
American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 472

American Journal of Engineering Research (AJER)
e-ISSN : 2320-0847 p-ISSN : 2320-0936

Volume-02, Issue-12, pp-472-483

www.ajer.org

Research Paper Open Access

Design And Development Of Suitable Software Engineering

Techniques To Detect And Manage Buffer-Overflows In

Computer Systems

Mohd Ayaz Uddin
1
, Mirza Younus Ali Baig

2
, Prof.Dr.G.Manoj Someswar

3

1. Working as Assistant Professor in the Department of Information Technology, Nawab Shah Alam Khan College of

Engineering & Technology (Affiliated to JNTUH), New Malakpet, Hyderabad-500024, A.P., India.

2. Working as Assistant Professor in the Department of Information Technology, Nawab Shah Alam Khan College of

Engineering & Technology (Affiliated to JNTUH), New Malakpet, Hyderabad-500024, A.P., India.

3. Working as Professor, HOD & DEAN (Research) in the Department of Computer Science & Engineering, Nawab Shah

Alam Khan College of Engineering & Technology (Affiliated to JNTUH), New Malakpet, Hyderabad-500024, A.P., India.

Abstract: - Throughout the history of cyber security, buffer overflow is one of the most serious vulnerabilities

in computer systems. Buffer overflow vulnerability is a root cause for most of the cyber attacks such as server

breaking-in, worms, zombies, and botnets. Buffer overflow attacks are the most popular choice in these attacks,

as they provide substantial control over a victim host. ―A buffer overflow occurs during program execution

when a fixed-size buffer has had too much data copied into it. This causes the data to overwrite into adjacent

memory locations, and, depending on what is stored there, the behavior of the program itself might be affected.‖

(Note that the buffer could be in stack or heap.) Although taking a broader viewpoint, buffer overflow attacks do

not always carry code in their attacking requests (or packets) 1, code-injection buffer overflow attacks such as

stack smashing count for probably most of the buffer overflow attacks that have happened in the real world.

Although tons of research has been done to tackle buffer overflow attacks, existing defenses are still quite

limited in meeting four highly-desired requirements:

 (R1) simplicity in maintenance

 (R2) transparency to existing (legacy) server OS, application software, and hardware

 (R3) resiliency to obfuscation

 (R4) economical Internet wide deployment.

Keywords: - Code-injection Buffer Overflow attack, C Range Error Detector, Libsafe, Libverify, Safe Pointer,

Data Execution Prevention, Solar Designer, Stack guard

I. INTRODUCTION

As a result, although several very secure solutions have been proposed, they are not pervasively

deployed, and a considerable number of buffer overflow attacks continue to succeed on a daily basis. To see

how existing defenses are limited in meeting these four requirements, let us break down the existing buffer

overflow defenses into six classes which are as follows:

(1A) Finding bugs in source code.

(1B) Compiler extensions.

 (1C) OS modifications.

(1D) Hardware modifications.

 (1E) Defense-side obfuscation.

(1F) Capturing code running symptoms of buffer overflow attacks. (Note that the above list does not

include binary code analysis based defenses which we will address shortly.)[6] We may briefly summarize the

limitations of these defenses in terms of the four requirements as follows. (a) Class 1B, 1C, 1D, and 1E defenses

may cause substantial changes to existing (legacy) server OSes, application software, and hardwares, thus they

are not transparent. Moreover, Class 1E defenses generally cause processes to be terminated. As a result, many

businesses do not view these changes and the process termination overhead as economical deployment. (b)

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 473

Class 1F defenses can be very secure, but they either suffer from significant run time overhead or need special

auditing or diagnosis facilities which are not commonly available in commercial services.[7]The idea of SigFree

is motivated by an important observation that ―the nature of communication to and from network services is

predominantly or exclusively data and not executable code.‖ In particular, as summarized in , (a) on Windows

platforms, most web servers (port 80) accept data only; remote access services (ports 111, 137, 138, 139) accept

data only; Microsoft SQL Servers (port 1434) accept data only; workstation services (ports 139 and 445) accept

data only. (b) On Linux platforms, most Apache web servers (port 80) accept data only; BIND (port 53) accepts

data only; SNMP (port 161) accepts data only; most Mail Transport (port 25) accepts data only; Database

servers (Oracle, MySQL, PostgreSQL) at ports 1521, 3306 and 5432 accept data only. Since remote exploits are

typically executable code, this observation indicates that if we can precisely distinguish (service requesting)

messages that contain code from those that do not contain any code, we can protect most Internet services

(which accept data only) from code-injection buffer overflow attacks by blocking the messages that contain

code.[5]The merits of SigFree are summarized below. They show that SigFree has taken a main step forward in

meeting the four requirements afore mentioned.

a. SigFree is signature free, thus it can block new and unknown buffer overflow attacks

b. Without relying on string-matching, SigFree is immunized from most attack-side obfuscation methods.

c. SigFree uses generic code-data separation criteria instead of limited rules. This feature separates SigFree

from, an independent work that tries to detect code-embedded packets.

d. Transparency. SigFree is an out-of-the-box solution that requires no server side changes.

e. SigFree has negligible through output degradation

II. ANALYSIS
Software engineering is an extremely difficult task and of all software creation Related professions,

software architects have quite possibly the most difficult task. Initially, software architects were only

responsible for the high-level design of the products. More often than not this included protocol selection, third-

party component evaluation and selection, and communication medium selection. We make no argument here

that these are all valuable and necessary objectives for any architect, but today the job is much more difficult. It

requires an intimate knowledge of operating systems, software languages, and their inherent advantages and

disadvantages in regards to different platforms. Additionally, software architects face increasing pressure to

design flexible software that is impenetrable to wily hackers. A near impossible feat in itself.

SQL attacks, authentication brute-forcing techniques, directory traversals, cookie poisoning, cross-site scripting,

and mere logic bug attacks when analyzed via attack packets and system responses are shockingly similar to

those of normal or non-malicious HTTP requests.[8]

Today, over 70 percent of attacks against a company’s network come at the ―Application layer,‖ not the

Network or System layer.—The Gartner Group[4].

Buffer overflows are the most feared of vulnerabilities from a software vendor’s perspective. They

commonly lead to Internet worms, automated tools to assist in exploitation, and intrusion attempts. With the

proper knowledge, finding and writing exploits for buffer overflows is not an impossible task and can lead to

quick fame especially if the vulnerability has high impact and a large user base.[3]

III. EXISTING SYSTEM

Detection of Data Flow Anomalies There is static or dynamic methods to detect data flow anomalies in

the software reliability and testing field. Static methods are not suitable in our case due to its slow speed;

dynamic methods are not suitable either due to the need for real execution of a program with some inputs.[2]

It takes considerable effort to prevent buffer overflows. On the one hand static methods produce false / negative

results, which cause manual corrections in the source code by the developer. On the other hand instrumentation

methods have lot of overhead and they are not transparent. Stack based methods does not prevent from all

attacks. Hardware methods provide less overhead but need to have deeper architectural changes.

The dynamic methods are too expensive to protect the systems against buffer overflow attacks.

Methods used in existing system are

a. Stack based: Adding redundant information / routines to protect the stack or parts of stack.

b. Instrumentation: Replacing of standard functions / objects like pointers to equip them with tools.

c. Hardware based: Architecture check for illegal operations and modifications

d. Static: Checking the source code for known vulnerable functions, do flow analysis check the correct

boundaries, use of heuristics. [1]

e. Operation system based: Declare the stack as non-executable to prevent code execution

IV. STACK GUARD

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 474

A simple approach to protect programs against stack smashing and with little modification against EBP

overflows. This is achieved by a compiler extension that adds so called canary values before the EIP saved at

the function prologue (see Figure 3.1). Before the return of a protected function is executed, the canary values

are checked. An attacker could guess the canary values. This is quite hard, if the values are chosen randomly for

each guarded function, but it is also possible to choose a canary value made of terminator characters, which

makes every string/file copy function to stop at the canary value. So even restoring the canary value would not

lead to a successful program flow detour. Another way to thwart Stackguard is to find a pointer to overflow that

it points to the address of the saved EIP and use that pointer as target for a copy function. This way the EIP is

overwritten without modifying the canary values.[9]

Overhead produced is moderate with up to 125% and that this method is not transparent, meaning that

the source code is needed for recompilation. This fact makes Stackguard useless for many legacy software

products on the market, because they are not open source.

Figure 1: Stack layout using stack guard

V. LIBSAFE AND LIBVERIFY
Two methods that should protect against buffer overflow attacks. The first method is libsafe, a

transparent approach set up in a DLL that replaces standard (vulnerable) functions by standard bounds checked

functions (e.g. strcpy could be replaced by strncpy). The upper limit of the bounds is calculated based on the

EBP, so the maximum amount written to a buffer is the size of the stackframe. This method only works if the

EBP can be determined, since there exist compiler options that make this impossible; further compatibility

issues could arise with legacy software.

VI. INSTRUMENTATION
Safe pointer

Safe pointer structure is to detect all pointer and array access errors. Meaning that both, temporal and

spatial errors are detected.

The structure consists of five entries:

a. Value (the value of the safe pointer, it may contain any expressible address)

b. Base (the base address of the referent)

c. Size (the size of the referent in bytes)

d. Storage class (either Heap, Local or Global)

e. Capability (unique capability. Predefined capabilities are forever and never, else it could be an enumerated

number as long as its value is unique)

Base and size are spatial attributes capability and storage class are temporal attributes. The capability is also

stored in a capability store when it is issued and deleted if the storage is freed or when the procedure invocation

returns. This ensures that storage that is not available (like freed heap allocated memory) is not accessed

anymore. The transformation of a program from unsafe to safe pointers involves pointer conversion (to extend

all pointer definitions), check insertion (to instrument the program to detect memory access errors) and operator

conversion (to generate and maintain object attributes).

C Range Error Detector (CRED)

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 475

CRED is the idea to replace every out-of-bounds (OOB) pointer value with the address of a special

OOB object created for that value. To realize this, a data structure called object table collects the base address,

and size information of static, heap and stack objects. To determine, if an address is in-bounds, the checker first

locates the referent object by comparing the in-bounds pointer with the base and size information stored in the

object table. Then, it checks if the new address falls within the extent of the referent object. If an object is out-

of-bounds, an OOB object is created in the heap that contains the OOB address value and the referent object. If

the OOB value is used as an address it is replaced by the actual OOB address. The OOB objects are entered into

an out-of-bounds object hash table, so it is easy to check if a pointer points to an OOB object by consulting the

hash table. The hash table is only consulted if the checker is not able to find the referent object in the object

table or cannot identify the object as unchecked. Arithmetic and comparison operations to OOB objects are

legal, since the referent object and its value is retrieved from the OOB object. But if a pointer is dereferencing, it

is checked if the object is in the object table or if it is unchecked else the operation is illegal. Buffer overflows

are not prevented but the goal is thwarted because copy functions need to dereference the OOB value, the

program is halted before more damage happens. This fact could be still used as DoS attack, since the program

(service) is halted and needs to be restarted or even worst if it has to be re-administrated. This method works, by

comparing the non instrumented code, the CRED instrumented code and a code where the instrumentation is

which is the base for CRED. Since recompilation is needed, this method is not transparent. But the instrumented

code is fully compatible to non-instrumented code. The overhead of this approach ranges from 1% to 130%, but

it do not show how certain kind of buffer overflow attacks, like signed/unsigned and off-by-one overflows are

handled. The same arguments as on the safe pointers in the previous section can be applied here.

VII. HARDWARE BASED

The approach deals with an architectural change implementing a Secure Return Address Stack (SRAS),

which is a cyclic, finite LIFO structure that stores return addresses. At a return call the last SRAS entry is

compared with the return address from the stack and if the comparison yields that the return address was altered

the processor can terminate the process and inform the operation system or continues the execution based on the

SRAS return address. Since the SRAS is finite and cyclic, n/2 of the SRAS content has to be swapped on an

under- or overflow.

Two methods:

a. OS-managed SRAS swapping. The operation system executes code that transfers contents to or from

memory which is mapped to physical ages that can only be accessed by the kernel

b. Processor-managed SRAS swapping. The processor maintains two pointers to two physical pages that

contain spilled SRAS addresses and a counter that indicates the space left in the pages. If the Pages over or

underflow, the OS is invoked to de-/allocate pages, else the processor can directly transfer contents to and

from the pages without invoking the OS.The problem is that the SRAS is not compatible with non LIFO

routines, such as C++ exception handling. This makes it necessary to change the non LIFO routines to

LIFO routines or it must be possible to turn off the SRAS protection.

VIII. STATIC

This deals with the idea to comment the source code that LCLint can interpret them and generate a log

file which can be used to identify possible vulnerabilities. If a source code is analyzed, LCLint evaluates

conditions to fulfill safe execution of the finally compiled program. These conditions are written to the log file

so the programmer an check if these conditions are true for every case that could happen while execution. Then

the programmer can write control comments into the source to let LCLint what conditions are fulfilled or if

LCLint should ignore parts of the source code. These way errors can be found before compilation, but this

method has certain shortcoming. Since it is not possible to efficiently determine invariants, to take advantage of

idioms used typically by C programmers. Since this method is not exact, the rate of false positives grows.

Further LCLint is a lightweight checker, meaning that the program flow is also checked using heuristics, since

determining all possible program states might need exponential time. The false positives can be commented out,

but this means more work to the developers of the software and since heuristics are used, false negatives are

produced either. All these facts and the fact that this method is not transparent makes it only suitable for new or

small projects. The last aspect we want to point out is that this is the only method so far that produces no

overhead, since the compilers skip comments.

IX. OPERATION SYSTEM BASED
Data Execution Prevention (DEP)

With the release of the Service Pack 2 for Windows XP and Service Pack 1 for Windows 2003 a new

protection was introduced to machines using these operation systems, the DEP. Microsoft explains a bit how the

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 476

DEP works. In cooperation with Intel (Execute Disable bit feature) and AMD (no-execute page-protection

processor feature) a new CPU flag was implemented called the NX-Flag. It marks all memory locations in a

process as non-executable unless the location explicitly contains executable code. [10] If the machine running

with DEP support has no NX-Flag, the DEP can be enforced by the operation system (software enforcement).

This protection prevents execution of injected code, if the code was injected in a non executable area. The DEP

can be bypassed. Further this method requires that even valid, working processes are (sometimes) recompiled.

Another shortcoming is, that this method does not prevent the buffer overflow itself, so attacks like variable

attack or BSS/heap overflows are not prevented.

Solar Designer

The Solar Designer patch does nearly the same as the DEP, but it makes the stack non executable.

Since Linux needs the executable stack for signal handling, this restricts the normal behavior of Linux. If the

attack is able to determine code that would act like a shellcode and execute this code instead of injected code the

patch can be bypassed. To conclude, buffer overflows are not prevented, only the code execution. Attacks like

the variable attack or BSS/heap overflows are still possible, and heap overflows can also be used to execute

arbitrary code.

X. PROPOSED SYSTEM
We proposed SigFree, a real-time, signature free, out of- the-box blocker that can filter code-injection buffer

overflow attack messages, one of the most serious cyber security threats, to various Internet services. SigFree

does not require any signatures, thus it can block new, unknown attacks.

Figure 2: Signature Free prototype

We have implemented a SigFree prototype as a proxy to protect web servers. Our empirical study

shows that there exists clean-cut ―boundaries‖ between code embedded payloads and data payloads when our

code data separation criteria are applied. We have identified the ―boundaries‖ (or thresholds) and been able to

detect/ block all 50 attack packets generated by Meta spoilt framework, all 200 polymorphic shellcode packets

generated by two well-known polymorphic shellcode engine ADMmutate and CLET , and worm Slammer,

CodeRed and a CodeRed variation, when they are well mixed with various types of data packets. Also, our

experiment results show that the throughput degradation caused by SigFree is negligible.

XI. BUFFER OVERLOW VARIANTS
Today buffer overflow attacks are known and well understood. In general every buffer that can be accessed by

an attacker might be compromised if vulnerable functions are used. Such variables are located on the stack and

heap. The attacks are partitioned as follows:

a. Stack smashing used to execute inject code

b. Variable attack used to modify program state

c. Heap overflow used to execute arbitrary code or to modify the variables

d. Off-by-one a classic programmers error , only one byte is overwritten [11]

XII. INPUT DESIGN
The input design is the link between the information system and the user. It comprises the developing

specification and procedures for data preparation and those steps are necessary to put transaction data in to a

usable form for processing can be achieved by inspecting the computer to read data from a written or printed

document or it can occur by having people keying the data directly into the system. The design of input focuses

on controlling the amount of input required, controlling the errors, avoiding delay, avoiding extra steps and

keeping the process simple. The input is designed in such a way so that it provides security and ease of use with

retaining the privacy. Input Design considered the following things:

a. What data should be given as input?

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 477

b. How the data should be arranged or coded?

c. The dialog to guide the operating personnel in providing input.

d. Methods for preparing input validations and steps to follow when error occur.

XIII. OBJECTIVES
Input Design is the process of converting a user-oriented description of the input into a computer-based

system. This design is important to avoid errors in the data input process and show the correct direction to the

management for getting correct information from the computerized system. It is achieved by creating user-

friendly screens for the data entry to handle large volume of data. The goal of designing input is to make data

entry easier and to be free from errors. The data entry screen is designed in such a way that all the data

manipulates can be performed. It also provides record viewing facilities.When the data is entered it will check

for its validity. Data can be entered with the help of screens. Appropriate messages are provided as when needed

so that the user will not be in maize of instant. Thus the objective of input design is to create an input layout that

is easy to follow.

XIV. OUTPUT DESIGN
A quality output is one, which meets the requirements of the end user and presents the information

clearly. In any system results of processing are communicated to the users and to other system through outputs.

In output design it is determined how the information is to be displaced for immediate need and also the hard

copy output. It is the most important and direct source information to the user. Efficient and intelligent output

design improves the system’s relationship to help user decision-making. Designing computer output should

proceed in an organized, well thought out manner; the right output must be developed while ensuring that each

output element is designed so that people will find the system can use easily and effectively. When analysis

design computer output, they should Identify the specific output that is needed to meet the requirements.

Select methods for presenting information. Create document, report, or other formats that contain information

produced by the system. The output form of an information system should accomplish one or more of the

following objectives.

a. Convey information about past activities, current status or projections of the

b. Future.

c. Signal important events, opportunities, problems, or warnings.

d. Trigger an action.

e. Confirm an action.

XV. SYSTEM STUDY
FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put forth with a very

general plan for the project and some cost estimates. During system analysis the feasibility study of the

proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company.

For feasibility analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are:

a. ECONOMICAL FEASIBILITY

b. TECHNICAL FEASIBILITY

c. SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY

This study is carried out to check the economic impact that the system will have on the organization. The

amount of fund that the company can pour into the research and development of the system is limited. The

expenditures must be justified.Only the customized products had to be purchased. [12]

TECHNICAL FEASIBILITY
This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any

system developed must not have a high demand on the available technical resources. This will lead to high

demands on the available technical resources. This will lead to high demands being placed on the client. The

developed system must have a modest requirement, as only minimal or null changes are required for

implementing this system. [13]

SOCIAL FEASIBILITY

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 478

The aspect of study is to check the level of acceptance of the system by the user. This includes the process of

training the user to use the system efficiently. The user must not feel threatened by the system, instead must

accept it as a necessity.His level of confidence must be raised so that he is also able to make some constructive

criticism, which is welcomed, as he is the final user of the computer system.[14]

In this phase, we understand the software requirement specifications for the research work. We arrange all the

required components to develop the project in this phase itself so that we will have a clear idea regarding the

requirements before designing the project. Thus we will proceed to the design phase followed by the

implementation phase of the project.

XVI. DESIGN ARCHITECTURE

Figure 3: Architecture of SigFree

DATA FLOW DIAGRAM / USE CASE DIAGRAM

The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to represent

a system in terms of the input data to the system, various processing carried out on these data, and the output

data is generated by the system. Data flow diagram shows step by step flow.

a. Use case diagram is a description of a set of sequences of actions, including variants that a system performs

to yield an observable result of value to an actor.

b. Class diagram that shows a set of classes, interfaces and collaborations and their relationships.

c. Activity diagram is a flowchart, showing flow of control from activity to activity.

d. A component diagrams shows the organization and dependencies among set of components.

e. An interaction diagram that emphasizes the time ordering of messages.

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 479

Figure 4: Data Flow Diagram

UML DIAGRAMS

User
Request URL

Search

Get response

Download files

Register

Admin

Upload files

 Figure 5: Use Case Diagram

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 480

Upload files

+fileid
+filename
+filetype
+files

+upload()

Get response

+fileid
+filename
+files

+checkresponse()

Send request

+urlid
+requesturl
+requestdate

+decoder()
+ASCII code()
+Distiller()
+analyse()

Figure 6: Class Diagram

User Admin

Server

Upload files

Send request

Search

Retrieve all files

Retrieve non-executable files

If request
contains pure dataIf request contains

 executable files

Figure 7: Sequence Diagram

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 481

User search Admin login

Send HTTP request

Convert into ASCII code

Distill and
analyse URL

Check
 URL

Block executable
 files

Retrieve
all files

Upload files

Import files

Encode and
Decode URL

Retrieve non-executable
files

A

If request
contains

 executable
 files

If request
contains
pure data

Figure 8: Activity Diagram

Server
User

Admin

Request/Response

Upload files

Figure 9: Component Diagram

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 482

In this way we can design the layout of the project which is to be implemented during the construction phase.

Thus we will have a clear picture of the project before being coded. Hence any necessary enhancements can be

made during this phase and coding can be started and program compiled and executed successfully keeping in

view of the proposed needs and requirements in the beginning of the research work.

The Testing Process- Overview

The testing process for web engineering begins with tests that exercise content and interface functionality that is

immediately visible to end-users. As testing proceeds, aspects of the design architecture and navigation are

exercised. The user may or may not be cognizant of these WebApp elements. Finally, the focus shifts to tests

that exercise technological capabilities that are not always apparent to end-users—WebApp infrastructure and

installation/implementation issues.

a. Content Testing

b. Interface Testing

c. Navigation Testing

d. Component Testing

e. Configuration Testing

f. Performance Testing

g. Security Testing

The following figure shows the testing flow:

Figure 10: Testing Flows

XVII. RESULTS & CONCLUSION
 We proposed SigFree, a real time, signature free, out of- the-box blocker that can filter code-injection

buffer overflow attack messages, one of the most serious cyber security threats, to various Internet services.

SigFree does not require any signatures, thus it can block new, unknown attacks. SigFree is immunized from

most attack-side code obfuscation methods, good for economical Internet wide deployment with little

maintenance cost and negligible throughput degradation and can also handle encrypted SSL messages.

A combination of developer education for defensive programming techniques as well as software

reviews is the best initial approach to improving the security of custom software. Secure programming and

scripting languages are the only true solution in the fight against software hackers and attackers.

REFERENCES

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 483

[1] SigFree: Signature Buffer overflow attack blocker by Xinrang Wang, Chi-Chun Pan, Peng Liu, Senchu

Zhu pp 1-3 ,6-18,47-68

[2] Buffer overrun in jpeg processing (gdi+) could allow code execution 833987 pp 47-68http://www.

microsoft.com/technet/security/bulletin/ MS04-028.mspx

[3] Web application vulnerabilities: detect exploit and prevent by Michael cross pp 47-68

[4] Buffer overflows vulnerability diagnosis for commodity software by jiang.pp 6-18

[5] Buffer overflow attacks by James C Foster pp 47-49

[6] Intel ia-32 architect software developer’s manual volume 1: Basic architecture.pp 9

[7] Metasploit project. http://www.metasploit.com. pp 47-68

[8] Security advisory: Acrobat and adobe reader plug-in buffer overflow. http://www.adobe.com/

support/techdocs/321644.html. pp 13-15

[9] Stunnel – universal ssl wrapper. http://www.stunnel.org.

[10] Symantec security response: back door.hesive. pp 6- 18 http://securityresponse.symantec.com/ avcenter/

venc/data/backdoor.hesive.html

[11] Winamp3 buffer overflow. http://www.securityspace.com/ smysecure/ catid.html?id=11530. pp 6-18

[12] Pax documentation. http://pax.grsecurity.net/docs/pax.txt, November 2003. against stack smashing

attacks. In Proc. 2000 USENIX Technical Conference (June 2000). pp 14

[13] Professional ASP .NET by Wrox Publications pp 25-46

[14] Effective methods for software testing by William Perry 69-83

http://www.metasploit.com/
http://www.adobe.com/%20support/techdocs/321644.html.%20pp%2013-15
http://www.adobe.com/%20support/techdocs/321644.html.%20pp%2013-15
http://www.adobe.com/%20support/techdocs/321644.html.%20pp%2013-15
http://www.stunnel.org/
http://securityresponse.symantec.com/%20avcenter/%20venc/data/backdoor.hesive.html
http://securityresponse.symantec.com/%20avcenter/%20venc/data/backdoor.hesive.html
http://securityresponse.symantec.com/%20avcenter/%20venc/data/backdoor.hesive.html
http://pax.grsecurity.net/docs/pax.txt

