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I. INTRODUCTION 
In 1961 Kelly introduced the concept of bitopological spaces as an extension of topological spaces. A 

bitopological space (X, τ1, τ2) is a nonempty set X equipped with two topologies τ1 and τ2 [4]. The notion of 

ideal in topological spaces was studied by Kuratowski [5] and Vaidyanathaswamy [10]. An ideal I on a 

topological space (X, τ) is a nonempty collection of subsets of X which satisfies the conditions (i) A ϵ I and B  

A then B ϵ I and (ii) A ϵ I and B ϵ I then A  B ϵ I.    An ideal topological space is a topological space (X, τ) 

with an ideal I on X, and is denoted by    (X, τ, I). Given an ideal topological space (X, τ, I) if 𝒫 (X) is the set of 

all subsets of X, a set operator, (.)*:𝒫 (X)  𝒫 (X) is called the local function (τ, I) (in short ) [10] of A 

with respect to the topology τ and ideal I  defined as  = {xXU  A  I,  U τ, where xU}. A 

Kuratowski closure operator Cl* (.) for a topology τ* (τ, I), called the *-topology, finer than τ, is defined by 

Cl*(A) = A  A* [10].The collection {V\J : V  τ and J I} is a basis for τ* [9]. A subset A of X is called I- 

open if A  int(A*) and 
I- closed if its complement is open. A subset A of X is called *-dense in itself, (resp. 

- closed, *- perfect) if A    (resp.  A, A =  ) [2]. A subset A of X is called preopen [8] if A  

int(Cl(A)). The complement of a preopen set is called preclosed. EveryI- open set is preopen, but the converse 

may not be true. 

 

II. PRELIMINARIES 
Definition 2.1: [6] A function f:(X, τ)  (Y, σ) is said to be precontinuous if the inverse image of every open 
set in Y is preopen in X  

 

Definition 2.2:  [7] A function f: (X, τ, I)  (Y, σ) is said to be I - continuous if for every V ϵ σ, f-1(V) is I- 
open in X  

 

Definition 2.3:  [1] A function f: (X, τ1, τ2)  (Y, σ1, σ2) is said to be pairwise continuous if inverse image of 
every σi- open (resp. σj- open) set in Y is τi- open (resp. τj- open) in X        

 

Definition 2.4: [3]  An ideal bitopological space is a quadruple (X, τ1, τ2, I) where I is an ideal defined on a 

bitopological space       (X, τ1, τ2)  
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Throughout this paper,  {resp. A } denote the local function of a subset A of X with respect topology τi 

{resp. τj} and τi - Cl(A) (resp. τj - Cl(A)) and τi - int(A) {resp. τj - int(A)} denote the closure and  interior of A 
with respect to topology τi (resp. τj}  

 

Definition 2.5:  [3]  A subset A of an ideal bitopological space (X, τ1, τ2, I) is called (i,j)- preopen if A  τi - int 
(τj- Cl(A) )  where ;    i, j=1, 2, i ≠ j 

 

Definition 2.6: [3] A subset A of an ideal bitopological space (X, τ1, τ2, I) is called (i,j) I - open if  A  τi - 

int(A )  where; i, j=1, 2, i ≠ j                                              

 

III. (I,J) -I-CONTINUOUS  FUNCTIONS 
Definition 3.1:  A function f: (X, τ1, τ2, I)  (Y, σ1, σ2) is said to be (i,j)-I - continuous if f-1(V) is  (i,j)-I - open 
in X  for every σi -open set V in Y; i, j=1, 2, i ≠ j  

 

Definition 3.2:  A function f: (X, τ1, τ2, I)  (Y, σ1, σ2) is said to be (i,j)- precontinuous if f-1(V) is (i,j)- preopen 
in X for every σi -open V in Y; i, j=1, 2, i ≠ j . 

 

Remark 3.1:  Every (i,j)-I - continuous function is (i,j)- precontinuous but the converse is not true. For, 

Example 3.1:  Let X = {a, b, c, d} with topologies τ1 ={X, , {a, c},{a, b, c}, {b}}; τ2 = {X, , {a, b}, {a, b, d}, 

{d}} and I = {, {a}} be an ideal on X. Let Y = {p, q, r, s} with topologies σ1 = {Y, , {p, r}, {p, q, r}, {q}}; σ2 

= {Y, , {p, q}, {p, q, s}, {s}}. Then f: (X, τ1, τ2, I)  (Y, σ1, σ2) defined by  f(a) = p, f(b) = q, f(c) = r, f(d) = s is 
(1,2)- precontinuous but not (1,2)-I- continuous because (p, r) is open and f-1(p, r) is (1,2)- preopen but not (1,2)-

I- open. 

 

Definition 3.3:  A function f: (X, τ1, τ2, I)  (Y, σ1, σ2) is said to be pairwise I- continuous if f-1(V) is  τi-I- open 
(resp. τj-I- open) in X  for every σi- open (resp. σj- open) set V in Y 

 

Remark 3.2:  The concepts of pairwise I- continuity and (i,j)-I- continuity are independent.    

 

Example 3.2:  Let X = {a, b, c, d} with topologies τ1 ={X, , {a, c}, {a, b, c}, {b}}; τ2 = {X,  , {a, b}, {a, b, d}, 

{d}} and I = {, {a}} be an ideal on X. Let Y = {p, q, r, s} with topologies σ1 = {Y, , {p, r}, {p, q, r}, {q}} σ2 

={Y, , {p, q}, {p, q, s}, {s}}. Then f: (X, τ1, τ2, I  (Y, σ1,  σ2) defined by  f(a) = p, f(b) = q, f(c) = r, f(d) = s is 
pairwise I- continuous but not (1,2)-I- continuous, because (p, r) is open ,  f

-1(p, r) is τ1-I- open, but not (1,2)-I- 

open in X. 

 

Example 3.3:  Let X = {a, b, c, d} with topologies τ1 = {X, , {a, c}, {a, b, c}, {b}}; τ2 = {X, , {a, b}, {a, b, d}, 

{d}} and  I = {, {a}} be an ideal on X. Let Y = {p, q, r, s} with topologies σ1 ={Y, , {p, r}, {p, q, r}, {q}} σ2 

={Y, , {p, q}, {p, q, s}, {s}}. Then                          f: (X, τ1, τ2, I)  (Y, σ1 , σ2) defined by  f(a) = p, f(b) = q, f(c) 
= r, f(d) = s is (1,2)-I- continuous but not pairwise I- continuous because (p, q, r) is open in Y,   f

-1(p, q, r) is 

(1,2)-I- open but not    τi-I- open in X. 

 

Theorem 3.1:  For a function f: (X, τ1, τ2, I)  (Y, σ1, σ2) the following conditions are equivalent:   
(a)  f  is (i,j)-I- continuous.  

(b) For each x ϵ X and each V ϵ σi containing f(x), there exists an (i,j)-I- open set W in X     

  such that x  W and f(W)  V. 

(c) For each x ϵ X and each V ϵ σi containing f(x), (f-1(V))  is a τi
- neighborhood of x  

Proof:  

(a)  (b)  V ϵ σi containing f(x). Hence by (a), f-1(V) is (i,j)- I- open  set in X containing x. Put W = f-1(V) then 

x  W and f(W)  V.   

(b)  (c) Since V ϵ σi containing f(x), then by (b), there exists an (i,j)- I- open set W in X containing x s.t. f(W) 

 V. So, x ϵ W   (τi –(int(W)))   (τi - int(f-1(V)))    (f-1(V)) . Hence  (f-1(V))  ) is a τi - neighborhood 

of x.  

(c) ( a)  Obvious.  
 

Theorem 3.2:  For a function f: (X, τ1, τ2, I)  (Y, σ1, σ2) the following conditions are equivalent:  

(a) f  is (i,j)- I- continuous 
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(b) The inverse image of each σj- closed set in Y is (i,j)- I- closed in X.  

(c) τi – int f-1(   τi – (f
-1( ), for each -dense-in-itself subset M of Y.  

(d) τi - f(int(     τi - f , for each U  X, and for each - perfect subset of Y.  

Proof: 

(a)  (b) Let M  Y be σi- closed in Y, then Y\M is σi open in Y, then by (a), f-1(Y\M) = X\f-1(M)  is (i,j)- I- 
open in X. Thus, f-1(M) is (i,j)-I- closed in X.   

(b)  (c) Let M  Y be σi- closed in Y, Since  is also σi- closed in Y, then by (b) f-1( ) is (i,j)- I- closed 

in X. Next, by using Theorem 2.4 [6], τi – int f-1(  f-1( ) and since  is - dense in itself, τi – 

int f-1(M)   τi – int f-1( )  (f-1( ).                                  

(c)  (d) Let U  X and W = f(U), then by (c), τi – int(U)  τi – int f-1(W)   τi - int f-1( )    (f-1(W)
 

 (because   is perfect). Hence, τi – f(int (U)     τi – (W)  =  τi – f(U) . 

(d)  (a)  Let V ϵ σi ,W = Y\V, and U  f-1(W), then f(U)  W and by (d), τi - f(int(U))   τi - f (U)   τi - 

(W)  = W (because W is - perfect). Thus, τi - (int(f-1(W)))  = τi - (int(U))   f-1(W), and therefore, f-

1(Y\V) is (i,j)-I- closed. Hence, f-1(V) is (i,j)-I- open in X and f is (i,j)-I- continuous.  

 

Theorem 3.4:  Let  f: (X, τ1, τ2, I)  (Y, σ1, σ2) is (i,j)- I- continuous and U ϵ τ1 ∩ τ2. Then the restriction f\U is 
(i,j)-I- continuous.   

Proof:  

Let V ϵ σi . Then, τi - f
-1(V)   τi - int(f-1(V))  and so U ∩ τi - f

-1(V)   U ∩ τi - int(f-1(V))  Thus (f\U)-1(V) 

  U ∩ τi - int(f-1(V))  .  Since U ϵ τi ,  we get (f\U)-1(V) =  τi - int(U ∩ (f-1(V))   [5]  τi -  int(U ∩ f-1(V))  = 

τi - int((f\U)-1(V))  . Hence (f\U)-1(V) is (i,j)I- open and f\U is    (i,j)- I- continuous.  

 

Theorem 3.5:  For a function f: (X, τ1, τ2, I)  (Y, σ1, σ2) and {U:  } be a biopen cover of X. If the 

restriction function f\U is (i,j)- I - continuous, for each   , then f is (i,j)- I- continuous.   
Proof:  

Similar to Theorem 1.4   

 

Theorems that follow are immediate and their obvious proofs have been omitted 

Theorem 3.6:  Let  f: (X, τ1, τ2, I)  (Y, σ1, σ2) is (i,j)- I-  continuous and a biopen function, then the inverse 
image of each open set in Y, which is (i,j)I- open set in X  is also (i,j)- preopen in X.   

  

Theorem 3.7:  Let f: (X, τ1, τ2, I)  (Y, σ1, σ2) is (i,j)- I- continuous and τi- f
-1(V )  τi - (f

-1(V)) , for each V 

ϵ σi  Y. Then the inverse image of each (i,j)- I- open set is (i,j)- I- open.  
 
Remark 3.3:  Composition of two (i,j)- I- continuous functions need not be (i,j)- I- continuous, in  general, as 

shown by the following example.   

 

Example 3.4:  Let X = {a, b, c} with topologies τ1 = {X, , {a}}, τ2 = {X, }, and I = {, {c}} be an ideal on X; 

Y = {a, b, c, d} with topologies σ1 = {Y, , {a, c}} σ2 = {Y,  } and  J = {, {a}} be an ideal on Y; Z = {a, b, c} 

η1 = {Z, , {c}, {b, c}} η2 = {Z, }. Let f: (X, τ1, τ2, I)  (Y, σ1, σ2, J) be the  identity function and let g: (Y, σ1, 

σ2,   J)  (Z, η1, η2)  be  defined as g(a) = a, g(b) = g(d) = b, g(c) = c. It is clear that both f and g are (i,j)-I- 
continuous but the composition function gof is not   (i,j)I- continuous, because {c} is open, but (gof)-1{c} = {c}is 

not (i,j)-I- open.   
 

Theorem 3.8:  For the functions f: (X, τ1, τ2, I)  (Y, σ1, σ2) and g: (Y, σ1, σ2,   J)  (Z, η1, η2) if f is (i,j)-I- 
continuous and g is pairwise continuous then gof is (i,j)-I- continuous,.  

Proof: Obvious.  

 

IV. (I,J) I- OPEN AND (I,J) I- CLOSED FUNCTION 

Definition 4.1:  A function f: (X,τ1,τ2)  (Y,σ1,σ2, J);  i, j = 1, 2, i ≠ j is called (i,j)-I- open function (resp. (i,j)-I- 

closed function) if for each U ϵ τi (resp. U ϵ ), f(U) is an (i,j)I- open set in Y (resp. (i,j)-I- closed set in Y      
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Remark 4.1:  (i,j)-I- open (resp. (i,j)-I- closed) function  preopen (resp. preclosed) function but the converse 
is not true. 

 

Example 4.1:  Let X = Y = {a, b, c} with topologies τ1 ={X, , {b}, {a, b}, {b, c}} τ2 = {X, } the  discrete 

topology; σ1 = {Y, , {a}, {a, b}}; σ2 = {Y, } the discrete topology and J = {, {a}, {b}, {a, b}} an ideal on Y. 

Then the identity function f: (X, τ1, τ2)  (Y, σ1, σ2,  J) is preopen but not (1,2)-I- open, because {b} is open, but 
f(b) is a (2,1)-I- preopen set but not a  (2,1)-I- open set.  

 
Remark 4.2:  The concepts of (i,j)-I- open functions and pairwise open functions are independent concepts 

 

Example 4.2:  Let X = Y = {a, b, c, d} with topologies τ1 = {X, , {a, b}, {a, b, d}} τ2  the  discrete topology; σ1 

= {Y, , {a, b}, {a, b, c}}; σ2 the discrete topology and  J = {, {c}, {d}, {c,  d}} an ideal on Y. Then the 

identity function f: (X, τ1, τ2)  (Y, σ1, σ2,   J) is a (1,2)I- open function but not pairwise open function.  
 

Example 4.3:  Let X = Y = {a, b, c}; τ1 ={X, , {a}}; σ1 = {Y, , {a}, {a, b}}; τ2 and σ2 the respective discrete 

topologies on X and Y and  J = {, {a}} an ideal on Y. Then the identity function f: (X, τ1, τ2)  (Y, σ1, σ2,   J)  
is an open function but not a (1,2)-I- open function because, {a} is open, but f(a) = a is σ2 open but not a (1,2)-I- 

open. 

 

Theorems that follow are immediate and their proofs obvious from the definitions 

Theorem 4.1:  Let f: (X, τ1, τ2)  (Y, σ1, σ2,  J) be a function. Then the following are equivalent:   
a) f is a (i,j)-I- open function.  

b) For each x ϵ X and each neighborhood U of x, there exists an (i,j)-I- open set W  Y containing f(x) 

such that W  f(U)  
 

Theorem 4.2:  Let f: (X, τ1, τ2)  (Y, σ1, σ2,  J) be an (i,j)I- open function (resp. (i,j)-I- closed function) if W  

Y, and F  X is a closed (resp. open) set containing f-1(W), then there exists an (i,j)I- closed (resp. (i,j)-I- open) 

set H containing W such that f-1(H)       F 

 

Theorem 4.3:  If function f: (X, τ1, τ2)  (Y, σ1, σ2,  J) is (i,j)-I- open, then  τi- f
-1     τi- (f

-1   

such that f-1(B) is  dense-in-itself, for every B  Y                

 

Theorem 4.4:  For any one-one onto function f: (X, τ1, τ2)  (Y, σ1, σ2, J) the following are equivalent: 

a) f-1 (Y, σ1, σ2,  J)  (X, τ1, τ2)  is  (i,j)-I- continuous 
b) f   is  (i,j)-I- closed 

 

Theorem 4.5:  If function f: (X, τ1, τ2)  (Y, σ1, σ2,  J)  is (i,j)-I- open and for each A  X,  σi- f(A)    σi- 

[f(A)] , then the image of each (i,j)-I- open set is (i,j)-I- open.  

  

Theorem 4.6:  Let function f: (X, τ1, τ2)  (Y, σ1, σ2,  J) and g: (Y, σ1, σ2)  (Z, η1, η2, K) be two functions, 
where I,  J and K are ideals on X, Y and Z respectively, then 

a) If  f  is  open  and  g  is  (i,j)-I- open then gof   is (i,j)-I- open 

b) f  is  (i,j)-I- open if  gof  is open; g is one-one and (i,j)-I- continuous  

c) If  f  and  g  are  (i,j)-I- open; f  is surjective  and  g     [g   for  each  V    Y, then gof  is 

(i,j)-I- open   
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