} \int_{B_{k}} H_{s} dP \leq \left(\log \frac{C}{1-R}\right) \left(\sum_{k=0}^{n} (k+1)P(B_{k})\right) + (1+\varepsilon) \sum_{k=0}^{n} (\log k)P(B_{k}) + D \sum_{k=1}^{n} \frac{1+(1+\varepsilon)\log k}{k^{1+\varepsilon}} - \log c \right)$$

On Substituting $r = 1 - (\log n)^{-1/2}$ and $R = 1 - 1/2 (\log n)^{-1/2}$ in the above equation we get the expected number of real zeros in the interval I_n^{-1} is $(C^{1/2} / 2\pi)\log \log n$ for $n \ge 2$ where C and D are constants

(B) ESTIMATION OF NUMBER OF ZEROS IN THE INTERVAL:- $(I_{..}^{2})$

To find out the expected number of zeros in the interval

number
$$I_n^2 = \left[(1 - \frac{1}{\sqrt{\log n}}), (1 - \frac{\log \log n}{n}) \right]$$

Let the expected number of zeros of the above interval is denoted by $EN_n(I_n^2)$

LEMMA -5 Suppose that $0 < b \le \pi$ If

(i) $f(\theta)$ can be uniformly approximated in [-b,b] by the partial sums of its Fourier series development, $S_n f(\theta)$

(ii)
$$f(0) > 0$$

(iii) $f(\theta) \le A < \infty, \theta \in [-\pi, \pi]$
Then $EN_n(\prod_n^2) \sim (1/2\pi) \log n \text{ as } n \to \infty$

(C) ESTIMATION OF NUMBER OF ZEROS IN THE INTERVAL (\boldsymbol{J}_{n}^{3}) :-

LEMMA -6 If

- (i) $f(\theta)$ is continuous at $\theta = 0$
- (ii) $f(\theta) > 0$
- (iii) $f(\theta) \le A < \infty, \theta \in [-\pi, \pi]$

Then there is a constant and an integer N₆ such that

$$EN_n\left(\prod_n^3\right) < C(\log\log n)^{7/5}, \qquad n \ge N_6$$

THEOREM -3 Let X_0, X_1, \dots, X_n be a set of n points satisfying $E(X_j) = 0$ and $E(X_j)^2 = 1$. For $j \ge 0$. Suppose that there is an interval [-b, b], $0 \le x$, where $f(\Theta)$ is continuous at $\theta = 0$,

 $\theta \in [-\pi, \pi]$, Then expected number of real zeros in the interval $I_n^3 = \left[(1 - \frac{\log \log n}{n}), 1 \right]$ is

$$EN_n(\boldsymbol{I}_n^3) < C(\log \log n)^{7/5} \qquad n \ge N_6$$

Where C is a finite constant

PROOF : Now we have to find an upper bound for C_n/B_n with $x \in \prod_{n=1}^{3}$ using Kac-Rice

formula
$$C_n/B_n \le (2A/m)(1-x^{2(n+1)})^{-1}(1-x^2)^{-2}$$
 So
 $C_n/B_n \le (1-x)^{-2}$ $n \ge 2$ and $x \in \mathbf{I}_n^3$

Substituting for C_n/B_n in the above equation and n taking the help of the inequality $(1 - R_n^2) \le 1$ the expected number of zeros in the interval $\prod_{n=1}^{3} I_n$ is $EN_n(\prod_{n=1}^{3}) < C(\log \log n)^{7/5}$ $n \ge N_6$.

Hence the theorem is proved.

REFERENCES

- [1] **Dunnage, J.E.A.** The number of real zeros of a class of random algebraic polynomials (I), *Proc.* London Math. Soc. (3) 18 (1968), 439-460.
- [2] **Ibragimov, I.A. and Maslova, N.B.** The average number of real roots of random polynomials, *Akad. Nauk. SSSR. (199), (1971). 13-16.*
- [3] **Kac, M. Rice, S.O.** On the average number of real roots of random algebraic equation (II), proc. Londan. Math. Soc.(1949), 390-408.
- [4] **Shenker, M.** The mean number of real zeros of one class of random polynomials, *Annals of Prob. 9 (1981), 510-512.*
- [5] **Titchmarsh, E.C.** "Theory of Functions", 2nd edn, *The English language Book Society, Oxford University Press, 1939.*
- [6] **Yoshihara, G.** (1979). The average number of real zeros of a random algebraic equation. *Bull.Amer. Math. Soc.* 54, 125-134.
- [7] **Zygmund, V.** (1969) On the average number of real roots of a random algebraic efunctions. *Proc. London Math. Soc. 11*, 238-345.

2014