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Abstract: - In this paper, we address a complex image registration issue arising when the dependencies 

between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently 

encountered in medical imaging when a pathology present in one of the images modifies locally intensity 
dependencies observed on normal tissues. Usual image registration models, which are based on a single global 

intensity similarity criterion, fail to register such images, as they are blind to local deviations of intensity 

dependencies. Such a limitation is also encountered in contrast enhanced images where there exist multiple pixel 

classes having different properties of contrast agent absorption. In this paper, we propose a new model in which 

the similarity criterion is adapted locally to images by classification of image intensity dependencies. Defined in 

a Bayesian framework, the similarity criterion is a mixture of probability distributions describing dependencies 

on two classes. The model also includes a class map which locates pixels of the two classes and weights the two 

mixture components. The registration problem is formulated both as an energy minimization problem and as a 

Maximum A Posteriori (MAP) estimation problem. It is solved using a gradient descent algorithm. In the 

problem formulation and resolution, the image deformation and the class map are estimated at the same time, 

leading to an original combination of registration and classification that we call image classifying registration. 
Whenever sufficient information about class location is available in applications, the registration can also be 

performed on its own by fixing a given class map. Finally, we illustrate the interest of our model on two real 

applications from medical imaging: template-based segmentation of contrast-enhanced images and lesion 

detection in mammograms. We also conduct an evaluation of our model on simulated medical data and show its 

ability to take into account spatial variations of intensity dependencies while keeping a good registration 

accuracy.   And the addresses the automatic image segmentation problem in a region merging style. With an 

initially over-segmented image, in which the many regions (or super-pixels) with homogeneous color are 

detected, image segmentation is performed by iteratively merging the regions according to a statistical test. 

There are two essential issues in a region merging algorithm: order of merging and the stopping criterion. In the 

proposed algorithm, these two issues are solved by a novel predicate, which is defined by the sequential 

probability ratio test (SPRT) and the minimal cost criterion. Starting from an over-segmented image, 

neighboring regions are progressively merged if there is an evidence for merging according to this predicate. We 
show that the merging order follows the principle of dynamic programming. This formulates image 

segmentation as an inference problem, where the final segmentation is established based on the observed image. 

We also prove that the produced segmentation satisfies certain global properties. In addition, a faster algorithm 

is developed to accelerate the region merging process, which maintains a nearest neighbor graph (NNG) in each 

iteration. Experiments on real natural images are conducted to demonstrate the performance of the proposed 

dynamic region merging algorithm. 

 

Keywords: - Image segmentation, Region merging, Wald’s SPRT, Dynamic programming, Image registration, 

mixture models, lesion detection. 

 

I. INTRODUCTION 
Image registration is a central issue of image processing, which is particularly encountered in medical 

applications [1]–[5]. Medical image registration is critical for the fusion of complementary information about 

patient anatomy and physiology, for the longitudinal study of a human organ over time and the monitoring of 

disease development or treatment effect, for the statistical analysis of a population variation in comparison to a 
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so-called digital atlas, for image-guided therapy, etc. Image registration consists in mapping domains of several 

images onto a common space and results in some corrections of geometric differences between the images. Most 

of classical registration techniques rely upon the assumption that there exists a relationship between intensities 

of images to be registered and that this relationship remains the same all over the image domains [6]–[11]. This 

assumption is typically made when applying registration techniques based on intensity criteria such as the sum 

of squared differences, the correlation ratio, the correlation coefficient or the mutual information [10]. But such 

an assumption is not always satisfied. As an example, let us mention the medical imaging case when a contrast 
agent is used to enhance some pathological tissues (lesions) [12], [13]. After enhancement, intensities of normal 

tissues and lesions are likely to differ, even though they can be the same before enhancement. So, a same 

intensity before enhancement may correspond to several intensities after enhancement. Hence, with contrast-

enhanced imaging modalities, the relationship between image intensities is neither unique, nor spatially 

invariant. It mainly depends on the type of observed tissues. In such cases, ignoring the spatial context may lead 

to locally establishing an inaccurate or even inconsistent correspondence between homologous geometric 

structures. This issue was documented in [13], [14], 

where it is shown that such non-rigid registration would wrongly change the size of non-deformed 

contrast-enhanced structures. In the literature, there have been several works dealing with image registration in 

the presence of multiple pixel classes. These works can mainly be divided into two categories: those based on 

robust estimation and mixture models, and those combining registration and classification (or segmentation). 

Robust estimation is a statistical approach which has been widely applied to image processing [15]. This 
approach involves the definition of outliers, which are characterized as elements deviating from a normal model, 

detected and possibly rejected [16]–[19]. Applied to optical flow estimation and image registration [20]–[25], 

robust estimation helps to reduce the influence of large insignificant image differences on the optical flow or the 

deformation estimation. However, these approaches offer poor characterizations of outliers, which are usually 

described as pixels generating large image differences. They cannot deal with complex situations arising from 

medical imaging applications. More general robust estimation approaches are based on mixture models [18] and 

characterize outliers by some specific probability distributions [26]–[34]. In optical flow computation, a mixture 

model was used to distinguish between several layers of movements and an outlier class [31]. In image 

registration, some authors used a mixture model in which image differences generated by outliers are 

represented by a mixture component [29], [30]. Similar approaches could be used in medical image registration 

considering medical lesions as outliers [26]–[28]. However, the main and important difference with the model 
we introduce in this paper is that the mixture models proposed above do not use any spatial and geometric 

information about the pixel classes but only pixel-independent mixing proportions. In other approaches, spatial 

informations derived from segmentation were used to adapt regionally the similarity criterion describing 

intensity relationships [35]–[38]. Such segmentation-based approaches require a preliminary segmentation of 

the images which, obviously, cannot always be obtained. For instance, in dynamic contrast-enhanced sequences, 

the image segmentation has to be estimated from the registered images [39]. Image segmentation has also been 

combined with atlas-based registration in Bayesian frameworks [40], [41], where mixture models were used to 

represent pixel intensities of different anatomical structures. In other works, Markov random fields were 

employed to describe a label map of pixel classes. The registration and the segmentation were then computed by 

the Maximum A Posteriori (MAP) estimation [42]–[44]. In such approaches, one can incorporate prior 

information about the lesion shape and localization. However, the proposed methods used simple 

characterizations of intensity variations. In this paper, we deal with the issue of registering images whose 
intensity relationship is spatially dependent. We propose a new technique where the registration is 

simultaneously combined to a pixel classification. This classification provides some spatial information about 

intensity relationships. We use 

Mixture models to take into account complex intensity changes and Markov random fields to label 

pixels. The paper is organized as follows. Section 2 describes the theoretical foundation of the proposed new 

method. Then, the numerical aspects are discussed in Section 3. In Section 4, experiments are conducted both on 

simulated and on real data to evaluate the method performance. Finally, some conclusions and possible 

extensions of the proposed approach are discussed in the last section. Image segmentation is a fundamental yet 

still challenging problem in computer vision and image processing. In particular, it is an essential process for 

many applications such as object recognition, target tracking, content-based image retrieval and medical image 

processing, etc. Generally speaking, the goal of image segmentation is to partition an image into a certain 
number of pieces which have coherent features (color, texture, etc.) and in the meanwhile to group the 

meaningful pieces together for the convenience of perceiving [61]. In many practical applications, as a large 

number of images are needed to be handled, human interactions involved in the segmentation process should be 

as less as possible. This makes automatic image segmentation techniques more appealing. Moreover, the success 

of many high-level segmentation techniques (e.g. class-based object segmentation [82, 83]) also demands 

sophisticated automatic segmentation techniques. Dating back over decades, there is a large amount of literature 
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on automatic image segmentation. For example, the edge detection algorithms [74-79] are based on the abrupt 

changes in image intensity or color, thus salient edges can be detected. However, due to the resulting edges are 

often discontinuous or over-detected, they can only provide candidates for the object boundaries. Another 

classical category of segmentation algorithms is based on the similarities among the pixels within a region, 

namely region-based algorithms. In order to cluster the collection of pixels of an image into meaningful groups 

of regions or objects, the region homogeneity is used as an important segmentation criterion. Many cut criteria 

in graph theory have been studied for this purpose. The most widely used cut criteria include normalized cut 
[88], ratio cut [9], minimum cut [10] and so on. The aim of these algorithms is to produce a desirable 

segmentation by achieving global optimization of some cost functions. However, these cost functions only 

provide a 

Characterization of each cut rather than the whole regions. Another problem is that the optimization 

processes are often computationally inefficient for many practical applications. In recent years, the success of 

combinatorial graph cut methods [71-72] has been attracting significant research attention. These methods 

utilize the user input information along with the cut criteria in optimization and nearly global optima can be 

achieved in linear computational time. As a matter of fact, for most cut-based energy functionals a single 

optimal partition of an image is not easy to obtain. It makes a possibility of finding different level-based 

explanations of an image. From this aspect, there are methods [81-82] tackling the image segmentation as a 

hierarchical bottom-up problem. In region-based methods, a lot of literature has investigated the use of primitive 

regions as a preprocessing step for image segmentation [83-85]. The advantages are twofold. First, regions carry 
on more information in describing the nature of objects. Second, the number of primitive regions is much fewer 

than that of pixels in an image and thus largely speeds up the region merging process. Starting from a set of 

primitive regions, the segmentation is conducted by progressively merging the similar neighboring regions 

according to a certain predicate, such that a certain homogeneity criterion is satisfied. In previous works, there 

are region merging algorithms based on statistical properties [66, 72-73, 70-71], graph properties [87-89, 74-75] 

and spatio-temporal similarity [80]. Although the segmentation is obtained by making local decisions, some 

techniques [66-71] have shown satisfying results with efficient implementation. Most region merging algorithms 

do not have some desirable global properties, even though some recent works in region merging address the 

optimization of some global energy terms, such as the number of labels [90] and the area of regions [91]. As a 

good representation of morphological segmentation, watershed transform [92] can also be classified as region-

based segmentation methods. The intuitive idea comes from geography, where watersheds are the dividing lines 
of different catchment basins. The major drawback of watershed transform is the over-segmentation of the 

image. To overcome this problem, one solution is “flooding” from the selected markers [76-78] such that only 

the most important regional minima are saved for the segmentation. The other [79] is based on a hierarchical 

process, where the catchment basins of the watershed image are merged until they belong to almost 

homogeneous regions. In this paper, we implement the segmentation algorithm in a region merging style for its 

merit of efficiency, where similar neighboring regions are iteratively merged according to a novel merging 

predicate. As stated above, homogeneity criteria (cues) are essential to the region merging process. Although a 

good enough cue is needed in order to obtain a valuable segmentation, our work does not focus on finding a 

more complex region model. Instead, we model the cues by a function of random variables. In this way, the 

properties of cues are not mainly concerned, but the reliability of the cues. In many traditional segmentation 

algorithms (e.g. [63-69]), the reliability is predetermined and thus researchers often try to use more reliable cues 

for implementation. In contrast, some statistical segmentation methods are able to calculate the reliability of 
cues, for example, using the parametric probability models [80-81]. But they cannot be used in a general 

scenario. Another statistical method [76] directly uses the statistical property of image data (e.g., colors) to 

identify the region border. Particularly, a homogeneity criterion is proposed based on the expectation of pixel 

colors inside a region, which naturally leads to a merging predicate. In the recent work of region merging [72], a 

likelihood ratio test is applied as the measure of region similarity. The probability of adjacent regions and that of 

their merging are both computed. To minimize both probabilities of error, the optimal merging will take place 

along with the largest decreasing of the likelihood ratio.  

 

II. THE BAYESIAN FRAMEWORK 

Let m and n be two integers, and  = {0, ...,m − 1} × {0, ..., n − 1} be a discrete grid of size N = m 

n. Observed images are real-valued functions defined on d. They can be interpolated on the continuous domain 

 = [0,m − 1] × [0, n − 1] naturally associated to the grid d. For convenience, elements of  are ordered and 

will be denoted xi for i = 1, · · · ,N. The registration of two images I and J consists in finding a mapping _ :  :

→   for which the 
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deformed image Iφ := I  of the so-called source image I is as similar as possible to the so-called 
target image J. 

In a Bayesian framework, the mapping _ is usually obtained as a MAP estimate (see [45] and references 

therein). Specific to this framework, images and deformations are assumed to be some realizations of random 

fields indexed on  and , respectively. For each point xi of , I(xi) and J(xi) are realizations of two real-

valued random variables and, for each point x of ,  (x) is a realization of a random vector with values in . 

The relationships between the intensities of the registered images are then statistically described by a probability 

distribution of J given I,  and a set of parameters  (this conditional distribution is denoted by  (J | I, 

)). Usually, the variables J(xi) are assumed to be independent conditionally to the variables Iφ(xi). 

Hence, ( ) can be written as 

(1) 

Because of noise, and also because it is a very generic choice, it is possible to assume that the intensity 

differences between J(x) and Iφ(x) follow a Gaussian distribution with mean μ and variance  at each pixel x 

∈ , leading to the distribution 

(2) 

with In this definition, it is worth noticing that the mean μ and the variance  do not 

depend on any position x. Consequently, the intensity relationship between images is spatially homogeneous. 
Let us further mention that, similarly to this particular Gaussian distribution, distributions associated to other 

usual criteria (e.g. correlation ratio, correlation coefficient, or mutual information) are also homogeneous. 

Besides, a prior probability distribution is set on the mappings _ in order to favour smooth deformations as 

solutions of the registration problem. Let be written as the sum of the identity map id and a 

displacement field u, seen as an element of a Hilbert space H equipped with an inner product a(·, ·). Let then ˜H 

be a finite-dimensional approximation subspace of H which is spanned by a basis   with ne ∈ 

N∗. In ˜H, a displacement u is uniquely determined by a vector of coefficients such that 

 In the following, the deformations  are assumed to be expanded into the subspace ˜H 

and identified with their decomposition coefficients b. We will also use the notation Ib instead of Iφ. Several 

choices are possible for the basis B: Fourier basis, sine and cosine transform basis functions, B-splines, 

piecewise affine or trilinear basis functions, wavelets (see [46] for a review), etc. We consider an inner product 

on ˜H, given by , where bT is the transpose of b, and A is a symmetric positive-definite 

matrix. On ˜H, we then define a centered multivariate normal distribution with covariance matrix given 
by 

(3) 

This prior distribution is used as a regularity term to enforce the smoothness of the deformations  A usual 
choice for a(·, ·) is the bilinear form 

(4) 
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defined for > 0 and μ > 0, which is an inner product on the Sobolev space and is related 
to the linearized strain energy of elastic materials [47]–[50]. We choose here the elastic regularization without 

aiming at a specific application, but knowing that this term enables to deal with many medical imaging 

applications. Other regularity terms could be better adapted to specific applications. They can be easily 

introduced in the proposed model. Other choices include the membrane energy [51], the bending energy [52], 

etc. The matrix A can also be estimated from the data using for instance EM algorithms with stochastic 

approximation [53], [54]. 

 

III. THE TWO-CLASS REGISTRATION MODEL 
We now outline our new model. It is an extension of the model described in the previous section. The 

main feature is the introduction and the estimation of a pixel classification to take into account the spatial 

variations of the statistical relationships between the intensities of J and Iφ. 

Intensity relationships  In Equation (2), the probability distribution describing the intensity 

relationship is spatially homogeneous. We now assume that the pixels of image J can be divided into two classes 

(labeled 0 and 1) where the intensity relationships are different and denoted respectively by 

Let also L(x) be the probability for a pixel x to belong to the class 1. Then, 

the intensity relationship at pixel x is described by the mixture distribution 

(5) 

where  Let us denote Li = L(xi) and L = (L1, · · · ,LN)T the vector of class probabilities on grid 
pixels. Assuming the conditional independence on grid points, we obtain the global conditional distribution 

(6) 
 

In an application of our model to lesion detection, the classification aims at distinguishing pixels on a 

lesion (class 1) from those outside any lesion (class 0). In contrast-enhanced images, the enhancement is more 

important on lesions than it is on normal tissues, leading to higher image differences on lesions. Assuming that 

the distributions are Gaussian on both classes, we can define distributions and  as 

in Equation (2) using two different sets of parameters: with 

μ1 > μ0. Another possibility is, as in robust estimation, to consider elements of class 1 as outliers of class 0 and 

put no specific information on class 1 by defining  as the uniform distribution 

(7) 
where Ngl is the number of possible gray-levels of J. Finally, we define a prior distribution on the class 

map L itself in order to introduce some constraints on the spatial homogeneity of the pixels of a same class. For 

that purpose, we equip the grid  with a  neighborhood system (either a 4 or 8 neighborhood system) and 
assume that the class map L is a Markov random field on it [55]. We have considered two prior distributions on 

L. The first one is a Gaussian 

model, given by 

(8) 

where xi ∼ xj means that xi and xj are neighboring pixels, Z is a normalization constant, and 

. The second model, which is a particular case of the Gaussian model when L is binary with range {0, 
1}, is the Bernoulli model 
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(9) 

where _ and . If we let X = 2L − 1, this model is equivalent to the Ising model [56].In models 

(10) and (11), the parameter  restricts the amount of pixels of the class 1, whereas the parameter 

enforces the spatial homogeneity of the classes. 

 
Parameters The distributions defined above involve several parameters. In our application, we used the 

prior deformation distribution defined by Equation (4) and set manually the Lame constants  and μ from 

experiments. We also set manually the mean μ0 and the variance  of the Gaussian distribution 

 of the class 0, and the weights  and  of the Gaussian or Bernoulli model in Equations (10) and 

(11). The other parameters, which are the mean μ1 and the variance  of the Gaussian distribution  on 

class 1, are estimated from the data. We assume that μ1 belongs to an interval [μmin, μmax] and to another 

interval [_min, _max] and put, as a prior, uniform independent distributions of μ1 and  on these intervals. 

The parameter vector  is decomposed as ), where is known and 

This parameter  is then estimated, together with the deformation and the classification by 
solving the following MAP estimation problem: 

(10) 

As before, this is equivalent to the minimization of an energy of the form 

(11) 

under the constraint that  
 

 

IV. THE REGION MERGING PREDICATE 
Automatic image segmentation can be phrased as an inference problem [60]. For example, we might 

observe the colors in an image, which are caused by some unknown principles. In the context of image 

segmentation, the observation of an image is given but the partition is unknown. In this respect, it is possible to 

formulate the inference problem as finding some representation of the pixels of an image, such as the label that 
each pixel is assigned. With these labels, an image is partitioned into a meaningful collection of regions and 

objects. The Gestalt laws in psychology [66-67] have established some fundamental principles for this inference 

problem. For example, they imply some well-defined perceptual formulations for image segmentation, such as 

homogeneous, con tinuity and similarity. In the family of region merging techniques, some methods have used 

statistical similarity tests [86, 89] to decide the merging of regions, where a predicate is defined for making local 

decisions. These are good examples of considering the homogeneity characteristics within a region, from which 

we can see that an essential attribute for region merging is the consistency of data elements in the same region. 

In other words, if neighboring regions share a common consistency property, they should belong to the same 

group. However, most of the existing region merging 

Algorithms cannot guarantee a globally optimal solution of the merging result. As a consequence, the 

region merging output is over-merged, under-merged or a hybrid case. In this section, we propose a novel 
predicate which leads to certain global properties for the segmentation result. The proposed predicate is based 

on measuring the dissimilarity between pixels along the boundary of two regions. For the convenience of 

expression, we use the definition of region adjacency graph (RAG) [30] to represent an image. Let G = (V, E) be 

an undirected graph, where vi∈V is a set of nodes corresponding to image elements (e.g. super-pixels or 

regions). E is a set of edges connecting the pairs of neighboring nodes. Each edge (vi,vj)∈E has a corresponding 

weight w((vi,vj)) to measure the dissimilarity of the two nodes connected by that edge. In the context of region 

merging, a region is represented by a component R ⊆ V. We obtain the dissimilarity between two neighboring 

regions R1, R2 ⊆ V as the minimum weight edge connecting 
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them. That is, 

(12) 

The graph structure of an example partition is shown in Fig. 1, where the image has 7 regions and its RAG is 
shown on the right. The advantage of RAG is that it can provide a “spatial view” of the image. 

 
Fig 1. An example of region partition and the corresponding region adjacency graph (RAG). 

 

 
Fig 2. An example that the predicate P between R1 and R2 is true. 

 

The thickness of lines indicates the weights of the edges. The most similar pair of regions is connected by an 

edge with the minimal weight. 

Since the merging predicate will decide whether there is an evidence of merging between the pair of 

regions, it involves two aspects: a dissimilarity measure which is used to determine the candidate region for 

merging, and the consistency property which checks if the regions are homogenous. We define the following 

region merging predicate P: 

(13) 
where Ω1 and Ω 2 are the neighborhood sets of R1 and R2, respectively.[77] The merging predicate on regions 

R1 and R2 could thus be “merge R1 and R2 if and only if they are the most similar neighbors in each other’s 

neighborhood and follow the principle of consistency.” The condition (a) is stronger than that of only requiring 

the connecting edge between R1 and R2 to be the minimal one in either of the neighborhood. This leads to an 

interesting property of the proposed region merging algorithm, i.e., the candidates of the pairs of regions for 

merging are uniquely decided by the given graph. We shall see hereafter that such a condition uniquely decides 

the pairs of regions to be merged at a given merging level. Moreover, in Section V we will prove that there is 

always at least one pair of regions which satisfies condition (a). Clearly, without condition (b), all the regions 

will be merged into one big region at the end of region merging process. Therefore, condition (b) acts as a 

stopping criterion. Fig. 2 illustrates an example when the predicate P between regions R1 and R2 is true. 
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1. Consistency Test of Cues 

In order to obtain the homogenous regions in region merging, the proposed predicate P in Eq. (13) 

checks the consistency of regions. Region information is usually presented by the cues extracted from the 

observed data. The choice of cues can be intensity, color, texture and so on. If we view the cue as a random 

variable, the distribution of the cue depends on the consistency of pairs of regions. In this paper, we formulate 

the evaluation of the region consistency as a sequential test process. Suppose parameter θ is related to the 

distribution of random cues x. More specifically, we gather information of parameter θ by observing random 
variables in successive steps. Since every sample of the cues carries statistical information on parameter θ, we 

may collect the information at the end of observation. This is one of the interesting problems studied in 

sequential analysis, where θ is called a hypothesis. In the context of region merging, two hypotheses are 

involved in the evaluation task: a pair of regions is “consistent”, and is “inconsistent”, which are denoted by a 

null hypothesis H0: θ = θ 0 against an alternative hypothesis H1: θ = θ 1, respectively. The property of the 

hypotheses is a hidden state that is not directly  observable, but is statistically linked to the observable cues. To 

decide whether or not a pair of regions belongs to the same group, we look for the solution of its hypothesis test. 

An efficient and popular procedure for integrating the statistical evidence is the sequential probability ratio test 

(SPRT) which was proposed by Wald [78]. SPRT shows that the solution to the hypothesis can be found by 

making the smallest number of observations and satisfying the bounds on the predefined probabilities of two 

errors. SPRT is purely sequential in nature, i.e., continuing sampling on the instances of a random variable will 

eventually lead to a reliable inference about parameter θ. The application of SPRT to the consistency test of cues 
is described as follows. We observe the distribution of random cues x in a sequence until a likelihood ratio δ 

goes out of the interval (B, A) for the first time by a random walk, where the real numbers A and B satisfy 

B<0<A. The sequence of successive likelihood ratio δ i is: 

(14) 
where P0(x| θ 0) and P1(x| θ 1) are the distributions of visual cues. P0(x| θ 0) and P1(x| θ 1) should be 

different so as to make a convincing decision. We use the Gaussian distribution model to approximate the cue 

distributions. The two conditional probabilities are given as follows: 

(15) 
where Ia and Ib are the average color of sampled data in regions a and b respectively, and Ia+b is the 

average value of samples’ union. SI is the covariance matrix of the regions, and λ 1 and λ 2 are scalar 

parameters. If each test is independent, the composition of the likelihood ratios is the sum of the individual δ i: 

(16) 
where N is the first integer for which δ ≥ A or δ ≤ B. We can see that the solution to the hypothesis is 

decided by the relationship between δ, an upper limit and a lower limit, denoted by A and B, respectively. If δ 

goes out of one of these limits, the hypothesis is made and thus the test stops. Otherwise, the test is carried on 

with a new random sampling. 

Algorithm 1: consistency test of cues 

Preset λ 1; 

Let λ 2 =1, α=0.05, β=0.05; 

Compute parameters: 

N0: be a constant greater than max{E{δ | θ 0}, E{δ | θ 1}}; 

A=log(1-β)/α , B=logβ(1-α); 
P0(x| θ 0), P1(x| θ 1) are computed using Eq. (4). 

Input: a pair of neighboring regions. 

Output: the decision D that the two regions are “consistent” (D=1) or “inconsistent” (D=0). 

1. Set evidence accumulator δ and the trials counter n to be 0. 

2. Randomly choose m pixels in each of the pair of regions, where m equals the half size of the region. 

3. Calculate the distributions of visual cues x using Eq. (4) based on these pixels. 

4. Update the evidence accumulator 
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5. If n≤N0 If δ ≥ A, return D=1 (consistent) 

If δ ≤ B, return D=0 (inconsistent) 

If n>N0 

If δ ≥ 0, return D=1 (consistent) 

If δ <0, return D=0 (inconsistent) 

6. Go back to step 2. 

 

2. The dynamic region merging algorithm 

In this section, we explain the proposed region merging algorithm as a dynamic region merging (DRM) 

process, which is proposed to minimize an objective function with the merging predicate P defined in Eq. (13). 

As mentioned in Section I, the proposed DRM algorithm is started from a set of over-segmented regions. This is 

because a small region can provide more stable statistical information than a single pixel, and using regions for 

merging can improve a lot the computational efficiency. For simplicity and in order to validate the effectiveness 

of the proposed DRM algorithm, we use the watershed algorithm [71] (with some modification) to obtain the 

initially over-segmented regions (please refer to Section VI-A for more information), yet using a more 

sophisticated initial segmentation algorithm (e.g. mean-shift [62]) may lead better final segmentation results. 

Given an over-segmented image, there are many regions to be merged for a meaningful segmentation. By taking 

the region merging as a labeling problem, the goal is to assign each region a label such that regions belong to the 

same object will have the same label. There are two critical labels for a region Ri: the initial label li 0, which is 
decided by the initial segmentation, and the final label li n, which is assigned to the region when the merging 

process stops. In our problem, the final label li n for a given region is not unique, which means that the same 

initialization li 0 could lead to different solutions. This uncertainty mainly comes from the process of SPRT with 

a given decision error. The test of consistency/inconsistency depends on the error probabilities of the cue 

decisions α and β. In general, these decisions are precise for homogenous regions. If a region contains a small 

part of non-homogenous data, the SPRT might add a few more times of tests to verify its decision. With 

reasonably small error probabilities, the segmentation results will be more reliable. According to our 

observation, in most cases, the segmentation result is stable for a given image and it can be guaranteed that all 

the results satisfy the merging predicate P defined in Eq. (2). In the process of region merging, the label of each 

region is sequentially transited from the initial one to the final one, which is denoted as a sequence 

. To find an optimal sequence of merges which produce a union of optimal labeling for 
all regions, the minimization of a certain objective function F is required. According to predicate P, the 

transition of a region label to another label corresponds to a minimal edge weight that connects the two regions. 

In this case, a sequence of transitions will be defined on a set of local minimum weights, i.e., in each transition 

the edge weight between the pair of merged regions should be the minimal one in the neighborhood. As a result, 

the objective function F used in this work is defined as the measure of transition costs in the space of partitions. 

In other words, as the whole image is a union of all regions, F is the sum of transition costs over all regions. 

That is: 

 
Where Fi is the transition costs of one region Ri in the initial segmentation. Minimizing F in Eq. (17) is 

a combinatorial optimization problem and finding its global solution is in general a hard task. Since the 

exhaustive search in the solution space is impossible, an efficient approximation method is desired. The solution 

adopted here is based on the stepwise minimization of F, where the original problem is broken down into several 

sub-problems by using the dynamic programming (DP) technique [73]. The DP is widely used to find the (near) 

optimal solution of many computer vision problems. The principle of DP is to solve a problem by studying a 

collection of sub-problems. Indeed, there have been some works in image segmentation that benefit from this 

efficient optimization technique, such as DP snake [64-65]. In the proposed DRM algorithm, we apply DP on 

discrete regions instead of line segments. The minimization problem for region Ri starting at labeling li 0 is 
defined as: 

(18) 
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Where is the transition cost from  to  dk,k+1 is the minimal edge weight 

between the regions with labeling  and , respectively. In conjunction with Eq. (12), we have 

(19) 

The overall path length from  to n is the sum of minimum edges dk,k+1 for each node in that path. 
This problem reduces to a search for a shortest path problem, whose solution can be found at a finite set of steps 

by the Dijkstra’s algorithm in polynomial time. At this point, a minimization process of objective function F is 

exactly described by the predicate P defined in Eq. (13), where P is true if the nodes are connected by the edge 

with the minimal weight in their neighborhood. It means that the closest neighbors will be assigned to the same 

label, which is the cause of the merging. In Fig. 3, an example process of region merging is shown by 
embedding it into a 3D graph. Between two adjacent layers there is a transition which indicates the costs of a 

path. Clearly, this is also a process of label transitions.[92] The neighborhood of the highlighted region (in red) 

is denoted as the black nodes in the graph and the closest neighbor is denoted as the red nodes. The directed 

connections with the lowest cost between adjacent layers are made (shown as blue arrows). Note that the 

connectivity between regions in the same layer is represented by the RAG, which is not explicitly shown in 

Fig.3. 

 
Fig 3. The dynamic region merging process as a shortest path in a layered graph. 

 

The upper row shows the label transitions of a graph node. The lower row shows the corresponding 

image regions of each label layer. Starting from layer 0, the highlighted region (in red) obtains a new label from 
its closest neighbor (in red). If the region is merged with its neighbor, they will be assigned to the same label. 

The shortest path is shown as the group of the directed edges (in blue). 

Algorithm 2: segmentation by dynamic region merging 

Input: the initially over segmented image S0. 

Output: region merging result. 

1. Set i=0. 

2. For each region in segmentation Si, use Algorithm 1 to check the value of predicate P with 

respect to its neighboring regions. 

3. Merge the pairs of neighboring regions whose predicate P is true, such that segmentation 

Si+1 is constructed. 

4. Go back to step 2 until Si+1 = Si. 

5. Return Si. 
 

V. CONCLUSIONS 
In this paper, we have proposed a Bayesian approach to perform simultaneously image registration and 

pixel classification. The proposed technique is well-suited to deal with image pairs that contain two classes of 

pixels with different inter-image intensity relationships. We have shown through different experiments that the 

model can be applied in many different ways. For instance if the class map is known, then it can be used for 

template-based segmentation. If the full model is used (estimation of the class map, the registration and the 

parameters of the distribution of the outliers), then it can be applied to lesion detection by image comparison. In 



American Journal of Engineering Research (AJER) 2013 
 

 
w w w . a j e r . o r g  
 

Page 223 

this paper, we proposed a novel method for segmenting an image into distinct components. The proposed 

algorithm is implemented in a region merging style. We defined a merging predicate P for the evidence of a 

merging between two neighboring regions. This predicate was defined by the sequential probability ratio test 

(SPRT) and the maximum likelihood criterion. A dynamic region merging (DRM) was then presented to 

automatically group the initially over-segmented many small regions. Although the merged regions are chosen 

locally in each merge stage, some global properties are kept in the final segmentations. For the computational 

efficiency, we introduced an accelerated algorithm by using the data structure of region adjacency graph (RAG) 
and nearest neighbor graph (NNG). Experiments on natural images showed the efficiency of the proposed 

algorithm. There are several potential extensions to this work, such as the introduction of global refinement and 

user interaction, etc. Those will be further investigated in our future work. 
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