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ABSTRACT: The article describes the model of the interaction of the cavitation area formed upon influence 
of ultrasonic vibrations with the interface of gas and liquid phases. In the system “liquid-gas” studied in the 
frameworks of the model liquid spreads on some solid surface in the form of the film and it is in contact with 
gas medium. It is shown, that the interaction of cavitation bubbles with the interface of liquid and gas leads to 
the generation capillary waves and consequently to the increase of the surface of phase contact. The model 
analysis allows determining the modes of ultrasonic effect, which are necessary for maximum enlargement of 
interphase boundary area. It leads in turn to the increase of the rate of physic-chemical processes based on the 
surface interaction of dissimilar substances (absorption of gas mixtures both for cleaning and for separation of 
specific-purpose components, drying, wet cleaning of gases from dispersed admixtures, etc.). As a result of 
model analysis we determined threshold vibration amplitudes of solid surface covered with the film of liquid 
phase, which excess resulted in stability failure of capillary waves and their decomposition to liquid drops. It 
was shown, that the most efficient frequency of ultrasonic effect was 60 kHz, at which phase contact surface 
increased in more than 3 times. 
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I.  INTRODUCTION 
The rate of the most of physicochemical processes is limited by the interface of interacted substances 

or phases and also by the rate of agent introducing to this boundary. The most part of such processes occurs in 
two-phase system “liquid-gas”. For instance in the systems “liquid-gas” following process such as wet gas 
cleaning from different dispersed admixtures, absorption of gas mixtures both for their cleaning and for 
separation of specific-purpose components, drying of the materials and others can be realized. It is evident, that 
for maximum efficiency of mentioned above processes first of all it is necessary to provide large area of contact 
surface of liquid and gas phases. In existing chemical engineering apparatuses (absorbers, wet dust collectors, 
dryers) specific interface area (for the mass unit) required for the industrial realization of physic-chemical 
processes at the interface can be achieved by the following ways: 
a. liquid is sprayed during gas phase in the form of small drops;  
b. liquid spreads on the surface of the solids as a film (the thickness is no more than 5 mm) and contacts gas 

medium.  
 
The first variant has limited application, as for its realization there is a need in good reciprocal 

solubility of interacted phases (for instance, solubility of gas in the absorbent). In this paper we mainly consider 
the second variant.However the second method is characterized by insufficient interface area for industrial 
realization of physic-chemical processes, which is required higher power inputs. One of the promising method 
of the increase of phase contact surface is the influence by microscopic shock waves leading to the generation of 
the profile disturbance of interface “liquid-gas” (capillary waves) of small length (no more than 200 µm). The 
appearance of shock waves can be provided due to the generation of periodically expanding and collapsing 
cavitation bubbles in liquid phase.  
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It is known, that the most advantageous method [1, 2] of creation of cavitation bubbles is the in-
troduction ultrasonic vibrations into liquid phase with the frequency of 20…60 kHz.  Ultrasonic influence can 
be carried out by excitation of mechanical vibrations of the solid surface, on which liquid film spreads. It is 
necessary to develop theoretical model allowing to determine optimum modes of ultra-sonic effect (amplitude 
and vibration frequency of the solid surface), which provides maximum interface area “liquid-gas”. There is a 
need to study in details the interaction of shock waves of cavitation bubbles with the surface of phase contact.  

 
For a long time the development of the theories of the interaction of shock waves of cavitation bubbles 

with the interface had some mathematical difficulties, as there was no correct solution of the equations of the 
hydrodynamics of supersonic liquid flow streaming cavitation bubble. At the beginning of 20th century foreign 
scientists (B.E. Nolting, E.A. Neppiras, H.G. Flynn, J.G. Kirkwood, H.A. Bethe) [3-5] gave basic theoretical 
descriptions of the growth and pulsation of the cavitation cavity (bubble).  These descriptions are equations of 
radial vibrations of the bubble, which take into account possible factors influencing the dynamics of the 
cavitation cavity including compressibility of liquid and change of its wave properties at the supersonic flow. 
These equations are non-linear differential equations of second order relative to the radius of the bubble, which 
is a function on time. It was stated, that the bubble retained its spherical form during the cycle of expanding and 
collapsing, and it was assumed, that shock wave had spherically divergent character. Such assumption does not 
allow explaining experimentally observed the generation of capillary waves of small length (no more than 
200 µm) at the interface “liquid-gas”.  

 
However, as it was mentioned above in these processes, liquid spread on solid surface as a film. The 

thickness of the film does not exceed 5 mm [6], solid surface reflects shock waves. Reflecting phenomena break 
the sphericity of cavitation bubbles at their collapse [7]. This sphericity failure narrows the diagram of shock 
wave directivity, and this fact explains the generation of capillary waves of small length (no more than 200 µm). 
Stated factor should be taken into consideration at theoretical studies of the interaction of cavitation bubbles 
with the interface “liquid-gas”. Thus, the aim of the paper is to develop the mathematical model of the 
interaction of cavitation bubbles with the interface “liquid-gas” for the determination of the modes of ultrasonic 
effect providing maximum surface area of phase contact. The model includes following stages of the generation 
of capillary waves on the interface “liquid-gas” under the action of ultrasonic cavitation:  
[1] expansion of cavitation bubble up to maximum radius, which is spherically symmetric due to the low speed 

of its walls (no more than 15 m/s); 
[2] asymmetric collapse of the cavitation bubble from maximum radius to minimum size;  
[3] generation and propagation of narrow directional shock wave in the thin liquid film at the collapse of the 

cavitation bubble;   
[4] formation of capillary waves on interface “liquid-gas”. In this stage capillary waves profile is determined 

and square of the interface “liquid-gas” is calculated. 
 

Further proposed model is described.  
 

II.  MODEL  OF INTERACTION  BETWEEN  CAVITATION  BUBBLES 
Theoretical study of the process is carried out according to the scheme shown in Fig. 1. 

 
 

Fig. 1. Scheme of theoretical study of the interaction between cavitation bubbles and interface “liquid-gas” 
 
At the stage of cavitation bubble expansion its maximum radius RMAX and center z location relative to 

the solid surface are determined. At this stage it is assumed that:  
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[1] expansion of the bubble is spherically symmetric, which is caused by low speed of walls motion, however 
the bubble center vertically moves relative to the solid surface in the course of time;  

[2] in initial time the center of the cavitation bubble is located near the solid surface, as such bubbles mostly 
influence on the formation of capillary wave.   

 
Maximum radius of the bubble RMAX is defined on the base of Nolting-Neppiras equation [3]: 
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where R is the instantaneous radius of the cavitation bubble, m; R0 is the radius of cavitation nucleus, m; σ is the 
liquid surface tension, N/m; ρ is the density of liquid, kg/m3; p0 is the static pressure in liquid, Pa; f is the 
frequency of ultrasonic action, Hz; h is the thickness of liquid film, m; A is the amplitude of ultrasonic action, 
m; pV is the pressure of saturated vapor of liquid, Pa; t is the time, s; µ is the dynamic viscosity of liquid, Pa·s. 

 
The distance between the center of the cavitation bubble (at the moment of maximum expansion) and 

the solid surface is defined from the equation given in Rozhdestvenskiy’s paper [8]: 
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 where b is the distance between the center of the cavitation bubble and the solid surface,  m. 
 
Obtained values of maximum bubble radius and the distance between its center and the solid surface are used 
for theoretical studies of further stages of the capillary wave formation.  
During the study of the stage of cavitation bubble collapse its form in the moment of the minimum size is 
determined.  
The form of the cavitation bubble is defined from the integral equation (1) with boundary conditions (2, 3) on 
the wall of the cavitation bubble for liquid velocity potential and entry conditions (4, 5) on cavitation bubble 
wall: 
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where r 0, r  are the vectors of the coordinates of the points of the wall of the cavitation bubble or solid surface, 
m;  φ is the fluid velocity potential on the wall of the cavitation bubble or solid surface, m2/s; Vn and Vτ are the 
normal and tangential components of fluid velocity,  m/s; ( )r

0r
E  is the fundamental solution of Laplace’s 

equation;  V is the  volume of the cavitation bubble, m3; pn is the pressure of saturated vapor of fluid, ρ and σ are 
the density (kg/m3) and surface tension (N/m) of fluid, respectively; K is the mean curvature of the walls of the 
cavitation bubble, m-1; SA is the wall of the cavitation bubble;  SB is the solid surface on which Vn is equal 0. 

 
With the help of system of equations (1-5) we calculate deformation of the walls of the cavitation 

bubble in the course of time. Entry conditions (3-5) being a part of the system (1-5) is determined by the bubble 
radius and the position of its center at the moment of maximum expansion, which were found at the previous 
stage of the model study.  Integral equation (1) aimed at the determination of distribution of fluid velocity 
potential on the walls of the cavitation bubble is solved by the boundary element method.  For this purpose the 
discretization of the cavitation bubble wall into ring elements is carried out, as it is shown in Fig. 2.  
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Fig. 2. Discretization of the cavitation bubble wall into ring boundary elements  

 
It is assumed, that in the frameworks of each ring element the velocity potential is constant. It allows 

solving boundary integral equation (1) as a system of linear equations (6). This system is obtained by using 
method of “images” (replacing solid surface by symmetrically placed cavitation bubble). 

{ }

( )

( )

( )

( )

( )

( )

( )

( )

{ } Nii

N
n

N
n

n

n

N
n

N
n

n

n

Njiij b

V

V

V

V

V

V

V

V

A 2...1

1

2

1

1

2

1

2...1,

...

...

=

−

−

=
=











































        (6) 

where {Aij} is the matrix of linear system; ( )i
nV  is normal velocity on i-th bubble wall boundary item with 

coordinates (r i; zi) and (r i+1; zi+1); {bi} is right part of system; N is count of boundary items; 
 
The coefficients of the system of linear equations (Aij and bi) are defined by the following obtained 

expressions:  
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where I0, J, I are integrals over on each boundary item; b0 is starting distance (at maximum bubble expansion) 
between bubble center and solid surface, m. 
 
 In expressions (7-8) it is mentioned that following equalities are true: 
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Integrals I0, J, I are defined as follows (9-11): 
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Obtained system of linear equations (6) is solved by iterative Seidel method.  
Obtained forms of cavitation bubble walls (by equations (1-5) at the collapse in different moments of 

time are shown in Fig. 3. The initial moment of time (0 µs) is the moment of the maximum bubble expansion. 
  

 
As it is shown in Fig. 3, cavitation bubble is a hemispherical radiator of shock wave.  
At the study of the stages of generation and propagation of shock wave it allows approximating its 

pressure profile at different distances from the bubble by the following obtained expression   (12). 
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where (r; z) are the coordinates of the points, m; ω is the circular vibration frequency of solid surface, s-1; t and 
t1 are the moments of time, s; η is the viscosity of liquid,   Pa·s; ρ and c  is the velocity of sound in liquid, m/s; 

( )1tpc  is the pressure in the nucleus of the cavitation bubble, Pa; a is the radius of the cavitation bubble at 

maximum pressure in the nucleus, m.   
 

The function of shock wave pressure in the nucleus of the cavitation bubble ( )1tpc  being a part of the 
expression (12) is defined as:  
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pV is pressure of saturated liquid vapor; RMAX  is bubble radius at maximum expansion; V is bubble volume at 
time t1; γ is a adiabatic index of gas. 
 

Given profile of shock wave pressure is used further for the definition of capillary wave form and 
finally interphase boundary area.  

The form of the capillary wave is defined from the expression (13): 
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where ( )tr ,ξ  is the value  of displacement of the interface “liquid-gas” along the axis z. 

 
Thus mathematical description presented above allows determining the profile of single capillary wave 

generated by separate bubble.  
However at the realization of the technological process it is impossible to obtain separate bubble that is 

      
 

 
     

              – interface “liquid-gas”;                                – wall of the cavitation bubble  
a) 0  µs b) 0,38   µs c) 0,75  µs d) 1,13  µs e) 1, 24  µs f) 1,35  µs 

 
Fig. 3. Evolution of the form of asymmetrically collapsing cavitation bubble in the course of time at different 

initial distances (at the moment of maximum expansion) between its center and solid surface 
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why it is necessary to consider the interaction between the aggregate of cavitation bubbles and the interface 
generating set of capillary waves.  

The specific area of the interface “liquid-gas” per unit volume of liquid phase at the generation of the 
set of capillary waves is defined by the expression:  
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where S is the specific area of the interface, m2/m3; λ is the length of the capillary wave (m) defined from the 
condition 0,

2
=








∂
∂

t
r

λξ .; n is the concentration of cavitation bubbles,  m-3; < > is sign of averaging by liquid film 

thickness; h is thickness of liquid film, m. 
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rn  characterizes a shock wave energy being generated at bubble 

collapse. 
For the concentration of cavitation bubbles kinetic equation (14) obtained from Smolukhovskiy’s 

equation [9] for the processes of coalescence and breakage of disperse particles (liquid drops, gas and solid 
particles) is true [10]: 
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where n is the calculating concentration of cavitation bubbles depending on time t, m-3, i is the average number 
of cavitation bubble pulsation before its collapse, kB is the constant of coalescence rate of the bubbles, m3/s, T0 is 
the period of ultrasonic vibrations, s, j is the mean amount of the nuclei generated at the breakage of the separate 
bubble.    

By solving the equation (14) following analytic expression is obtained:  
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nn
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where n0 is the initial unknown concentration of cavitation bubbles, m-3, n∞ is the stationary concentration of 
cavitation bubbles, m-3. 

 
According to the expression (15) the concentration of the bubbles n in time, which equals tens periods 

of ultrasonic vibrations, achieves stable value and equals to n∞, which is defined by the expression (16): 

0

1

Tik

j
n

B

−=∞
;          (16) 

Variable j being in expression for stable concentration (16) is calculated from experimental data given 
in Rozenberg’s book [3].  

The constant of coalescence is defined as follows: 

2

uS
k eff

B =  

where Seff is square of effective bubbles collision’s cross-section which is proportional to RMAX
2, m2; <u> is 

approach velocity of the cavitation bubbles, m/s. 
 
To define approach velocity of the cavitation bubbles <u>  the model of bubble interaction caused by 

the forces of the second order is used.The interaction model is based on the 2nd Newton’s Law for the separate 
cavitation bubble taking into consideration Bjerknes force acting from the neighbor bubbles and caused by 
radial vibrations of the last ones. According to this model the position of the center of each cavitation bubble 
making the ensemble can be described by the following equation [10]: 
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;  (17)

 where i is the ordinal number of the bubble in zone of liquid phase; Ri is the instantaneous radius of  i-th bubble, 

m; c is the local velocity of sound in liquid phase, m/s; wip  is the gas pressure near the walls of  i-th bubble, Pa; 

p is the instantaneous value of pressure of liquid phase without  cavitation bubbles, Pa; ρL is the density of liquid 
phase, kg/m3;  vL is the instantaneous vibrational speed of liquid phase without cavitation bubbles,   m/s; R0i  is 
the radius of i-th bubble nucleus, m; ρG is the equilibrium density of gas inside the bubble, kg/m3; t is the time, s; 
η is the viscosity of liquid phase,  Pa·s; r i is the coordinate vector of the center of  i- bubble, м; dij = r j-r i is the 
vector of  center line of i-th and j-th bubbles couple, m. 

  
On the base of the results of equation solution (17) approach velocity of cavitation bubbles is defined 

by the following expression:  
( ) ( )
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12012 0
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dd −
=

.
 

 

Thus proposed model allows defining dependence surface area of interphase boundary on the modes of 
ultrasonic action (frequency and vibration amplitude of solid surface covered with liquid film, which borders on 
gas phase) and liquid properties.  
 

III.  RESULTS AND DISCUSSION 
Obtained dependences of relative increase of the interface area on the modes of ultrasonic action are 

shown in Fig. 4.Relative increase K of interface area is the ratio of the interface area upon ultrasonic action (SUS) 
to the area without ultrasonic action (Swithout US): 

USWithout

US

S

S
K =  

Fig. 4 shows the breakage of the graph corresponds to the fact, that capillary wave loses its stability 
and breaks into drops [11]. The dependence of frequency (Fig 4b) is built up at threshold amplitudes, when 
capillary wave remains stable.  

 

 
a) 
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b) 

 
Fig. 4. Dependences of specific area of the interface on the modes of ultrasonic action: (a) on amplitude at 

different frequencies; (b) on frequency at maximum amplitude 
 
From presented dependences it is evident, that with the increase of amplitude interface area grows. If 

frequency rises, surface area grows (up to more than 3 times) due to the increase of cavitation bubble 
concentration [3]. However starting with the frequency of 60 kHz the growth of the area essentially becomes 
slower, and energy loss of the ultrasonic radiator increases quadratically. That is why; the application of 
frequencies of more than 60 kHz is unpractical.  Fig. 5 shows the dependence of threshold vibration amplitude, 
at which capillary wave remains stable, on the frequency of action.  
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Fig. 5. Dependence of threshold amplitude, at which capillary wave remains stable, on the frequency of action 

 
According to presented dependence the asymptotic amplitude reduces with the rise of frequency. In 

particular at the frequency of 28 kHz the threshold amplitude exceeds 2 µm, and at the frequency of 60 kHz it is 
1…1.2 µm. Fig. 6 shows the dependences of specific interface area on amplitude at the change of physical 
properties of liquid – viscosity (a) and surface tension (b), which influence on the profile of contact surface 
together with the modes of ultrasonic action.   
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a) 

 
b) 

Fig. 6. Dependence of specific area of interphase boundary on amplitude at different properties of liquid 
(frequency of 60 kHz): viscosity (a) and surface tension (b) 

 
Presented dependences (Fig. 6) can be used for the determination of the area change caused by change 

of the liquid type and change of its properties. In particular it is stated, that growth of viscosity leads to the 
decrease specific area of the interface.  It is caused by the absorption of energy of shock waves in liquid phase 
due to forces of viscous friction. At that decrease of surface tension leads to the growth of the area, as surface 
energy of a liquid directly depends on its surface tension. 

 
IV.  CONCLUSION 

Thus model of the interaction of cavitation zone generated under the action of ultrasonic vibrations 
with interface of gas and liquid phases is developed. It is shown, that this interaction leads to the generation of 
capillary wave and consequently to the growth of surface of phase con-tact. Analysis of the model allows 
determining the modes of ultrasonic action, which are necessary for maximum increase of interphase boundary 
area.  As a result of the analysis we determine threshold vibration amplitudes of solid surface covered with thin 
film of liquid phase, which excess leads to stability failure of capillary waves and their breakage into liquid 
drops. It is shown, that the most appropriate frequency of ultrasonic vibrations is 60 kHz, at which more than 3 
times increase of contact surface. Obtained new scientific results have fundamental interest for the 
understanding of physical mechanism of the interaction of cavitation bubbles with the interface “liquid-gas”. 
They can be used for the practical realization of physic-chemical processes at the boundary “liquid-gas” 
(absorption, drying, evaporation, etc.). In particular ultrasonic action in the packed absorbers lets applying in 
more than 3 times less number of the nozzles at the same productivity of absorption. 
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