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Abstract: The problem of solving special n"-order linear integro-differential equations has special importance
in engineering and sciences that constitutes a good model for many systems in various fields. In this paper, we
construct canonical polynomial from the differential parts of special n™-order integro-differential equations and
use it as our basis function for the numerical solutions of special n"-order integro-differential equations. The
results obtained by this method are compared with those obtained by Adomian Decomposition method. It is also
observed that the new method is an effective method with high accuracy. Some examples are given to illustrate
the method.
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l. INTRODUCTION

Integro - differential equation is an equation which involving both differential and integral equation.
This type of problem arise in Science and Engineering because of complexity of this problem, we discover that
in order to get an exact or analytical solution of the problems, numerical analyst are now to developed interest in
this area and this motivated the researcher to study this class of problem. The Canonical Polynomial established
by Liao [11-15] is thoroughly used by many researchers to handle a wide variety of scientific and engineering
applications: linear and nonlinear, and homogeneous and inhomogeneous as well. It was shown by many authors
[1, 5,7, 8,9, 21, 22] that this method provides improvements over existing numerical techniques. The method
gives rapidly convergent series solution approximation of the exact solution if such a solution exists. Taiwo [23]
motivated this researcher work due to some properties of Canonical polynomials reported in the work that:

0] Canonical Polynomial can be generated over any given interval of consideration;
(i) It can be easily programmed; and
(iii) It can be generated recursively.

Without loss of generality, the researcher considers special n"-order linear integro-differential equation (IDE) of
the form:

Y0+ 3 ROV (0= 100+ AL Kty o
Y(a) =3a,, y'(a) =a,. y(n_l) (a) =a,, 2

where @;, are real constants, N, Pare positive integers, f(X), P, (X)and K(X,t)are given smooth

functions, while y(x) is to be determined.

Eqg. (1)- (2) occur in various areas of engineering, mechanics, physics, chemistry, astronomy, economics,
potential theory, electrostatics, etc. Many methods are usually used to handle the high-order IDE (1)-(2) such as
the successive approximations, Adomian decomposition, Homotopy perturbation method, Taylor collocation,
Haar Wavelet, Tau and Walsh series methods, Monte Carlo Method, Direct method based on Fourier and block-
pulse functions, etc. [2-4, 6, 10, 16-17, 21-25], but due to the problems encountered by some of these authors in




American Journal of Engineering Research (AJER) 2013

€ etc, then the method serves as an advantage.

2
integrating complex functions like €7 , e

Significant of the study

The construction of a new basis called Canonical polynomials applied to the linear and non-linear problems
That a good choice of basis plays an important role in both the accuracy and efficiency of a collocation method
is well-known in the literature. The extension of Canonical polynomials as a new basis for collocation method is
examined and the following observation were obtained. Canonical polynomials provide some computational
advantage, among which are the following;

They are generated by a single recursive formula.

They are independent of the interval of consideration.

They are independent of the associated conditions.

They ensure highly stable method (A-stability) and optional order accuracy.

One major advantage of the approach is that it is easily friendly to error estimation.

We obtained that non linear problems are solved using the collocation method in terms of canonical polynomials
for the sequence of linearized approximate problems. The Newton’s linearization process is used which
guarantees a quadratic convergence rate of the iteration.

We also obtained that the method provides the solution in a rapidly convergent series with components that are
elegantly computed.

With all these observation, the researcher conclude that canonical polynomial plays important role in term of
accuracy and efficient.

1. CONSTRUCTION OF CANONICAL POLYNOMIAL
From the general equations, stated in (1)-(2), we define D as follows;
Rn ﬂl-
Jl: = F‘ P_—
oax
iaplies
d" d: d* d
T Ty e e
ang let
LD [x)=x'

L' = Pi(i=1)(i = 2)e (i —m)x™ +ooe+ Bil(i = 1)(i = D™ + Bili =1 + Bix™ + Bx’
L:L'il_. |:._.'l.’.|] =FPii-0i-2)--(—-mil® )+ + R -1 -2)LP, . (x)+
Pili-1L® _,(x)+ Pil®_(x)+ F,LD [x)
=P =D =2) (i -m)P_,(x)+ -+ P -1 - DD (x)+ Rili -1}, (x)+ Bi® ,(x)+ P, x]

d (x)= % 1. —Bi®_ (x)-Pili =1)®_,(x)=Pi(i -D(i =P _, (x) == Pi(i = D{i =) (i -)D_, {J:j]
iz0.B =0 (3)

For the case n = 3, we define our operator as:
LzPsd—3+P £+P1+P
d¢  Zdx®? tdx °
LD, (x)=x'
Lx' = P,i(i —1)(i —2)x'° + P,i(i —1)x' 2 + Pix' ™ + P,x'
L[L®D, (x)]= Pi(i —2)(i —2)LD,_,(X) + P,i(i —1)LD_,(x)+ PiLD, , (x) + P,LD,(x)

X' = (i —1)(i = 2)®, 4 (x) + P,ili ~1), ,(x)+ R, , () + P,; (x)
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@, (x)= Pi[xi —Rid, ,(x) = Pi(i —1)0, ()= Pyi(i —1)(i—2)®, ,(x)]i = 0;P, %0 @)
0
Fori=0: CDO(X):PLO
. 1 X P
Fori=1: CDl(X):FO(X— PlCI)O(X)):FO—P—Ol2
2 2
Fori=2: CI)Z(X):i[x2 —2PICI)1(X)—2PZCI>0(X)]:X——2xilz+2P—13—2122
I:)O PO 0 0 PO

®,(x) = o[ ~3RP, (- 6P, (x)- 6P, ()]

0

Fori=3: 3 ) , 3
x> 3x°P, 6xP° 6P’ 6xP, 6P,
P00 =5 gt T T pr e
0 0 0 0 0 0
Fori=4:

@, ()= [x* ~4R0, 09 -129,,(x)- 249,,()]

x* 4x°P, +12XZP12 2R LR 72P?P, 48RP, C12¢°P,  24xP, N 24P;

PO P02 P03 PO4 I:)05 I:)04 I:)03 I:)02 P02 I:)03
Thus, from equation (4), we obtain the following
D,(x)=1,
@, (x)=x-1,
@, (x)=x* - 2x,

D, (x) = x> —3x?,
D, (x) = x* —4x° + 24,

etc.

For the case n = 4, we define our operator as:
d* d? d? d
L=P,—+P—+P,—+P—+F
dx dx dx dx

LD, (x)=x'
Lx' = P,i(i —2)(i — 2)(i =3)x"™* + Pi(i —)(i — 2)x"* + P,i(i —~1)x"? + Pix'™* + P,x’
L[L®, (x)]= P,i(i —1)(i —2)(i —3)LD,_, (X) + P,i(i —1)(i — 2)LD, ,(x) + P,i(i )LD, ,(X)
+PiL®, , (xX) + P,LD,(X)
X' = Pi(i —1)(i = 2)(i =3)® 4 () + Pi(i ~ (i =)@, 5 () + Pi(i 1), (X)+ R, () + P,®; ()
®,(x)= Pi[x‘ ~Ri®,., (%)~ Pyili =10, , (x)~ Pyili ~1)(i ~ 2, () + P,i(i ~1)i - 2)(i ~3),_, ()]

0

1>0;P, =0 5)
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_ 1
Fori=0: CDO(X):FO
. 1 x P
For i =1. ®yx)= e qu"’(x)):Fo‘p_}
2 2
Fori=2: <1>2(x)=i[x2 —2P,®, (X) — 2P,®,(x) =X——2x112+2p—13—2122
PO Po 0 0 I:)o

1

CDS(X): F[XS —3qu)2(x) _6P2(D1(X)_6P3(Do(x)]
0

. (%) _x* 3R 6XP’ 6R' 6XP, 6RP, 6P,

UUpoPE P PP PR P P

0 0 0 0 0 0 0

Fori=3:

Fori=4:

@,(x) = 2 [x* ~ 4P, (0 ~12P,, (x) - 24P, (0]

x* 4P, 12x°P} 24xR’ 24P} 48RP, 24xP, 24P, 12¢°P, 24xP _24P’P,

B [FO - pO2 F)O3 I:)04 F)O5 PO4 I:)03 PO3 I:)02 I303 I:)04
> 24xP, 24PP
+24F3)2_ X23+ ;3_2454]
PO PO PO PO
Thus, from equation (5), we obtain the following
@, (x)=1
@, (x)=x-1,

@, (x)=x? - 2x,
@, (x) = x* —3x?,
D, (x) = x* —4x3,

. etc

Let y(X) be the exact solution of the integro-differential equation,

Dy(x)- 1 j: m(x,t)y(t)dt = (x), x e [a,b] "
with

S ey ™)+ @y Ib)=d,, j=1..v, o
m=1

1
jm?

where f(X) and m(x,t) are given continuous functions 4,a,b,c Cfm and d ; some given constants.

1. MATRIX REPRESENTATION FOR THE DIFFERENT PARTS
Let V = {V;(x),V;(X)...} be a polynomial basis by V =V X, where V is a non-singular lower

triangular matrix and degree (Vi (X)) <i, for i =0,1,2,..... Also for any matrix P, P, =VPV ~*.
Now we convert the Eq. (6) and (7) to the corresponding linear algebraic equations in three parts; (a), (b) and

(©).
(a). Matrix representation for Dy(X):
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Ortiz and Samara proposed in [18] an alternative for the Tau technique which they called the
operational approach as it reduces differential problems to linear algebraic problems. The effect of
differentiation, shifting and integration on the coefficients vector

i =@,3,..4,00..)

Of a polynomial un(x) :=”x is the same as that of post-multiplication of = a by the matrices 77, 4 and
i respectively,
du,(x) =~ - x ~ .
=i TAnX, u(0=EuX ., [uOd=aiX
where
0 0 ..
o 1 ... o 1 ....
= 1 oo =0 0 1 i 0 O
o 2 o .[*7 P 2

We recall now the following theorem given by Ortiz and Samara [18].

(b). Matrix representation for the integral term:
Let us assume that

m(x,1) = sz., (v (1), and y(x) = Za () =av. (8)

i=0 j=0
Then, we can write

j:m(x,t)y(t)dt=i§n:zn:mua,v, [ v, (v, (Odt = amy,

1=0 i=0 j=0 (9)

where,

n n ]

oMo %o Z,-:omm“;o o O
k n n 0 0

2 0o %y 210 My
With, i
b

a; = L v (v, (1),  for i, 1=0,...n.
(©). Matrix representation for the supplementary conditions:

Replacing y(X) = Zi=0 a,V; (X) in the left hand side of (7), it can be written as

Z[c(l) ™ (@) + ¢@y ™ ()] = 33 [e Dy (@) + ¢V (b)] = aB
i=0 m=1 10
where for j=1, o

c(l)v0 (a) + c(z’v0 (b)
Zm 1[c(l’vm “a)+cPvmY (b)]
B = (11)

A\
zmzl[cﬁzvsml D (@) + OV (b)]
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We refer to B as the matrix representation of the supplementary conditions and BJ- asits jth column.
The following relations for computing the elements of the matrix B can be deduced from (10):

b, =" [cOv{ (@) +c @V (b)) for i, j=12,..., 12
and,
by => [Cﬁi)va(Tf V(@) +cPvin? (b)], for i=V+LV+2,...,]=12,..V. (13)

We introduce g =(d,,d,,..., d,), the vector that contains right hand sides of conditions. Then the

supplementary conditions take the form
aB=d.

It follows from (8) and (9) that
Dy(¥) -4, m(x.O)y(®)d = a([ T ,~am)V.

(14)

(15)
Let M, :=HV—EM and M, stands for its ith column and let f(X)=Z:in=0 fv,(x) = fV with

f =(fg,..., 1,,0,0,...). . Then the coefficient of exact solution y = aV of problem (6) and (7) satisfies the
following infinite algebraic system:

aMm,; = f;; i=0,..,n,
aM,; =0; i>n+1,
aB; =d;; 1=12,.,V.
= (16)
setting,
G = (Bll"" Bv’ MVO' le"")’
and,
g=(d;,... dy, fp, f1,00),
We can write instead of (16)
G=g 17)
Remark:

For v=0and G,(x) =1,Eq. (6) is transformed into a Fredholm integral equation of second kind and for
A =0, itis transformed into a differential equation.

V. DESCRIPTION OF THE METHOD
For the purpose of our discussion, we assume an approximate solution of the form

yN<x>=gaicDi<x> (19

Where @, are constants to be determined and @; are the canonical polynomials constructed above
We write equation (1) in the form:

y"(x)+ D(x)= f(x)+ AV (x) or D(x)=1(x);i=12,... (19)
So that
D(x)= 3P, )y () @0
V(x)= [ K(x t)y(tt, (21)
and
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1(x)=f(x)+AV(X) (22)
Then, putting equation (18) into equation (1), we obtain
iZ:Q: a, Q" (x)+ :Z:; IZ:): a;(x)2,Q" (x)= f(x)+ AI: k(x, t)IZ:O: a,Q,; (t)dt

a; (X)are known functions to be supplied,

(23)

a;are unknown constants to be determined;

D, (X)are canonical polynomial generated in section 2,
together with the following conditions:

gaiq)i (a): A,
$a0i@-a

S ae @)= a,.,
In equation (23) the integral part has to be evaluated after which the left over are then collocated at point
X = X, , to obtain
Zaiq)in(xk)+2 Zaj(xk )aiq)in(xk): f (Xk)+/l_.-:k(xk 't)zaicpi (tht
i=0 j=0 i=0 i—0

where,

(24)

(b-ak. k=1..N-3
N—-2"
Thus, equation (24) give rise to (N-3) algebraic linear system of equations in (N+1) unknown
constants. The remaining equations are obtained using the boundary conditions stated in equation (2).

These equations are then solved to obtain the unknown constants @; (i 2 O)Which are then substituted into

equation (18) to obtain our approximate solution.
Remark: all these procedure discussed above have been translated and the entire process is automated by the
use of symbolic algebraic program MATLAB 7.9 and no manual computation is required.

X, =a+

V. ERROR
In this section, we have defined our error as

€y (X) = y(X)— Yn (X)'

where y(x) is the exact solution and Y (X) is the approximate solution computed for various values of N.

VI. NUMERICAL EXAMPLES
In this section, we consider some examples of third and fourth order linear integro-differential equations.

Reason:

Because of frequent occurrence of problem in fluid dynamics and biological model in science and
engineering we decided to pick some problem which are commonly used and compared the result obtained by
analytic solution result available.

*  Mathematical modelling of real life, physics and engineering problems usually results in these classes.

*  Many mathematical formulations of physical phenomena contains integro-differential equation, these
equations arise in fluid dynamics, biological models and chemical kinetics.

*  Integro-differential equations are usually difficult to solve analytically so it is required to obtain an efficient
approximate solution.

*  Therefore the need of this study, and also to discuss the existence and uniqueness of the solutions for these
classes of problems.

*  The present work is motivated by the desire to obtain analytical and numerical solutions to boundary value
problems for high-order integro-differential equations.

Example 1: Consider the third order linear integro differential equation
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YDy (x = E5) = v — ) = xsInGO + [ Doy (@) — () + 1y (@ — et
with the conditions
y(0)=1,y(0)=0,y"(0)= -1
and exact solution is y(x) = COS(X). We use the absolute error to measure the difference between the
numerical and exact solutions. In table 1 result obtained for N=6, 7, 8 are given with the exact solution.

Table la: Table ofresult of Example 1

p Exact solotion N=6 ™N=T N=8

New method New method New method
— 2 0 0 0 0
—2f5 030002 0308706 03020668 0300013016
—37/10 D38770 0383083 03877653 03587784062
— 0.80002 DE0T776 0 E0001033 0800013088
— /10 0.05108 0.050022 0.05104063 0051033008
0 1 1 1 1
/10 0.55106 0.950022 0.95105039 0951055998
Py 0.80502 D 807776 080001055 D.805015988
37710 038770 0.383083 D35877655 035877834062
275 0.30502 0308756 03080665 0305013916
T2 0 0 0 0

Table 1b: Table of errors for example 1

p. 4 Exact solution N=6 N=T =2

Error of New Error of New Error of New

method method method
—"'}"’2 0 0. 0000E+OD 0_.0000E+OD 0.0000E+00
— 23 0.30%02 2. 2400E-04 5.3200E-05 1 0S40E-06
— 37410 b.3s778 4.70S0E-03 2. 4500E-05 5.0380E-06
— /3 020002 1.2440E-03 9 4300E-06 1.0120E-06
— 710 0.85106 1.3800E-04 1.0370E-03 4 D020E-06
0 1 0.0DD0E=DO 0.0000E=D0 0.0000E+00
Tf10 0.55106 1.3800E-04 9 4100E-06 1 00I0E-08
i 0.30502 1.2440E-03 9. 4500E-06 1.0120E-06
32410 b.3s77e 4. 7050E-03 2.4500E-05 5 H3ROE-08
2 0.30%02 2.2400E-04 5.3200E-05 4 DEA0E06
T2 0 0. 0DO0E-DD 0.0000E+00 0.0000E~00

Example 2: Consider the third order linear integro differential equation
y7(x)— xy"(x - %)— v(x —7z/2) =2 — xcos(x) + LLZ; [xy'(t) —ty(®) +ty”(t — z/2) + xy(t — 7z/2)]dt

with the conditions

y(0)=1,y'(0)=0,y"(0)=0
and exact solution is y(x) = sin(x)

Table 2a: Table ofresult of Example 2 for the value of IV

e Exact zolution =3 =7
New method MNew method

—1"'_,-"'2 -1 -1 .00E+00 -1 00E+ QD
_2;:-}!5 09311 9 63E-D1 L G6TE- 01
_3’_4-,_-}."10 -0 _B090 -9 16E-D1 9 04E- 01
_:--Jl.fj D SBTE -6.TEE-D1 -7.83E- 01
—:—'-."_,."'10 -0 3090 -4 26E-D1 -4 38E- 01
] ] 0.00E+DD 0.00E+ 00D
'_-—__-—JI.":[O 030090 4 26E-0D1 4 38E- 01
-—_-—JI."j 035878 6. TEE-01 T.83E- 01
3(_-—__-—}."10 0. 80090 0. 16E-01 o04E- 01
2(_-—,_-—},-"5 09511 063E-01 O6TE- O1
‘_."J."'E 1 1 1

WWW.ajer.us
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Table 2b: Table of errors of Exarmple 2 for the value of W

X Exact zolution =5 N=T
Error of New method Error of New method

—f2 N 0.0000E+D0 0.0000E+00
—2af5 08511 1.1900E-02 1 5000502
—3,-’-!'].{10 -0.809 1.0700E-01 0 S000E-02
— {3 03878 8.0200E-02 1.9700E-01
— {10 0308 1.1700E-01 1.4900E-01
0 0 0.0000E-DD 0.0000E=0D
710 b.302 1.1700E-01 1 1900E.01
f5 02878 §.0200E-02 1.9700E-01
3"'}"10 0.209 1.0700E-01 0 S000E-02
23 0.8511 1.1900E-02 1.5900E-02
Tf2 1 0.0000E=00 0.0000E-00

2013

Example 3: Consider the linear boundary value problem for the fourth-order integro differential equation.

y”@):x@+eﬁ+3e”+YQ)_E-yawt

with the conditions

y(0)

Ly(0)=1y@)=1+ey(1)=2e

The exact solution of the above boundary value problem is y(X) =1+ xe”

a<x<b

Table 3a: Table ofresults of Exampled for various value of W

Exact zolution =6 W=t
X
Wew method New method
1 1 1 1
0.1 1.111 110836 111062113
02 1244 1.23912 124375129
3 1.403 140134 140295678
04 1397 138743 138021410
0.3 1824 181309 1 2036380
0.6 2003 206280 209263967
07 2410 223290 236349643
0.2 2780 266334 276798420
0o 3214 320236 321380340
1 3718 371328 I TI6E1E30
Table 3b: Table of errors of exaraple 3 for vanous value of N
X Exact solution N=6 N=28
Error of new method Error of new method
1 1 0.00000E+00 0.00000E+DD
0.1 1.111 2 44000E-3 3.788300E-4
0.2 1.244 4 88000E-3 2487100E4
3 1.403 3.46000E-3 2.043220E-3
04 1.387 0.35000E-3 7.783000E-3
0.3 1.824 1.09100E-2 3.436200E-3
0.6 20893 3.01100E-2 3.603300E4
0.7 241 1.37100E-1 4 650353E-2
NEe 278 1.14660E-1 1201380E-2
ne 3214 1.14400E-2 1.066000E-4
1 3718 2. 72200E-3 1.181700E-3

WWWw.ajer.us
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VII. DISCUSSION AND CONCLUSION
In this paper, Canonical polynomial has been successfully used as a basis function for the numerical

solution of special n"™-order integro-differential equations. The solution obtained by means of the canonical
polynomial is an infinite power series for appropriate conditions, which can be in turn, expressed in a closed
form. The results obtained here are compared with result of Sezer and Gulsu [21] and revealed that Canonical
polynomial is a powerful mathematical tool for the numerical solutions of special nth-order linear integro
differential equations in terms of accuracy achieved.
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