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Abstract: - The web may be viewed as a directed graph. A HTML page can be treated as node and hyperlink as 
an edge from one node to another this will form a directed graph. But the nature of this graph is evolving with 

time, so we require evolving graph model. The Gn,p and Gn,N are static models. In these models, graph G = (V,E) 

is not changing with time. Sometimes we need a graph model which is time evolving Gt = (Vt,Et). There are two 

characteristic functions of evolving graph model [5] first gives the number of vertex added at time t+1, whereas 
second gives set of edges added at time t+1. Evolving copying model is different from traditional Gn,p in the 

following: 

1. Independently chosen edges do not show the results found on the web. 

2. This model captures the evolving natures of web graph. 

In this paper we review some recent work on generalizations of the random graph aimed at correcting these 

shortcomings. We describe generalized random graph models of both directed and undirected networks that 

incorporate arbitrary non-Poisson degree distributions, and extensions of these models that incorporate 

clustering too. We also describe two recent applications of random 

graph models to the problems of network robustness and of epidemics spreading on contact networks. This 

paper studies the random graph models. Concentration is made over the paper stochastic models for web graph 

by Ravi Kumar et. al. [5]. During the proof of the results given in the paper some more precise results have been 
found. Some of results are here which can be compared with results of the papers. The improvements are 

presented here along with results in the original paper for comparison. 

 

Keywords: - Random Graph, Martingale, Web Graph. 

 

I. INTRODUCTION 
Definition 1. A HTML page can be treated as node and hyperlink as an edge from one node to another this will 

form a directed graph called web graph. 

At present this web graph has billion vertices [5], and an average degree of about 7. In this thesis we 

discuss different random graph models. These observation suggest that web is not well modelled by traditional 

models such as Gn,p. A lot of models for the random graph have been proposed like Gn,p and Gn,N models [6] 

etc. These models do not ensure the power-law for degree of vertices and do not explain the abundance of 

bipartite cliques observed in the web graph. The copying graph model [5] explains these and also covers the 

evolving nature of the web graph. 

Evolving copying model is different from traditional Gn,pin the following: 
(a) Independently chosen edges do not show the results found on the web. 

(b) This model captures the evolving natures of web graph. 

In this model during every time interval one vertex arrives. At time step t, a single vertex u arrives and the i-th 

out-link of u is then chosen as follows. With probability α, the destination is chosen uniformly at random from 

Vt, with remaining probability the outlink is taken to be the ith outlink of prototype vertex p. where Vt is set of 

vertex at time t. 
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A. Problem Definition 

The problem is to develop random graph model that explain the different nature of web graph. We have to study 

probabilistic techniques, different models for random graph and find more results based on the models 

 

B. Related Work  

The "copying" model analysed in this thesis were first introduced by Kleinberget. al. [4]. Motivated by 

observations of power-laws for degrees on the graph 

of telephone calls, Aiello, Chung, and Lu [1] propose a model for "massive graph"(Henceforth the "ACL 

model"). In 2000, Ravi Kumar et. al. proposed a numberof models in his paper "Stochastic models for the web 
graph" [5]. This thesis hassome more precise results, and also the proof of different results available in thepaper 

"Stochastic models for the web graph". 

 

C. Contribution  

(1) The web graph is so large that the study of different nature of this graph is difficult without a good modeling. 

(2) The evolution of different social networking site can be explained with the help of this modeling. 

 

D. Results and Organization 

Results in Paper Mywork done 

|E[Nt,0|Nt-k,0]- E[Nt,0|Nt-

(k+1),0]|≤ 2 

 

|E[Nt,0|Nt-k,0]- E[Nt,0|Nt-

(k+1),0]|≤ 1 

 
t+α

1+α
-α2-ln 𝑡 ≤ E[Nt,0]≤ 

t+α

1+α
 E[Nt,0] =

t

1+α
 

Pr| Nt,0 - E[Nt,0]≥ l| ≤ exp (-
𝑙∗𝑙

4𝑡
) 

 

Pr| Nt,0 - E[Nt,0]≥ l| ≤ exp (-𝑙∗𝑙
2𝑡

) 

 E[Nt,0]=  𝑆𝑗, 0𝑡−1
𝑗=0   = 

t

1+α

t

1+α
 

 Pt = lim𝑡→∞

 E[Nt,0]

𝑡
 = 

1

1+α
 

|E[Nt,i|Nt-k,iNt-k,i-1] - 

|E[Nt,i|Nt-(k-1),iNt-(k-1),i-1]| ≤ 2 

|E[Nt,i|Nt-k,iNt-k,i-1] - |E[Nt,i|Nt-

(k-1),iNt-(k-1),i-1]| ≤ 1for Nt-k,I = 

Nt-(k+1),i 

 

II. PROBABILISTIC TECHNIQUES 
Preliminaries 

We define a discrete probability space (Ω, 𝑝) where Ω is discrete (finite or countable infinite) set and 𝑝 is 

probability such that 

𝑃: Ω → [0,1]means∀ ω ϵ Ω  𝑝 (ω) ϵ [0, 1] and 

 𝑝 𝜔 = 1
𝜔

 

In this thesis we will discuss only discrete probability spaces. 

Definition 2. Given  Ω, 𝑝 , 𝐵 ⊆ Ω, Define conditional probability over (Ω, 𝑝(𝐵))as follows. 

  𝑝 𝜔 𝐵  =   
0 𝑖𝑓 𝜔 ∉ 𝐵,
𝑝(𝜔)

𝑝(𝐵)
 𝑖𝑓 𝜔𝜖𝐵

  

Where 𝑝 𝜔 𝐵   is the probability of happening of ω when B has already happened? 
Now the probability of happening of A when B has already happened is denoted by P(A|B) and is given by 

𝑃 𝐴 𝐵 =  𝑝(𝜔|𝐵)
𝜔𝜖𝐴

 

   

=  𝑝 𝜔|𝐵 +  𝑝 𝜔|𝐵 

𝜔𝜖𝐴⋂𝐵𝜔𝜖𝐴⋂𝐵𝐶

 

= 0 +  𝑝 𝜔|𝐵 

𝜔𝜖𝐴⋂𝐵

 

=  
𝑝(𝜔)

𝑃(𝐵)
𝜔𝜖𝐴⋂𝐵

 

        =
1

𝑝(𝐵)
 𝑝 𝜔 𝜔𝜖𝐴⋂𝐵  
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⇒ 𝑃 𝐴 𝐵 =
𝑝(𝐴⋂𝐵)

𝑝(𝐵)
 

 

Expectation of Random Variable 

Expectation of a random variable is its basic characteristic. The expectationof random variable is weighted 

average of the values it assumes, where each valueis weighted by the probability that the variable assumes that 

value. 

Definition 3. A random variable X is a real-valued function over the sample space Ω; that is X :Ω → R. The 

expectation of random variable X is defined as 

𝐸{𝑋} =  𝑋 𝜔𝑗  𝑝(𝜔𝑗 )
𝑗

 

The expectation is finite If  𝑗 |𝑋𝜔 𝑗
|𝑝(𝜔𝑗 )converges; otherwise, the expectationis unbounded. 

For example:A random variable X that takes the values 2𝑗  with probability 
1

2𝑗  for j = 1,2,…… 

The expectation of X 

𝐸 𝑋 =  
1

2𝑗

∞

𝑗 =1

2𝑗 → ∞ 

Here the expectation is unbounded. 

 

Conditional Expectation 

Definition 4.The conditional expectation [3] of X relative to B is defined whenP{B} > 0 as 

𝐸 𝑋 𝐵 =  𝑋 𝜔𝑗  𝑝(𝜔𝑗 |𝐵)
𝑗

 

Definition 5.Let (𝛺1; p1) and (𝛺2; p2) be probability distributions and (Ω; p) iscalled the joint  distribution of 

them if the following conditions are satisfied. 

 𝑝(𝜔1 , 𝜔2 ) = 1
(𝜔1 ,𝜔2)𝜖Ω

 

 𝑝(𝜔1 , 𝜔2 ) = 𝑃2

𝜔1

𝜔2 = 𝑝(𝜔2) 

 𝑝(𝜔1 , 𝜔2) = 𝑃1

𝜔2

𝜔1 = 𝑝(𝜔1 ) 

where 

Ω = Ω1 × Ω2 =  (𝜔1 , 𝜔2 |𝜔1𝜖Ω1 , 𝜔2𝜖Ω2} 
 

Definition 6.Two random variable X and Y are independent if and only if 

𝑃𝑟  𝑋 = 𝑥 ∩  𝑌 = 𝑦  = 𝑃𝑟 𝑋 = 𝑥 . 𝑃𝑟(𝑌 = 𝑦) 

for a values of x and y. Similarly, random variables X1,X2,…,Xk are mutuallyindependent if and only if, for any 

subset I ⊆ [1, k] and any values xi, i𝜖I,   

𝑃𝑟  𝑋𝑖 = 𝑥𝑖

𝑖𝜖𝐼

 =   𝑃𝑟(
𝑖𝜖𝐼

𝑋𝑖 = 𝑥𝑖) 

If the events  𝜉𝑖  and 𝜉𝑗  are pairwise independent then    

 

𝑃𝑟 𝜉𝑖 𝜉𝑗  = 𝑃𝑟[𝜉𝑖]  

for all i≠j 

Proof. 

𝑃𝑟 𝜉𝑖 𝜉𝑗  =  
𝑃𝑟[𝜉𝑖 ∩ 𝜉𝑗 ]

𝑃𝑟[𝜉𝑗 ]
 

  =
Pr[𝜉𝑖|Pr|𝜉𝑗 ]

Pr[𝜉𝑗 ]
= Pr[𝜉𝑖] 

 

Linearity of Expectation 

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌] 
Proof. 
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𝐸 𝑋 + 𝑌 =   𝑥 + 𝑦 𝑝(𝑋, 𝑌)
(𝑥 ,𝑦)𝜖ℝ×ℝ

 

=    𝑥 + 𝑦 Pr((𝑋 = 𝑥) ∩
𝑦𝑥

(𝑌 = 𝑦)) 

=   𝑥𝑃𝑟  𝑋 = 𝑥 ∩  𝑌 = 𝑦  +
𝑦𝑥

  𝑦𝑃𝑟  𝑋 = 𝑥 ∩  𝑌 = 𝑦  

𝑦𝑥

 

=  𝑥𝑃𝑟 𝑋 = 𝑥 +  𝑦𝑃𝑟 𝑌 = 𝑦 

𝑦𝑥

 

= 𝐸 𝑋 + 𝐸[𝑌] 
General form 

𝐸   𝑋𝑖

𝑛

𝑖=1

 =  [𝑋𝑖]

𝑛

𝑖=1

 

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 
Proof. 

𝐸 𝑎𝑋 + 𝑏 =   𝑎 𝑋 = 𝑥 + 𝑏 Pr 𝑋 = 𝑥 

𝑥𝜖ℝ

 

= 𝑎  𝑋 = 𝑥 Pr 𝑋 = 𝑥 + 𝑏
𝑥𝜖ℝ

 Pr 𝑋 = 𝑥 

𝑥𝜖ℝ

 

= 𝑎𝐸 𝑋 + 𝑏. 1 

= 𝑎𝐸 𝑋 + 𝑏 
If X and Y are two independent random variables, thenE[X,Y] = E[X].E[Y ] 

 

Bernoulli Random Variable  

If we run an experiment such that it succeedswith probability p and fails with probability (1-𝑝). Let Y be a 

randomvariable such that                     

𝑌 =  
1 𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑤𝑝 𝑝,

     0 𝑖𝑓 𝑓𝑎𝑖𝑙𝑠 𝑤𝑝 (1 − 𝑝)
  

Here the random variable Y is called a Bernoulli random variable. 

Theorem 1. The expectation of Bernoulli random variable is same as the probability of success of the random 

variable. 

Proof. 

E[Y] = 1. 𝑝 + 0. (1 - 𝑝) = 𝑝 

  ⇒     E[Y] =Pr[Y=1] 

Binomial Distribution Consider a sequence of n independent experiments,each of which succeeds with 

probability 𝑝. If we represents X as numberof successes in n experiments then X has a binomial distribution. 

Definition 7. A binomial random variable X with parameters n and 𝑝, denotedby 𝐵(𝑛, 𝑝)is defined by following 

probability distribution on 𝑗 = 0,1,2,… . , 𝑛: 

𝑃𝑟 𝑋 = 𝑗 =  
 
𝑛

𝑗
 𝑝𝑗 (1 − 𝑝)𝑛−𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   𝑘𝜖{0,1,2, … . 𝑛} 

Theorem 2.The expectation of binomial random variable is 𝑛𝑝. 
Proof. The binomial random variable X can be expressed as the sum of Bernoulli random variables. 

𝑋 =  𝑋𝑖

𝑛

𝑖=1

 

𝐸 𝑋 = 𝐸   𝑋𝑖

𝑛

𝑖=1

 =  𝐸[𝑋𝑖]

𝑛

𝑖=1

 

 from Linearity of expectation 

 𝑝

𝑛

𝑖=1

 

from expectation of Bernoulli random variable 

= 𝑛𝑝 
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Geometric Distribution 

Sequence of independent trials until the first success is found where each trialsuccess with probability 𝑝, This 

gives an example of geometric distribution. 

A geometric random variable X with parameter 𝑝 is given by following probabilitydistribution on 𝑛 = 0,1,2,…. 

Pr 𝑋 = 𝑛 = (1 − 𝑝)(𝑛−1). 𝑝 

For geometric random variable X equals 𝑛 there must be 𝑛 − 1 failures followedby a success. 

Definition 8.  
1

𝑡
= ℍ(𝑛)𝑛

𝑖=1 called the harmonic number  = ln 𝑛 + Θ 1 . 

Proof. Since 
1

𝑖
 is monotonically decreasing function, we can write ln 𝑛 = ∫

1

𝑘
≤  

1

𝑘

𝑛
𝑘=1

𝑛

𝑥=1
 

⟹  
1

𝑘
≤  

1

𝑘
= ln 𝑛

𝑛

𝑥=1

𝑛

𝑘=2

 

⇒ ln 𝑛 ≤ ℍ(𝑛) ≤ ln 𝑛 + 1 

⇒ ℍ 𝑛 = 𝑛 ln 𝑛 + Θ 𝑛  

Theorem 3.The expectation of geometric random variable is 
1

𝑝
 

Proof. 

𝐸 𝑋 =  𝑖. (1 − 𝑝)𝑖−1

∞

𝑖=1

. 𝑝 

= 𝑝.  𝑖. (1 − 𝑝)𝑖−1

∞

𝑖=1

 

= 𝑝.  𝑖. 𝑡𝑖−1

∞

𝑖=1

     (∵ 1 − 𝑝 = 𝑡 0 < 𝑡 < 1) 

= 𝑝. (1 + 2𝑡 + 3𝑡2 + 4𝑡3 + ⋯ ) 

= 𝑝.
1

(1 − 𝑡)2
= 𝑝

1

𝑝2
=

1

𝑝
 

{∵ 𝑓 𝑥 = 1 + 2𝑡 + 3𝑡2 + 4𝑡3 + ⋯ =
1

1 − 𝑡
      𝑠𝑢𝑚 𝑜𝑓 𝐺. 𝑃. 

𝑓′ 𝑥 = 1 + 2𝑡 + 3𝑡2 + 4𝑡3 + ⋯ =
1

(1 − 𝑡)2
} 

Markov's Inequality 

Let X be a random variable assumes only non-negative values the for all 𝑡 > 0 

Pr[𝑋 ≥ 𝑡] ≤
𝐸[𝑋]

𝑡
 

Proof.  𝐸 𝑋 =  𝑥𝑃𝑟(𝑋 = 𝑥)𝑥𝜖ℝ  

≥  𝑥𝑃𝑟(𝑋 = 𝑥)
𝑥≥𝑘

 

≥  𝑘𝑃𝑟(𝑋 = 𝑥)
𝑥≥𝑘

 

𝐸 𝑋 ≥  𝑘𝑃𝑟 𝑋 = 𝑥 

𝑥≥𝑘

= 𝑘𝑃𝑟(𝑋 ≥ 𝑘) 

𝐸[𝑋] ≥ 𝑘𝑃𝑟(𝑋 ≥ 𝑘) 

𝑃𝑟(𝑋 ≥ 𝑘) ≤
𝐸[𝑋]

𝑘
 

⟹ 𝑃𝑟(𝑋 ≥ 𝑡) ≤
𝐸[𝑋]

𝑡
 

Chebyshev's Inequality 

Pr(|𝑋 − 𝐸 𝑋 | ≥ 𝑡) ≤
𝑉𝑎𝑟[𝑋]

𝑡2
 

Proof. 

Pr  𝑋 − 𝐸 𝑋  ≥ 𝑡 = Pr((|𝑋 − 𝐸 𝑋 )2| ≥ 𝑡2) 

≤
(𝑋 − 𝐸 𝑋 )2

𝑡2
 

=
𝑉𝑎𝑟[𝑋]

𝑡2
 

Since (𝑋 − 𝐸 𝑋 )2 is a non-negative random variable, we can apply Markov'sinequality. 
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Jensen's Inequality 

If f is a convex function, then 𝐸[𝑓 𝑋 ] ≥ 𝑓(𝐸 𝑋 )| 
Proof. Suppose 𝑓  has a Taylor series expansion. Expending 𝜇 = 𝐸 𝑋 and usingthe Taylor series expansion with 

a remainder term, yields for some 𝑎. 

𝑓 𝑥 = 𝑓 𝜇 + 𝑓′ 𝜇  𝑥 − 𝜇 +
𝑓′′ 𝑎 (𝑥 − 𝜇)2

2
 

≥ 𝑓 𝜇 + 𝑓′ 𝜇  𝑥 − 𝜇   (∵ 𝑓′′(𝑎) ≥ 0 𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦. ) 

𝑓(𝑥) ≥ 𝑓 𝜇 + 𝑓′ 𝜇  𝑥 − 𝜇  
Taking expectation on both sides 

𝐸 𝑓 𝑥  ≥ 𝑓 𝜇 + 𝑓′ 𝜇 𝐸  𝑥 − 𝜇  = 𝑓(𝜇) 

𝐸[𝑓 𝑥 ] ≥ 𝑓(𝐸 𝑋 ) 

Martingale 

𝝈- field 

Definition 9.A 𝜎- field(𝛺, 𝔽) consists of a sample space  and a collection ofsubsets  𝔽 satisfying the following 

conditions [7]. 

𝜙𝜖𝔽 

𝜀𝜖𝔽 ⇒ 𝜀′𝜖𝔽 

𝜀1 , 𝜀2 , …𝜖𝔽 ⇒ 𝜀1 ∪ 𝜀2 ∪ …𝜖𝔽 

Partition of 𝜴 

Definition 10.𝔽is a partition of Ω if 𝔽 ⊆ 2Ω and 

(i)  𝐹 = Ω𝐹𝜖𝔽  

(ii) 𝐹 ≠ 𝜙  ∀  𝐹𝜖𝔽 

(iii) 𝐹 ∩ 𝐺 = 𝜙 ∀ 𝐹 ≠ 𝐺 𝑤ℎ𝑒𝑟𝑒 𝐹, 𝐺𝜖𝔽 

 
Figure 1: Partition of Sample space 

Here 𝔽 is partition of Ω then corresponding algebra of partition 𝔸(𝔽1) is 

{𝜙, 𝐹, 𝐺, 𝐻, … , 𝐹 ∪ 𝐺, 𝐹 ∪ 𝐻, … , 𝐹 ∪ 𝐺 ∪ 𝐻, … } 

Where algebra is smallest set containing 𝔽 that is closed under finite union, intersectionand complementation. 

Definition 11. If 𝔽1 , 𝔽2 are partitions of  𝛺 then 𝔽1 ⊆ 𝔽2 if  𝐴𝜖𝔸(𝔽1)implies 𝐴𝜖𝔸(𝔽2). Where 𝔸(𝔽1)  and 

𝔸(𝔽2) are algebra of 𝔽1and 𝔽2 respectively. 

 

Filtration 

Definition 12. Given the 𝜎- field (𝛺, 𝔽) with 𝔽 ⊆ 2𝛺 , a filter (sometimes alsocalled filtration) is a nested 

sequence 𝔽1 ⊆ 𝔽2 ⊆ 𝔽3 … ⊆ 𝔽𝑛  of subsets of 2𝛺suchthat [7] 𝔽0 = {𝜙, Ω} 

𝔽𝑛 = 2Ω 

𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛,  Ω, 𝔽𝑖  𝑖𝑠 𝑎 𝜎 −  𝑓𝑖𝑒𝑙𝑑.  
Definition 13. Let (𝛺, 𝔽) be any 𝜎 −  𝑓𝑖𝑒𝑙𝑑, and Y any random variable that takeson distinct values on the 

elementary events in 𝔽. Then 𝐸 𝑋 𝔽 = 𝐸 𝑋 𝑌 . 

 
Figure 2: Filtration 

 

Notice that the conditional expectation 𝐸[𝑋|𝑌]does not really depend on theprecise value of Y on the specific 

elementary event. In fact, Y is merely an indicatorof the elementary events in𝔽. Conversely, we can write 
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𝐸 𝑋 𝑌 = 𝐸[𝑋|𝜎(𝑌)] where 𝜎(𝑌) is the 𝜎 −  𝑓𝑖𝑒𝑙𝑑 generated by the events of the type{𝑌 = 𝑦}, i.e., thesmallest 

σ- field over which Y is measurable. 

Definition 14. A random variable X over σ- field (𝛺, 𝔽)  is well defined if𝑋 𝜔1 = 𝑋(𝜔2 )for all 𝐴𝜖𝔽 where 

𝜔1 , 𝜔2𝜖𝐴 and 𝔽 is partition. 

It is also called 𝔽 -measurable. A random variable X is 𝔽 -measurable if its valueis constant over each block in 

the partition generation 𝔽. Since the partitions generating the σ- fields in a filter are successively more refined, 

it follows that if X,𝔽𝑖 -measurable, it is also 𝔽𝑗 -measurable for all 𝑗 ≥ 𝑖. i.e 

If 𝔽1 ⊆ 𝔽2 and X is well defined over (𝛺, 𝔽1)  then X is well defined over(𝛺, 𝔽2)  Converse may not be true. 

Suppose X is well defined over 𝔽2. How to define a random variable over 𝔽1so that it is well defined. 

 

Let random variable 

 𝑌 𝜔 =
 𝑋 𝜔 𝑝(𝜔)𝜔𝜖𝐴

𝑝 (𝐴)
 𝑤ℎ𝑒𝑟𝑒 𝜔𝜖𝐴𝜖𝔽1 . 

⇒ 𝑌 𝜔 =  𝑋 𝜔 𝑝(𝜔|𝐴)
𝜔𝜖𝐴

 

Proof. 𝑌 𝜔𝑖 =  𝑋𝑖 𝜔 𝑝(𝜔𝑖 |𝐴)𝜔 𝑖𝜖𝐴
 

=
 𝑥𝑖𝑝𝑖{𝑖|𝜔 𝑖𝜖𝐴}

 𝑝𝑖{𝑖|𝜔 𝑖𝜖𝐴}

 

𝑌(𝜔𝑖)is same for a partition. So random variable is constant for a particularpartition. Similarly we can proof for 

other partitions. Here we assume that the Sample space has been partitioned, the points 𝜔1 , 𝜔2 , 𝜔3with 

probability 𝑝1 , 𝑝2 , 𝑝3and values𝑥1 , 𝑥2 , 𝑥3 respectively are in finer partition 𝔽2 

Theorem 4. Defining Y as conditional expectation of X given 𝔽1 denoted by𝐸[𝑋|𝔽1] = 𝑌  then 

𝐸 𝑌 = 𝐸[𝑋] 
Proof. 𝐸 𝑌 =  𝑌 𝜔 𝑝(𝜔)𝜔𝜖 Ω  

=   𝑌 𝜔 𝑝(𝜔)
𝜔𝜖 A𝐴𝜖𝔽1

 

=  𝑌 𝜔  𝑝(𝜔)
𝜔𝜖 A𝐴𝜖𝔽1

𝐴𝑠 𝑌 𝑖𝑠 𝑤𝑒𝑙𝑙 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

 𝑌 𝜔 𝑝(𝐴)   
𝐴𝜖𝔽1

 

=  𝑝(𝐴)  𝑋 𝜔 𝑝(𝜔|𝐴)
𝜔𝜖𝐴𝐴𝜖𝔽1

 

=  𝑝 𝐴 .
 𝑋 𝜔 𝑝(𝜔)𝜔𝜖𝐴

𝑝(𝐴)
𝐴𝜖𝔽1

 

=   𝑋 𝜔 𝑝(𝜔)
𝜔𝜖𝐴𝐴𝜖𝔽1

 

=  𝑋 𝜔 𝑝(𝜔)
𝜔𝜖 Ω

 

= 𝐸[𝑋] 
From this result it is clear that for filter 𝔽1 ⊆ 𝔽2 ⊆ 𝔽3 … ⊆ 𝔽𝑛  overσ- field and corresponding random variables 

are 𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑛then 

𝜇 = 𝐸 𝑋0 = 𝐸 𝑋1 = 𝐸 𝑋2 = ⋯ = 𝐸[𝑋𝑛 ] 
Martingale 

Definition 15.Let (𝛺, 𝔽, 𝑃𝑟)   be a probability space with a fiter𝔽0 , 𝔽1 ,𝔽2 , ….Suppose 𝑋0 , 𝑋1 , 𝑋2 , … are random 

variables such that for all 𝑖 ≥ 0, Xi is 𝔽𝑖-measurable. The sequence 𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑛 is a martingale provided, 

for all 𝑖 ≥ 0, 

𝐸 𝑋𝑖+1 𝔽𝑖 = 𝑋𝑖  

Definition 16.The set of random variables {𝑍𝑛 , 𝑛 = 0,1,2… } is said to be amartingale [8] with respect to 

sequence {𝑋𝑛 , 𝑛 = 0,1,2… } if 𝑍𝑛   is a function of𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑛E[|Zn|] <∞,and𝐸[𝑍𝑛+1 𝑋0 ,𝑋1 , 𝑋2 , … , 𝑋𝑛  =
𝑍𝑛  

If we say {𝑍𝑛}  is a martingale [8] (without specifying {𝑋𝑛 , 𝑛 = 0,1,2… }  whenit is a martingale with respect to 

itself. i.e. {𝑍𝑛 } is a martingale if E[|Zn|] <∞,and𝐸 𝑍𝑛+1 𝑍0 ,𝑍1 , 𝑍2 ,…𝑍𝑛 = 𝑍𝑛 . 

Note:-{𝑍𝑛 } is martingale with respect to {𝑋𝑛 } then it is a martingale. 

Theorem 5.{𝑍𝑛}is martingale with respect to {𝑋𝑛 } then it is a martingale 
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𝐸 𝑍𝑛+1 𝑍0 ,𝑍1 , 𝑍2 ,…𝑍𝑛 = 𝑍𝑛  

Proof.we know the identity 𝐸 𝑋 𝑈 = 𝐸[𝐸[𝑋|𝑈, 𝑉]|𝑈] 
{𝑍𝑛 }is martingale with respect to {𝑋𝑛 }  then 

𝐸 𝑍𝑛+1 𝑍0 …𝑍𝑛  
= 𝐸[𝐸 𝑍𝑛+1 𝑍0 …𝑍𝑛 ,𝑋0 …𝑋𝑛 |𝑍0 …𝑍𝑛 ] 

= 𝐸[𝐸 𝑍𝑛+1 𝑋0 …𝑋𝑛 |𝑍0 …𝑍𝑛] 
= 𝐸 𝑍𝑛 𝑍0 …𝑍𝑛   

= 𝑍𝑛  

Theorem 6. 𝐸 𝑍𝑛 = 𝐸 𝑍0  
Proof. 𝑍0 …𝑍𝑛are functions of 𝑋0 …𝑋𝑛  

𝐸 𝑍𝑛+1 𝑍0 ,𝑍1 , 𝑍2 ,…𝑍𝑛 = 𝑍𝑛  
Taking expectation on both the sides. 

𝐸 𝑍𝑛+1 = 𝐸 𝑍𝑛   
𝐸 𝑍𝑛 = 𝐸 𝑍0  

𝐸 𝑍0 is called mean of the martingale. 

Example: - Fair bet game:suppose 𝑋𝑖  be the outcome of 𝑖𝑡ℎ  game. 𝑍𝑛 is the fortune of gambler after 

𝑛𝑡ℎgame. For given outcome of first n games the gambler's expected fortune after(n + 1)st game is equal to his 

fortune before the game. The gambler's expectedwinning on each game is equal to zero. Here 𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑛   

is martingale. 

 

Azuma's Inequality 

Let 𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑛  be a martingale sequence such that for all 𝑘 

|𝑋𝑘 − 𝑋𝑘−1| ≤ 𝑐 

Pr[|𝑋𝑡 − 𝑋0| ≥ 𝑙] ≤ 2exp(−
𝑙2

2𝑡𝑐2
) 

Where c may depend on k for all t≥0 and for any l>0 

Proof. Let 𝔽1 ⊆ 𝔽2 ⊆ 𝔽3 … ⊆ 𝔽𝑛  be filter sequence and 𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑛  be martingalesequence where 

𝑋0 = 𝐸[𝑋𝑖] for 𝑖𝜖0,1,2, … , 𝑛. Also 

𝐸 𝑋𝑗  𝔽𝑖 = 𝑋𝑖    𝑓𝑜𝑟 𝑖 < 𝑗 

If X is 𝔽𝑖 measurable (constant for particular partition) and Y is anotherrandom variable then we observe that 

  𝐸[𝑋𝑌|𝔽𝑖] = 𝑋𝐸[𝑌|𝔽𝑖] 
Since 𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑛  is martingale and let 𝑌𝑖 = 𝑋𝑖 − 𝑋𝑖−1 for 𝑖 = 1,2, … , 𝑡. 

𝐸 𝑌𝑖  𝑋0 , 𝑋1 , 𝑋2 , … , 𝑋𝑖−1 = 𝐸[𝑋𝑖 − 𝑋𝑖−1|𝑋0 , 𝑋1 , … , 𝑋𝑖−1] 
= 𝐸 𝑋𝑖 𝑋0 , 𝑋1 , … , 𝑋𝑖−1 − 𝑋𝑖 = 0 

Now consider, 𝑌𝑖 = −𝑐𝑖

1−
𝑌𝑖
𝑐𝑖

2
+ 𝑐𝑖

1+
𝑌𝑖
𝑐𝑖

2
 

Using the convexity of the function 𝑒𝛼𝑌𝑖  

𝑒𝛼𝑌𝑖 ≤
1 −

𝑌𝑖

𝑐𝑖

2
𝑒−𝛼𝑐𝑖 +

1 +
𝑌𝑖

𝑐𝑖

2
𝑒𝛼𝑐𝑖 

=
𝑒𝛼𝑐𝑖 + 𝑒−𝛼𝑐𝑖

2
+

𝑌𝑖

2𝑐𝑖

(𝑒𝛼𝑐𝑖 + 𝑒−𝛼𝑐𝑖) 

𝐸 𝑒𝛼𝑌𝑖  𝑋0 , 𝑋1 , … , 𝑋𝑖−1 ≤ 𝐸  
𝑒𝛼𝑐𝑖 + 𝑒−𝛼𝑐𝑖

2
+

𝑌𝑖

2𝑐𝑖

(𝑒𝛼𝑐𝑖 + 𝑒−𝛼𝑐𝑖) 𝑋0 , 𝑋1 , … , 𝑋𝑖−1  

=
𝑒𝛼𝑐𝑖 + 𝑒−𝛼𝑐𝑖

2
 

≤ 𝑒
(𝛼𝑐𝑖)

2

2
 

  Using Taylor series 

⇒ 𝐸 𝑒𝛼𝑌𝑖  𝑋0 , 𝑋1 , … , 𝑋𝑖−1 ≤ 𝑒
(𝛼𝑐𝑖)

2

2
 

 

𝐸 𝑒𝛼 𝑋𝑡−𝑋0  = 𝐸[ 𝑒𝛼𝑌𝑖 ]

𝑡

𝑖=1

 

= 𝐸[ 𝑒𝛼𝑌𝑖 ]

𝑡−1

𝑖=1

𝐸 𝑒𝛼𝑌𝑖  𝑋0 , 𝑋1 , … , 𝑋𝑖−1  

≤ 𝐸[ 𝑒𝛼𝑌𝑖 ]

𝑡−1

𝑖=1

𝑒
(𝛼𝑐𝑖)2

2
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≤ 𝑒𝛼2  𝑐𝑖
2/2𝑡

𝑖=1  

≤ 𝑒𝛼2𝑡𝑐2/2 As 𝑐𝑖 = 𝑐 ∀ 𝑖 
Pr 𝑋𝑡 − 𝑋0 ≥ 𝑙 = Pr[𝑒𝛼 𝑋𝑡−𝑋0 ≥ 𝑒𝛼𝑙 ] 

≤
𝐸 𝑒𝛼 𝑋𝑡−𝑋0  

𝑒𝛼𝑙
 

≤ 𝑒𝛼2𝑡𝑐2/2−𝛼𝑡  

= 𝑒−𝑙2/(2𝑡𝑐2) 𝑤ℎ𝑒𝑟𝑒 𝛼 =
𝑙

𝑡𝑐2
⇒ Pr[|𝑋𝑡 − 𝑋0| ≥ 𝑙] ≤ 2exp(−

𝑙2

2𝑡𝑐2
) 

 

III. A SURVEY OF RANDOM GRAPH MODEL FOR WEB MODELING 
Random graphs 

Random graph is a graph which is generated by some random process. Two basic models for 

generating random graphs are Gn,Nand Gn,p models. As we know there are many NP- hard computational 

problems defined on graphs: Hamiltonian cycle, independent set, Vertex cover, and so forth. One question worth 

asking is whether these problems are hard for most inputs or just for a relatively small fraction of all graphs. 

Random graph models provide a probabilistic setting for studying such questions. 

Gn,NModel of Random Graph 

In Gn,Nmodel of random graph n is the count of vertices and N is number of edges in the graph. We consider all 

undirected graphs on n vertices with exactly N edges. Since, there are n vertices so possible number of edges 

are(
𝑛
2

). Out of(
𝑛
2

) many possible edges graph has N edges, this can be selected in(
𝑁

(
𝑛
2

)) manyways. So total 

possible graphs are(
𝑁

(
𝑛
2

)). 

Generating graph using Gn,Nmodel 

One way to generate a graph from graphs in Gn,N is to start with no edges. Choose one of the (
𝑛
2

) possible edges 

uniformly at random and add it to the edges in the graph. Now choose one of the remaining (
𝑛
2

) − 1 possible 

edges independently and uniformly at random and add to the graph. Similarly, continue choosing one of the 

remaining unchosen edges independently at random until there are N edges. 

Gn,pModel of Random Graph 

In Gn,p model of random graph n is the count of vertices and p is the probability of selection of an edge. We 

consider all undirected graphs on n distinct vertices v1, v2,…,vn. A graph with a given set of m edges has 

probability pm(1 −  p)(
𝑛
2

)−𝑚 . 
Generating graph using Gn,p model 

One way to generate a random graph in Gn,p is to consider each of the (
𝑛
2

) possible edges in some order and then 

independently add each edge to the graph with probability p. i.e. Corresponding to each edge out of (
𝑛
2

) throw a 

coin biased with outcome head with probability p. If outcome is head add the edge to the graph, don't add 

otherwise. The expected number of edges in the graph is therefore (
𝑛
2

)p, and each vertex has expected degree (n-

1) p. 

The Gn,N and Gn,p models are related: when p = N/(
𝑛
2

). The Gn,p and Gn,N are static models. In these models, 

graph G = (V,E) is not changing with time. Sometimes we need a graph model which is time evolving Gt = (Vt, 

Et). 

Evolving Model 

Evolving Model of graph covers evolving nature of it. There are two characteristic functions of evolving graph 
model [5] first gives the number of vertex added at time t+1, whereas second gives set of edges added at time 

t+1, these are called characteristic function of evolving graph model. 

Characteristic functions of evolving graph model fv (Vt,t) and fe (ft,Gt, t). fv (Vt, t) gives number of vertex added 

at time t + 1 and fe (ft,Gt, t) gives the set of edges added at time t + 1. 

   Vt+1 = Vt + fv(Vt,t) 

   Et+1 = Et∪fe(ft,Gt,t) 

The evolving graph model is completely characterized by fv and fe. 
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Linear growth copying model 

The Linear growth copying model is evolving model. In each time interval one vertex is added. This is linear 

growth, because at timestep t, a single vertex arrives and may link to any of the first t-1 vertices. This model 

describes web graph easily. Web graph is time evolving in nature where at timestep one web page may arrive 

and is connected to previous one, or a page may be deleted. 

Generating graph using linear growth copying model [5] 

In each time interval one vertex is added. Edges are added in following way: for a new vertex u out-degree d is 

constant. The ith out-degree is decided as- With probability α destination is chosen uniformly from Vt and with 

remaining probability destination is chosen as the ith outlink of prototype vertex p. Where α is copy factor α∈(0, 
1) and the out-degree is d ≥ 1 and fv (Vt,t) = 1. The prototype vertex is chosen once in advance.If Nt,i represents 

number of vertices having in-degree i at time t, for simplicity d = 1 and i = 0. 

In-degree Nt,0 distribution 

Theorem 6.E[Nt,0│Nt-k,0] = Nt-k,0Sk,0 +  𝑆𝑗, 0𝑘−1
𝑗=0 . 

 

Proof 

E[Nt,0│Nt-k,0] = 1 + (1-
𝛼

𝑡−1
)+(1-

𝛼

𝑡−1
)(1-

𝛼

𝑡−2
)+… 

+(1-
𝛼

𝑡−1
)(1-

𝛼

𝑡−2
)….(1-

𝛼

𝑡−𝑘
)Nt-k,0  

 

 S0,0=1 

Sk,0=Sk-1,0(1-

𝛼

𝑡−𝑘
)                                                                    

E[Nt,0│Nt-k,0] =Nt-k,0Sk,0+ 𝑠𝑗, 0𝑘−1
𝑗=0  

 

                   Sk,0= Sk-1,0(1-
𝛼

𝑡−𝑘
)    

E[Nt,0│Nt-k,0]=Nt-k,0Sk,0+ 𝑆𝑗, 0𝑘−1
𝑗=0  

 

t-k=1 

 

E[Nt,0│N1,0]=N1,0St-1,0+ 𝑆𝑗, 0𝑡−2
𝑗=0  

E[Nt,0]= 𝑆𝑗, 0  𝑡−1
𝑗=0  (As N1,0=1)                 

 

 

Theorem 7. E [Nt,0│Nt-k,0] - E[Nt,0│Nt-k+1),0]│≤1 

Proof. 

│E[Nt,0│Nt-k,0] - E[Nt,0│Nt-(k+1),0]│= │Nt-k,0Sk,0 + 𝑆𝑗 , 0𝑘 −1
𝑗 =0  –Nt-(k-1),0Sk+1,0- 𝑆𝑗 , 0│𝑘

𝑗 =0  
Case 1: 

(Nt-k,0=Nt-(k+1),0+1) 

=│Nt-(k+1),0Sk,0 + Sk,0 – Nt-(k+1),0Sk,0 (1 -
𝛼

𝑡 −(𝑘 +1)
)-Sk,0│ 

=│Sk,0-Sk,0(1-
𝛼𝑁𝑡 − 𝑘 +1 ,0

𝑡 −(𝑘 +1)
)│≤1 

       (Sk,o(1-
𝛼𝑁𝑡 −(𝑘 +1,0)

𝑡 −(𝑘 +1)
)≤1) 

From equations it is probability which is always ≤ 1 and    Sk,0≤ 1. 

 

         Case 2.   

               (Nt-k=Nt-(k+1),0) 

               =│Nt-(k+1),0Sk,0-Nt-(k+1),0Sk,0(1-
𝛼

𝑡 −(𝑘 +1)
)-Sk,0│ 

               =│Sk,o(1-
𝛼𝑁𝑡 − 𝑘 +1 ,0

𝑡 −(𝑘 +1)
)│≤1 

                  (Sk,0(1-
𝛼𝑁𝑡 − 𝑘 +1 ,0

𝑡 −(𝑘 +1)
)≤ 1) 

 

               From equations ,it is probability which is always ≤ 1 and as Sk,0≤1 

          │E[Nt,0│Nt-k,0] - E[Nt,0│Nt-(k+1),0]│≤ 1 

This result is an improvement compared to the result given in the paper [5] 

│E[Nt,0│Nt-k,0] - E[Nt,0│Nt-(k+1),0]│≤ 2 
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Theorem 8.E[Nt;0] = 
𝑡

1+𝛼
 . 

Proof.  From equation  

                  Sk,0 = Sk-1,0 (1-
𝛼

𝑡 −𝑘
) 

 

             Sk,0 – Sk-1,0 = -Sk-1,0 
𝛼

𝑡 −𝑘
 

             (Sk,0-Sk-1,0)(t-k)= - ∝Sk-1,0 

(t -k) (Sk-1,0 – Sk,0) = ∝Sk-1,0 

(t - (k - 1)) (Sk-1,0 – Sk,0) = (1 + α) Sk-1,0 

(1 + α) Sk-1,0 = (t -k) Sk,0 - (t - (k + 1)) Sk+1,0 

(1 + α) S0,0 = tS0,0 - (t - 1) S1,0 

(1 + α) S1,0 = (t - 1) S1,0 - (t -2) S2,0 

(1 + α) S2,0 = (t - 2) S2,0 - (t - 3) S3,0 

: 

(1 + α) St-2,0 = 2St-2,0 – St-1,0 
(1 + α) St-1,0 = St-1,0 - (t - t) St,0 

 

(1+α) 𝑆𝑗 , 0𝑡 −1
𝑗 =0  =S0,0 

  ⇒E[Nt,0]=
𝑡

1+𝛼
 

 

This result is an improvement compared to the result given in the paper [5] 

 
𝑡 +𝛼

1+𝛼
–α^2lnt ≤ E[Nt,0] ≤

 𝑡 +𝛼

1+𝛼
 

 

 

Theorem 9. Pr[|𝑁
𝑡 ,0

− 𝐸 [𝑁𝑡 ,0]| ≥ 𝑙 ] ≤ 2exp(−
𝑙 2

2𝑡
) 

 

Proof. Azuma's Inequality 

 

Let 𝑋 0,𝑋 1,𝑋 2, …be a martingale sequence such that for all 𝑘  

|𝑋
𝑘

− 𝑋 𝑘 −1| ≤ 𝑐  

 

where𝑐 may depend on𝑘 . 

Then for all t≥0 and any 𝜆 >0 

Pr[|𝑋
𝑡

− 𝑋 0| ≥ 𝑙 ] ≤ exp(−
𝑙 2

2𝑡 𝑐 2) 

From theorem 7 

|𝐸  𝑁𝑡 ,0 𝑁𝑡 −𝑘 ,0 − 𝐸  𝑁𝑡 ,0 𝑁𝑡 − 𝑘 +1 ,0 | ≤ 1 

⇒ Pr[|𝑁
𝑡 ,0

− 𝐸 [𝑁𝑡 ,0]| ≥ 𝑙 ] ≤ exp(−
𝑙 2

2𝑡
) 

This result is an improvement compared to the result given in the paper[5] 

Pr[|𝑁
𝑡 ,0

− 𝐸 [𝑁𝑡 ,0]| ≥ 𝑙 ] ≤ exp(−
𝑙 2

4𝑡
) 

𝐸  𝑁𝑡 ,0 =  𝑆 𝑗 ,0

𝑡 −1

𝑗 =0

=
𝑡

1 + 𝛼
 

𝑃 𝑡 = lim𝑡 →∞

𝐸 [𝑁𝑡 ,0]

𝑡
=

1

1+𝛼
. 

 

IV. DISTRIBUTIONS 
In-degree 𝑵𝒕 ,𝒊 distribution 

𝑁𝑡 ,𝑖 represents number of vertices having in- degree i at time tfor simplicity d = 1  𝐻𝑒𝑛𝑐𝑒  𝑵𝒕 ,𝒊 𝑖𝑠  
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 𝑁𝑡 −1,𝑖 − 1                          𝑤𝑝   

𝛼𝑁𝑡 −1,𝑖

𝑡 − 1
+  

(1 − 𝛼 )𝑁𝑡 −1,𝑖

𝑡 − 1

                       𝑁𝑡 −1,𝑖 + 1                        𝑤𝑝   
𝛼𝑁𝑡 −1,𝑖 −1

𝑡 − 1
+   

(1 − 𝛼 )(𝑖 − 1)𝑁
𝑡 −1,𝑖 −1

𝑡 − 1
𝑁𝑡 −1,𝑖               𝑜𝑡 ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

define𝑋 𝑡 −𝑘 = 𝐸 [𝑁𝑡 ,𝑖 |𝑁
𝑡 −𝑘 ,𝑖

𝑁∗,𝑖 −1]where 𝑁∗,𝑖 −1 = 𝑁0,𝑖 −1 ,𝑁1,𝑖 −1,𝑁2,𝑖 −1, 𝑁3,𝑖 −1,… , 𝑁𝑡 −1,𝑖 −1for 0 ≤ 𝑡 −

𝑘 ≤ 𝑡  

The sequence 𝑋 0, 𝑋 1, 𝑋 2, …𝑋 𝑡 forms Doob's martingale [3] 

 

𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 −𝑘 ,𝑖

𝑁∗,𝑖 −1 = 𝑁𝑡 −𝑘 ,𝑖 𝑆 𝑘 ,𝑖 +  𝑆 𝑗 ,𝑖

𝑘 −1

𝑗 =0

𝐹 𝑗 +1,𝑖 −1 

where 

𝑆 0,𝑖 = 1 

𝑆 𝑘 ,𝑖 = 𝑆 𝑘 −1,𝑖 (1 −
𝛼

𝑡 − 𝑘
−

 1 − 𝛼  𝑖

𝑡 − 𝑘
) 

𝐹 𝑘 ,𝑖 −1 =
𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 𝑘
 

Proof. 

𝐸 [𝑁𝑡 ,0|𝑁
𝑡 −1,𝑖

= 𝛽 , 𝑁𝑡 −1,𝑖 −1 = 𝛾 ] 

=  𝛽 − 1 
𝛼𝛽

𝑡 − 1
+

 1 − 𝛼  𝑖𝛽

𝑡 − 1
+ (𝛽 + 1)

𝛼𝛾 +  1 − 𝛼  (𝑖 − 1)𝛾

𝑡 − 1
 

+𝛽 −  
𝛼𝛽

𝑡 − 1
+

 1 − 𝛼  𝑖𝛽

𝑡 − 1
 −

𝛼𝛾 +  1 − 𝛼  (𝑖 − 1)𝛾

𝑡 − 1
 

=  1 −
𝛼

𝑡 − 1
−

 1 − 𝛼  𝑖

𝑡 − 1
 𝛽 +

𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 1
𝛾  

⇒ 𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 −1,𝑖

𝑁𝑡 −1,𝑖 −1 =  1 −
𝛼

𝑡 − 1
−

 1 − 𝛼  𝑖

𝑡 − 1
 |𝑁

𝑡 −1,𝑖
+

𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 1
𝑁𝑡 −1,𝑖 −1 

𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 −2,𝑖

,𝑁𝑡 −2,𝑖 −1, 𝑁𝑡 −1,𝑖 −1 = 𝐸  𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 −1,𝑖

𝑁𝑡 −1,𝑖 −1 |𝑁
𝑡 −2,𝑖

, 𝑁𝑡 −2,𝑖 −1,𝑁𝑡 −1,𝑖 −1  

=  1 −
𝛼

𝑡 − 1
−

 1 − 𝛼  𝑖

𝑡 − 1
 𝐸  𝑁𝑡 −1,𝑖 |𝑁

𝑡 −2,𝑖
,𝑁𝑡 −2,𝑖 −1, 𝑁𝑡 −1,𝑖 −1  

+
𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 1
𝐸  𝑁𝑡 −1,𝑖 −1|𝑁

𝑡 −2,𝑖
, 𝑁𝑡 −2,𝑖 −1 ,𝑁𝑡 −1,𝑖 −1  

𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 −2,𝑖

,𝑁𝑡 −2,𝑖 −1 =  1 −
𝛼

𝑡 − 1
−

 1 − 𝛼  𝑖

𝑡 − 1
 { 

 1 −
𝛼

𝑡 − 2
−

 1 − 𝛼  𝑖

𝑡 − 2
 𝑁𝑡 −2,𝑖 

+
𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 2
𝑁𝑡 −2,𝑖 −1} +

𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 1
𝑁𝑡 −1,𝑖 −1 

∵ 𝐸  𝑁𝑡 −1,𝑖 −1|𝑁
𝑡 −2,𝑖

, 𝑁𝑡 −2,𝑖 −1,𝑁𝑡 −1,𝑖 −1 = 𝑁𝑡 −1,𝑖 −1 𝑎𝑛𝑑  

𝐸  𝑁𝑡 −1,𝑖 −1|𝑁
𝑡 −2,𝑖

,𝑁𝑡 −2,𝑖 −1, 𝑁𝑡 −1,𝑖 −1 =  𝐸  𝑁𝑡 −1,𝑖 |𝑁
𝑡 −2,𝑖

,𝑁𝑡 −2,𝑖 −1  

𝐸  𝑁𝑡 ,𝑖 |𝑁𝑡 −3,𝑖 ,𝑁𝑡 −3,𝑖 −1𝑁𝑡 −2,𝑖
,𝑁𝑡 −2,𝑖 −1, 𝑁𝑡 −1,𝑖 −1  

= 𝐸  
𝐸  𝑁𝑡 ,𝑖 |𝑁

𝑡 −2,𝑖
, 𝑁𝑡 −2,𝑖 −1,𝑁𝑡 −1,𝑖 −1 |𝑁𝑡 −3,𝑖 , 𝑁𝑡 −3,𝑖 −1𝑁𝑡 −2,𝑖

,

𝑁𝑡 −2,𝑖 −1, 𝑁𝑡 −1,𝑖 −1

 =  1 −
𝛼

𝑡 − 1
−

 1 − 𝛼  𝑖

𝑡 − 1
  

{ 1 −
𝛼

𝑡 − 2
−

 1 − 𝛼  𝑖

𝑡 − 2
 𝐸  𝑁𝑡 −2,𝑖 |𝑁𝑡 −3,𝑖 , 𝑁𝑡 −3,𝑖 −1𝑁𝑡 −2,𝑖

, 𝑁𝑡 −2,𝑖 −1,𝑁𝑡 −1,𝑖 −1  

+
𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 2
𝐸  

𝑁𝑡 −2,𝑖 −1|𝑁𝑡 −3,𝑖 ,𝑁𝑡 −3,𝑖 −1𝑁𝑡 −2,𝑖

, 𝑁𝑡 −2,𝑖 −1, 𝑁𝑡 −1,𝑖 −1

 } 

+
𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 1
𝐸  

𝑁𝑡 −1,𝑖 −1|𝑁𝑡 −3,𝑖 ,𝑁𝑡 −3,𝑖 −1𝑁𝑡 −2,𝑖
,

𝑁𝑡 −2,𝑖 −1, 𝑁𝑡 −1,𝑖 −1
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⇒ 𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 −𝑘 ,𝑖

𝑁∗,𝑖 −1 = 𝑁𝑡 −𝑘 ,𝑖 𝑆 𝑘 ,𝑖 +  𝑆 𝑗 ,𝑖

𝑘 −1

𝑗 =0

𝐹 𝑗 +1,𝑖 −1 

where 

𝑺 𝟎 ,𝒊 = 𝟏  

𝑆 𝑘 ,𝑖 = 𝑆 𝑘 −1,𝑖 (1 −
𝛼

𝑡 − 𝑘
−

 1 − 𝛼  𝑖

𝑡 − 𝑘
) 

 

𝐹 𝑘 ,𝑖 −1 =
𝛼 +  1 − 𝛼  (𝑖 − 1)

𝑡 − 𝑘
       𝑓𝑜𝑟  𝑘 ≥ 1 

 

V. SURVEY INFERENCE 
The synthesis 

|𝑬  𝑵𝒕 ,𝒊 |𝑵
𝒕 −𝒌 ,𝒊

𝑵𝒕 −𝒌 ,𝒊 −𝟏  = 𝑬  𝑵𝒕 ,𝒊 |𝑵
𝒕 − 𝒌 +𝟏  ,𝒊

𝑵𝒕 − 𝒌 +𝟏  ,𝒊 −𝟏  | ≤ 𝟐  

Proof.  

𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 −𝑘 ,𝑖

𝑁𝑡 −𝑘 ,𝑖 −1 = 𝐸  𝑁𝑡 ,𝑖 |𝑁
𝑡 − 𝑘 +1 ,𝑖

𝑁𝑡 − 𝑘 +1 ,𝑖 −1 | 

= 𝑁𝑡 −𝑘 ,𝑖 𝑆 𝑘 ,𝑖 +  𝑆 𝑗 ,𝑖

𝑘 −1

𝑗 =0

𝐹 𝑗 +1,𝑖 −1 − 𝑁𝑡 −(𝑘 +1),𝑖 𝑆 𝑘 +1,𝑖 +  𝑆 𝑗 ,𝑖

𝑘

𝑗 =0

𝐹 𝑗 +1,𝑖 −1 

= 𝑁𝑡 −𝑘 ,𝑖 𝑆 𝑘 ,𝑖 − 𝑁𝑡 −(𝑘 +1),𝑖 𝑆 𝑘 +1,𝑖 − 𝑆 𝑘 ,𝑖 𝐹 𝑘 +1,𝑖 −1 

Case 1: 

(𝑁
𝑡 −𝑘 ,𝑖

= 𝑁𝑡 −(𝑘 +1),𝑖 − 1) 

= |𝑁𝑡 − 𝑘 +1 ,𝑖 𝑆 𝑘 ,𝑖 − 𝑆 𝑘 ,𝑖 − 𝑁𝑡 −(𝑘 +1),𝑖 𝑆 𝑘 ,𝑖 (1 −
𝛼

𝑡 − (𝑘 + 1)
−

 1 − 𝛼  𝑖

𝑡 − (𝑘 + 1)
) 

−𝑆 𝑘 ,𝑖  
𝛼 +  1 − 𝛼   𝑖 − 1 

𝑡 −  𝑘 + 1 
 𝑁𝑡 − 𝑘 +1 ,𝑖 −1| 

= | − 𝑆𝑘 ,𝑖 + 𝑆𝑘 ,𝑖{(
𝛼𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
+

 1 − 𝛼 𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
) 

− 
𝛼 +  1 − 𝛼  𝑖 − 1 

𝑡 −  𝑘 + 1 
 𝑁𝑡− 𝑘+1 ,𝑖−1}| 

≤ 2 

(∵  
𝛼 +  1 − 𝛼  𝑖 − 1 

𝑡 −  𝑘 + 1 
 𝑁𝑡− 𝑘+1 ,𝑖−1 ≤ 1) 

(∵  
𝛼𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
+

 1 − 𝛼 𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
 ≤ 1) 

 

Bound for Case 1 is same as that of paper [3]. 

 

Case 2:     (𝑁𝑡−𝑘 ,𝑖 = 𝑁𝑡−(𝑘+1),𝑖 + 1) 

= |𝑁𝑡− 𝑘+1 ,𝑖𝑆𝑘 ,𝑖 + 𝑆𝑘 ,𝑖 

−𝑁𝑡−(𝑘+1),𝑖𝑆𝑘 ,𝑖(1 −
𝛼

𝑡 − (𝑘 + 1)
−

 1 − 𝛼 𝑖

𝑡 − (𝑘 + 1)
) 

−𝑆𝑘 ,𝑖  
𝛼 +  1 − 𝛼  𝑖 − 1 

𝑡 −  𝑘 + 1 
 𝑁𝑡− 𝑘+1 ,𝑖−1| 

= |𝑆𝑘 ,𝑖 + 𝑆𝑘 ,𝑖{(
𝛼𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
+

 1 − 𝛼 𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
) 

 

    −(1 −  
𝛼+ 1−𝛼  𝑖−1 

𝑡− 𝑘+1 
 𝑁𝑡− 𝑘+1 ,𝑖−1)} ≤ 2 

Bound for Case 2 is same as that of paper [3] 

Case 3: 

(∵ 𝑁𝑡−𝑘 ,𝑖 = 𝑁𝑡−(𝑘+1),𝑖) 

= 𝑁𝑡− 𝑘+1 ,𝑖𝑆𝑘 ,𝑖 − 𝑁𝑡− 𝑘+1 ,𝑖𝑆𝑘 ,𝑖(1 −
𝛼

𝑡 − (𝑘 + 1)
−

 1 − 𝛼 𝑖

𝑡 − (𝑘 + 1)
) 



American Journal of Engineering Research (AJER)   2014 
 

 
w w w . a j e r . o r g  
 

Page 294 

−𝑆𝑘 ,𝑖  
𝛼 +  1 − 𝛼  𝑖 − 1 

𝑡 −  𝑘 + 1 
 𝑁𝑡− 𝑘+1 ,𝑖−1 

= 𝑆𝑘 ,𝑖(
𝛼𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
+

 1 − 𝛼 𝑁𝑡− 𝑘+1 ,𝑖

𝑡 −  𝑘 + 1 
) 

−𝑆𝑘 ,𝑖  
𝛼 +  1 − 𝛼  𝑖 − 1 

𝑡 −  𝑘 + 1 
 𝑁𝑡− 𝑘+1 ,𝑖−1 

≤ 1 
Bound for Case 3 obtained here is an improvement compared to the result givenin the paper [5] 
 

Azuma's Inequality: 

 

Let 𝑋0, 𝑋1, 𝑋2,…be a martingale sequence such that for all 𝑘 

|𝑋𝑘 − 𝑋𝑘−1| ≤ 𝑐 
 

where𝑐may depend on𝑘. 

Then for all t≥0 and any 𝜆>0 

 

∵ |𝐸 𝑁𝑡,𝑖|𝑁𝑡−𝑘 ,𝑖𝑁𝑡−𝑘 ,𝑖−1 = 𝐸 𝑁𝑡,𝑖|𝑁𝑡− 𝑘+1 ,𝑖𝑁𝑡− 𝑘+1 ,𝑖−1 | ≤ 2 

⇒ Pr|𝑁𝑡,𝑖 − 𝐸[𝑁𝑡,𝑖| ≥ 𝑙] ≤ exp(−
𝑙2

4𝑡
) 

 

VI. CONCLUSION 
This report studies random graph models using probabilistic techniques.Concentration is made over the 

paper Stochastic Model for Web graph by RaviKumar et.al. [5]. during the proof of the results given in the 

paper some moreprecise results have been found. Example- for i = 0 report proves |E[Nt,0|Nt-k,0]- E[Nt,0|Nt-

(k+1),0]|≤ 1whereas in the paper it is |E[Nt,0|Nt-k,0]- E[Nt,0|Nt-(k+1),0]|≤ 2. It is also proved that the E[Nt,0] =

t

1+α
. For 

general value of i, report proves that|E[Nt,i|Nt-k,iNt-k,i-1] - |E[Nt,i|Nt-(k-1),iNt-(k-1),i-1]| ≤ 1for Nt-k,I = Nt-(k+1),iwhereas 

result of the paper is |E[Nt,i|Nt-k,iNt-k,i-1] - |E[Nt,i|Nt-(k-1),iNt-(k-1),i-1]| ≤ 2. In future one can find improvement in 

|E[Nt,i|Nt-k,iNt-k,i-1] - |E[Nt,i|Nt-(k-1),iNt-(k-1),i-1]| for general value of Nt-k,i. 

 

VII. APPENDIX 
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