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Abstract:  The problem of solving special nth-order linear integro-differential equations has special importance 

in engineering and sciences that constitutes a good model for many systems in various fields. In this paper, we 

construct canonical polynomial from the differential parts of special nth-order integro-differential equations and 

use it as our basis function for the numerical solutions of special nth-order integro-differential equations. The 

results obtained by this method are compared with those obtained by Adomian Decomposition method. It is also 

observed that the new method is an effective method with high accuracy. Some examples are given to illustrate 

the method. 
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I. INTRODUCTION 
Integro - differential equation is an equation which involving both differential and integral equation. 

This type of problem arise in Science and Engineering because of complexity of this problem, we discover that 

in order to get an exact or analytical solution of the problems, numerical analyst are now to developed interest in 

this area and this motivated the researcher to study this class of problem. The Canonical Polynomial established 

by Liao [11-15] is thoroughly used by many researchers to handle a wide variety of scientific and engineering 

applications: linear and nonlinear, and homogeneous and inhomogeneous as well. It was shown by many authors 

[1, 5, 7, 8, 9, 21, 22] that this method provides improvements over existing numerical techniques. The method 

gives rapidly convergent series solution approximation of the exact solution if such a solution exists. Taiwo [23] 

motivated this researcher work due to some properties of Canonical polynomials reported in the work that: 

(i) Canonical Polynomial can be generated over any given interval of consideration; 

(ii) It can be easily programmed; and 

(iii) It can be generated recursively. 
Without loss of generality, the researcher considers special nth-order linear integro-differential equation (IDE) of 

the form: 

              dttytxKxfxyxPxy p
b
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   0aay  ,       1

1

1 ,. 

 
n

n aayaay       (2) 

 

where ,ia are real constants, pn, are positive integers,    xPxf j, and  txK , are given smooth 

functions, while  xy  is to be determined. 

Eq. (1)- (2) occur in various areas of engineering, mechanics, physics, chemistry, astronomy, economics, 

potential theory, electrostatics, etc. Many methods are usually used to handle the high-order IDE (1)-(2) such as 

the successive approximations, Adomian decomposition, Homotopy perturbation method, Taylor collocation, 

Haar Wavelet, Tau and Walsh series methods, Monte Carlo Method, Direct method based on Fourier and block-

pulse functions, etc. [2-4, 6, 10, 16-17, 21-25], but due to the problems encountered by some of these authors in 
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integrating complex functions like 
2xe

,
cose   etc,  then the method serves as an advantage. 

 

Significant of the study 
The construction of a new basis called Canonical polynomials applied to the linear and non-linear problems  

That a good choice of basis plays an important role in both the accuracy and efficiency of a collocation method 

is well-known in the literature. The extension of Canonical polynomials as a new basis for collocation method is 

examined and the following observation were obtained. Canonical polynomials provide some computational 

advantage, among which are the following; 
They are generated by a single recursive formula. 

They are independent of the interval of consideration. 

They are independent of the associated conditions. 

They ensure highly stable method (A-stability) and optional order accuracy. 

One major advantage of the approach is that it is easily friendly to error estimation. 

We obtained that non linear problems are solved using the collocation method in terms of canonical polynomials 

for the sequence of linearized approximate problems. The Newton’s linearization process is used which 

guarantees a quadratic convergence rate of the iteration. 

We also obtained that the method provides the solution in a rapidly convergent series with components that are 

elegantly computed. 

With all these observation, the researcher conclude that canonical polynomial plays important role in term of 

accuracy and efficient. 
 

II. CONSTRUCTION OF CANONICAL POLYNOMIAL 
From the general equations, stated in (1)-(2), we define D as follows; 

     

 
          

For the case n = 3, we define our operator as: 

    012
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For i = 4: 
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Thus, from equation (4), we obtain the following 
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Thus, from equation (5), we obtain the following 
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Let )(xy be the exact solution of the integro-differential equation, 

       ,, xfdttytxmxDy
b

a
    bax ,

    (6)
 

with 

             ,
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


 ,,...,1 vj 

                   (7)
 

where  xf and  txm ,  are given continuous functions 
21 ,,,, jmjm ccba

 
and jd some given constants. 

 

III. MATRIX REPRESENTATION FOR THE DIFFERENT PARTS 

Let     ,...,: 10 xvxvV   be a polynomial basis by ,: XVV  where V is a non-singular lower 

triangular matrix and degree    ,ixvi   for ,....2,1,0i . Also for any matrix P, 
1VPVPv . 

Now we convert the Eq. (6) and (7) to the corresponding linear algebraic equations in three parts; (a), (b) and 

(c). 

(a).  Matrix representation for )(xDy : 
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Ortiz and Samara proposed in [18] an alternative for the Tau technique which they called the 

operational approach as it reduces differential problems to linear algebraic problems. The effect of 

differentiation, shifting and integration on the coefficients vector 

,...)0,0,~,....,~,~(:~
10 nn

aaaa 
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We recall now the following theorem given by Ortiz and Samara [18]. 

 

(b).  Matrix representation for the integral term: 
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(c). Matrix representation for the supplementary conditions: 
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We refer to B as the matrix representation of the supplementary conditions and jB  as its jth  column. 

The following relations for computing the elements of the matrix B can be deduced from (10): 
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We introduce 
),...,,( 21 vdddd  , the vector that contains right hand sides of conditions. Then the 

supplementary conditions take the form 
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Remark: 

 For 0v and ,1)(0 xG Eq. (6) is transformed into a Fredholm  integral equation of second kind and for 

0 , it is transformed into a differential equation. 

 

IV. DESCRIPTION OF THE METHOD 
For the purpose of our discussion, we assume an approximate solution of the form 
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


N

i

iiN xaxy
0

     (18) 

Where ia are constants to be determined and i  are the canonical polynomials constructed above 

We write equation (1) in the form: 
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          xVxfxI i     (22) 

Then, putting equation (18) into equation (1), we obtain 

           dttQatxkxfxQaxaxQa
N

i

ii

b

a

n

ii

N

i

j

n

j

N

i

n

ii 







00

1

00

,
   (23) 

  xa j are known functions to be supplied, 

 ia are unknown constants to be determined; 

  xi are canonical polynomial generated in section 2, 

together with the following conditions: 
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     1

0

' aaa
N

i

ii 


 

    
       1

0

1





  n

N

i

n

ii aaa
 

In equation (23) the integral part has to be evaluated after which the left over are then collocated at point 

kxx  , to obtain 

           dttatxkxfxaxaxa
N

i

ii

b

a
kkk

n

ii

N

i

kj

n

j

N

i

k

n

ii 







00

1

00

,
  (24) 

where, 

     
;

2




N

kab
axk

 3,...,1  Nk  

 Thus, equation (24) give rise to (N-3) algebraic linear system of equations in (N+1) unknown 

constants. The remaining equations are obtained using the boundary conditions stated in equation (2). 

These equations are then solved to obtain the unknown constants  0iai which are then substituted into 

equation (18) to obtain our approximate solution. 

Remark: all these procedure discussed above have been translated and the entire process is automated by the 

use of symbolic algebraic program MATLAB 7.9 and no manual computation is required. 

 

V. ERROR 
In this section, we have defined our error  as 

      xyxyxe NN  , 

 where  xy is the exact solution and  xyN is the approximate solution computed for various values of N. 

 

VI. NUMERICAL EXAMPLES 
In this section, we consider some examples of third and fourth order linear integro-differential equations. 

 

Reason:  
Because of frequent occurrence of problem in fluid dynamics and biological model in science and 

engineering we decided to pick some problem which are commonly used and compared the result obtained by 
analytic solution result available. 

 Mathematical modelling of real life, physics and engineering problems usually results in these classes. 

 Many mathematical formulations of physical phenomena contains integro-differential equation, these 

equations arise in fluid dynamics, biological models and chemical kinetics. 

 Integro-differential equations are usually difficult to solve analytically so it is required to obtain an efficient 

approximate solution. 

 Therefore the need of this study, and also to discuss the existence and uniqueness of the solutions for these 

classes of problems. 

 The present work is motivated by the desire to obtain analytical and numerical solutions to boundary value 

problems for high-order integro-differential equations. 

Example 1: Consider the third order linear integro differential equation 
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              


 2

2

sin
2



  dttytttytyxxxxyxyxxy

 

with the conditions 
        10,00,10  yyy  

and exact solution is    xxy cos . We use the absolute error to measure the difference between the 

numerical and exact solutions. In table 1 result obtained for N=6, 7, 8 are given with the exact solution. 

 

 
 

 
 

Example 2: Consider the third order linear integro differential equation 

                


 2

2

22cos22
2



  dttxytytttytyxxxxyxyxxy

with the conditions 
        00,00,10  yyy  

and exact solution is    xxy sin  

 

 



American Journal of Engineering Research (AJER) 2013 
 

 
w w w . a j e r . u s  

 

Page 9 

 
 

Example 3: Consider the linear boundary value problem for the fourth-order integro differential equation. 

        dttyxyeexxy xxiv


1

0
31   bxa   

with the conditions 

          eyeyyy 21,11,10,10   

The exact solution of the above boundary value problem is   xxexy  1  
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VII. DISCUSSION AND CONCLUSION 
In this paper, Canonical polynomial has been successfully used as a basis function for the numerical 

solution of special nth-order integro-differential equations. The solution obtained by means of the canonical 

polynomial is an infinite power series for appropriate conditions, which can be in turn, expressed in a closed 

form. The results obtained here are compared with result of Sezer and Gulsu [21] and revealed that Canonical 
polynomial is a powerful mathematical tool for the numerical solutions of special nth-order linear integro 

differential equations in terms of accuracy achieved. 
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