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Abstract: - The present paper deals with the determination of quasi static thermal stresses in a thin rectangular 

plate with internal heat generation. A thin rectangular plate is considered having zero initial temperature and 

subjected to arbitrary heat supply at 𝑥 = 0 and x = 𝑎  where as thin rectangular plate is insulated at y = 0 and 

y = 𝑏. Here we modify Kulkarni (2007). The governing heat conduction equation has been solved by the method 

of integral transform technique. The results are obtained in a series form in terms of Bessel’s functions. The 

results for temperature, displacement and stresses have been computed numerically and illustrated graphically. 

 

Keywords: - Quasi static thermal stresses, thermoelastic problem, internal heat generation, thin rectangular  

plate. 

 

I. INTRODUCTION 
    Gogulwar  and Deshmukh (2004) determined the thermal stresses in rectangular plate due to partially 

distributed heat supply. Nasser M. et al. (2004) solved two dimensional problem of thick plate with heat sources 

in generalized thermoelasticity.  Khandait and Deshmukh (2010) studied thermoelastic problem in a rectangular 

plate with heat generation. 

    Recently Patil et al. (2013) determined the thermal stresses in a rectangular slab with internal heat 

source, now here a thin rectangular plate is considered having zero initial temperature and and subjected to 

arbitrary heat supply at 𝑥 = 0 and x = 𝑎  where as the plate is insulated at y = 0 and y = 𝑏. Here we modify 

Kulkarni (2007). To obtain the temperature distribution, cosine integral transform and Laplace transform are 

applied. The results are obtained in series form in terms of Bessel’s functions and the temperature change, 

displacement and stresses have been computed numerically and illustrated graphically. A mathematical model 

has been constructed of a thin rectangular plate with the help of numerical illustration by considering steel 

(0.5% carbon) rectangular plate. No one previously studied such type of problem. This is new contribution to 

the field.  

    The direct problem is very important in view of its relevance to various industrial mechanics subjected 

to heating such as the main shaft of lathe, turbines and the role of rolling mill, base of furnace of boiler of a 

thermal power plant and gas power plant.  

 

II. FORMULATION OF THE PROBLEM 
A thin rectangular plate occupying the space D: 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑎 ≠ 𝑏 is considered. A thin 

rectangular plate is considered having zero initial temperature and subjected to arbitrary heat supply at 𝑥 = 0 

and x = 𝑎  where as the plate is insulated at y = 0 and y = 𝑏.  Here the plate is assumed sufficiently thin and 

considered free from traction. Since the plate is in a plane stress state without bending. Airy stress function 

method is applicable to the analytical development of the thermoelastic field. The  equation is given by the 

relation  

       
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 
2

 𝑈 =  −𝑎𝑡  𝐸  
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 𝑇                        (1) 

where 𝑎𝑡 , E and U are linear coefficient of the thermal expansion, Young’s modulus elasticity of the material of 

the plate and Airys stress functions respectively.  
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  The displacement components 𝑢𝑥  and 𝑢𝑦  in the X and Y direction are represented in the integral form and the 

stress components in terms of U are given by       

          𝑢𝑥 =    
1

𝐸
 
𝜕2𝑈

𝜕𝑦2 −  𝑣
𝜕2𝑈

𝜕𝑥2 + 𝑎𝑡𝑇  𝑑𝑥                    (2)  

           𝑢𝑦 =    
1

𝐸
 
𝜕2𝑈

𝜕𝑥2 −  𝑣
𝜕2𝑈

𝜕𝑦2 + 𝑎𝑡𝑇  𝑑𝑦        (3) 

          𝜍𝑥𝑥 =  
𝜕2𝑈

𝜕𝑦2         (4) 

          𝜍𝑦𝑦 =  
𝜕2𝑈

𝜕𝑥2           (5) 

 and  

         𝜍𝑥𝑦 =  −
𝜕2𝑈

𝜕𝑥𝜕𝑦
                  (6) 

         𝜍𝑥𝑦 = 0 at 𝑦 = 𝑏.        (7) 

  where 𝑣 is the Poisson’s ratio of the material of the rectangular plate. 

The temperature of the thin rectangular plate at time t satisfying heat conduction equation as follows, 

    
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2  +  
𝑞

𝑘
=  

1

𝛼
 
𝜕𝑇

𝜕𝑡
                     (8) 

    𝑇 𝑥, 𝑦, 𝑡 = 0 𝑎𝑡 𝑡 = 0  0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏                 (9)    

    𝑇(𝑥, 𝑦, 𝑡) = 𝑓1 𝑦, 𝑡  𝑎𝑡 𝑥 = 0,      0 ≤ 𝑦 ≤ 𝑏       (10)  

    𝑇 𝑥, 𝑦, 𝑡 = 𝑓2 𝑦, 𝑡  𝑎𝑡 𝑥 = 𝑎,     0 ≤ 𝑦 ≤ 𝑏         (11)   

     
𝜕𝑇

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 0,   0 ≤ 𝑥 ≤ 𝑎        (12)  

     
𝜕𝑇

𝜕𝑦
= 0  𝑎𝑡 𝑦 = 𝑏,     0 ≤ 𝑥 ≤ 𝑎        (13)   

    𝑞 𝑥, 𝑦, 𝑡 =  𝛿 𝑦 − 𝑦0  𝑠𝑖𝑛  𝛽𝑚  𝑥 + 𝑎   1 − 𝑒−𝑡 , 0 < 𝑦0 < 𝑏                (14)   

where 𝛼 is the thermal diffusivity of the material of the plate, k is the thermal conductivity of the material of the 

plate, q is the internal heat generation and 𝛿 𝑟  is well known dirac delta function of argument r.  

Eq. (1) to Eq. (14) constitute mathematical formulation of the problem. 

 

III. SOLUTION 
To obtain the expression for temperature 𝑇(𝑥, 𝑦, 𝑡), we introduce the cosine integral transform and its inverse 

transform are 

     𝑇  𝑥,𝛽𝑚 , 𝑡 =     𝐾0 𝛽𝑚 , 𝑦  
𝑏

0
 𝑇 𝑥, 𝑦, 𝑡 𝑑𝑦            (15) 

     𝑇(𝑥, 𝑦, 𝑡)  =   𝐾0 𝛽𝑚 , 𝑦   𝑇  𝑥,𝛽𝑚 , 𝑡 ∞
𝑚=1        (16) 

 where the kernel 

 𝐾0 𝛽𝑚 , 𝑦  =  
2

𝑏
 cos 𝛽𝑚𝑦          (17) 

where 𝛽𝑚  is the m
th

 root of the transcendental equation sin  𝛽𝑚𝑏 = 0,𝛽𝑚 =
𝑚𝜋

𝑏
,𝑚 = 1,2,…. 

On applying the cosine integral transform defined in the Eq. (15), its inverse transform defined in Eq. (16), 

applying Laplace transform and its inverse by residue method successively to the Eq. (1), one obtains the 

expression for temperature as   

    𝑇 x, y, t =     
𝟐

𝒃

∞
n=1

∞
m=1  𝑐𝑜𝑠𝛽𝑚𝑦     

−2n𝜋𝛼

a2(−1)𝑛
 sin    

𝑛𝜋

𝑎
 𝑥 − 𝑎   𝑄1 𝑡        

                    +  
−2n𝜋𝛼

a2 −1 𝑛
 sin  

𝑛𝜋

𝑎
𝑥 𝑄2 𝑡 +

α

k
 

2

𝑏
𝑐𝑜𝑠𝛽𝑚𝑦0 sin 𝛽𝑚  x + a  𝑄3 𝑡            (18) 

where 

     𝑄1 𝑡 =  𝑒
−𝛼 𝛽𝑚

2+
𝜋2𝑛2

𝑎2   (𝑡−𝑢)𝑡

0
      

2

𝑏
𝑐𝑜𝑠𝛽𝑚𝑦0   

𝛼  sin 𝛽𝑚 𝑎

 k
 

                     ×  
1

2αβm
2 +

𝑒−𝑢

1−2αβm
2 +

𝑒−2αβm
2𝑢

2αβm
2(2αβm

2−1)
 − 𝐹1 𝛽𝑚 , u  du    

    𝑄2 𝑡 =  𝑒
−𝛼 𝛽𝑚

2
+
𝜋2𝑛2

𝑎2   (𝑡−𝑢)
 

𝑡

0
   𝐹2 𝛽𝑚 , u −  

2

𝑏
𝑐𝑜𝑠𝛽𝑚𝑦0   

𝛼  sin 𝛽𝑚 𝑎

 k
 

                     ×  
1

2αβm
2 +

𝑒−𝑢

1−2αβm
2 +

𝑒−2αβm
2𝑢

2αβm
2(2αβm

2−1)
  du      

 and 

        𝑄3 𝑡 =  
1

2αβm
2 +

𝑒−𝑡

1−2αβm
2 +

𝑒−2αβm
2𝑡

2αβm
2(2αβm

2−1)
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 Airy stress function U     

Using Eq.(18) in Eq.(1), one obtains the expression for Airy’s stress function U as 

    𝑈 = 𝑎𝑡  𝐸    ∞
𝑛=1  

2

𝑏

∞
𝑚=1

𝑐𝑜𝑠𝛽𝑚 𝑦

 𝛽𝑚
2+

𝜋2𝑛2

𝑎2  
    

−2𝑛𝜋𝛼

𝑎2(−1)𝑛
 𝑠𝑖𝑛    

𝑛𝜋

𝑎
 𝑥 − 𝑎   𝑄1 𝑡 +  

−2𝑛𝜋𝛼

𝑎2 −1 𝑛
 𝑠𝑖𝑛  

𝑛𝜋

𝑎
𝑥 𝑄2 𝑡       

               

         +
𝛼

2𝛽𝑚
2
𝑘
 

2

𝑏
𝑐𝑜𝑠(𝛽𝑚𝑦0) 𝑠𝑖𝑛 𝛽𝑚  𝑥 + 𝑎  𝑄3 𝑡  𝛽𝑚

2 +
𝜋2𝑛2

𝑎2                    (19)

  

Displacement and Stresses 

Now using Eqs. (18) and (19) in Eqs. (2) to (6) one obtains the expressions for displacement and stresses as 

   𝑢𝑥 = 𝑎𝑡     ∞
𝑛=1  

2

𝑏

∞
𝑚=1 𝑐𝑜𝑠𝛽𝑚𝑦      

2𝛼𝜋2𝑛2

𝑎3(−1)𝑛
 

 1+𝑣 

 𝛽𝑚
2

+
𝜋2𝑛2

𝑎2   
  

             ×  𝑐𝑜𝑠    
𝑛𝜋

𝑎
 𝑥 − 𝑎   𝑄1 𝑡 + 𝑐𝑜𝑠  

𝑛𝜋

𝑎
𝑥 𝑄2 𝑡   

             −
𝛼

2𝑘

 1+𝑣 

𝛽𝑚  
 

2

𝑏
𝑐𝑜𝑠(𝛽𝑚𝑦0) 𝑐𝑜𝑠 𝛽𝑚  𝑥 + 𝑎  𝑄3 𝑡                                            (20) 

  𝑢𝑦 = 𝑎𝑡     ∞
n=1  

2

𝑏

∞
m=1   

𝑠𝑖𝑛 𝛽𝑚 𝑦

𝛽𝑚  
     

−2𝑛𝜋𝛼

𝑎2(−1)𝑛
  

𝛽𝑚
2 1+𝑣 

 𝛽𝑚
2+

𝜋2𝑛2

𝑎2   
   

            ×  sin    
𝑛𝜋

𝑎
 𝑥 − 𝑎   𝑄1 𝑡 + 𝑠𝑖𝑛  

𝑛𝜋

𝑎
𝑥 𝑄2 𝑡   

            +
𝛼

2𝑘
 1 + 𝑣  

2

𝑏
𝑐𝑜𝑠(𝛽𝑚𝑦0) sin 𝛽𝑚  𝑥 + 𝑎  𝑄3 𝑡                              (21)                                  

     𝜍𝑥𝑥 =  𝑎𝑡𝐸    ∞
n=1  

2

𝑏

∞
m=1  

(−𝛽𝑚
2)𝑐𝑜𝑠𝛽𝑚 𝑦

 𝛽𝑚
2+

𝜋2n 2

𝑎2  
     

−2𝑛𝜋𝛼

𝑎2(−1)𝑛
   

                ×  sin    
𝑛𝜋

𝑎
 𝑥 − 𝑎   𝑄1 𝑡 + sin  

𝑛𝜋

𝑎
𝑥 𝑄2 𝑡   

                +
𝛼

2𝑘𝛽𝑚
2  𝛽𝑚

2 +
𝜋2n2

𝑎2   
2

𝑏
𝑐𝑜𝑠(𝛽𝑚𝑦0) sin 𝛽𝑚  𝑥 + 𝑎  𝑄3 𝑡                               (22)

  

    𝜍𝑦𝑦 =  𝑎𝑡𝐸    ∞
𝑛=1  

2

𝑏

∞
𝑚=1  

(−
𝜋2𝑛2

𝑎2 )𝑐𝑜𝑠𝛽𝑚 𝑦

 𝛽𝑚
2+

𝜋2𝑛2

𝑎2  
     

−2𝑛𝜋𝛼

𝑎2(−1)𝑛
    

               ×  𝑠𝑖𝑛    
𝑛𝜋

𝑎
 𝑥 − 𝑎   𝑄1 𝑡 + 𝑠𝑖𝑛  

𝑛𝜋

𝑎
𝑥 𝑄2 𝑡      

               + 
𝛼  𝑎2

2𝑘𝜋2𝑛2  𝛽𝑚
2 +

𝜋2𝑛2

𝑎2   
2

𝑏
𝑐𝑜𝑠(𝛽𝑚𝑦0) 𝑠𝑖𝑛 𝛽𝑚  𝑥 + 𝑎  𝑄3 𝑡              (23) 

       

     𝜍𝑥𝑦 =  𝑎𝑡𝐸    ∞
𝑛=1

∞
𝑚=1  

𝛽𝑚  𝑠𝑖𝑛 𝛽𝑚 𝑦

 𝛽𝑚
2+

𝜋2𝑛2

𝑎2  
      

−2𝑛2𝜋2𝛼

𝑎3(−1)𝑛
    

            ×  𝑐𝑜𝑠    
𝑛𝜋

𝑎
 𝑥 − 𝑎   𝑄1 𝑡 + 𝑐𝑜𝑠  

𝑛𝜋

𝑎
𝑥 𝑄2 𝑡     

              +  
𝛼  

2𝑘𝛽𝑚
2  𝛽𝑚

2 +
𝜋2𝑛2

𝑎2   
2

𝑏
𝑐𝑜𝑠(𝛽𝑚𝑦0) 𝑐𝑜𝑠 𝛽𝑚  𝑥 + 𝑎  𝑄3 𝑡                    (24)        

 

                                                     

IV. SPECIAL CASE AND NUMERICAL CALCULATIONS 
Setting 

         𝑓1 𝑦, 𝑡 = 𝑓2 𝑦, 𝑡 = 𝛿 𝑦 − 𝑦1  𝛿 𝑡 − 𝑡0  ,   0 ≤ 𝑦1 ≤ 𝑏, 0 < 𝑡0 < ∞            

       𝐹1 𝛽𝑚 , 𝑡 =  𝐹2 𝛽𝑚 , 𝑡 =  
2

𝑏
 𝑐𝑜𝑠(𝛽𝑚𝑦1)  𝛿 𝑡 − 𝑡0   

           𝑎 = 1𝑚, 𝑏 = 2𝑚 , 𝑡0 = 0, 2, 4, 6, 8  sec and 𝑦0 = 𝑦1 = 1𝑚.  
4.1   Material Properties 

The numerical calculation has been carried out for steel (0.5% carbon) rectangular plate  with the material 

properties defined as 

    Thermal diffusivity α = 14.74× 10−6  m2s−1 ,  
     Specific heat 𝑐𝜌 = 465 J/kg,    

     Thermal conductivity k = 53.6 W/m K, 

     Poisson ratio 𝜗 = 0.35,   
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    Young’s modulus 𝐸 = 130 𝐺 pa, 
    Lame constant  𝜇 = 26.67, 

    Coefficient of linear thermal expansion 𝑎𝑡 = 13 ×  10−6 1
𝐾   

 

4.2 Roots of Transcendental Equation 

The 𝛽1 = 3.1414,  𝛽2 = 6.2828,  𝛽3 = 9.4242,  𝛽4 = 12.5656,  𝛽5 = 15.707,𝛽6 = 18.8484  are the roots of 

transcendental equation sin  𝛽𝑚𝑏 = 0.  The numerical calculation and the graph has been carried out with the 

help of mathematical software Mat lab.  

 

V. DISCUSSION 
In this paper a thin rectangular plate is considered which is free from fraction and determined the expressions 

for temperature, displacement and stresses due to arbitrary heat supply on the edges x = 0 and x = 𝑎 of plate 

whereas the plate is insulated at y = 0 and y = 𝑏.  A mathematical model is constructed by considering steel 

(0.5% carbon) rectangular plate with the material properties specified above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Temperature T   in Y- direction. 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The displacement 𝑢𝑥  in Y- direction. 
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Fig. 3 The displacement 𝑢𝑦  in Y- direction.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Thermal stress𝑒𝑠 𝜍𝑥𝑥  in Y-direction 

 

 

 

 

                

 

 

 

 

 

 

        

 

 

 

 

 

 

Fig. 5 Thermal stress𝑒𝑠 𝜍𝑦𝑦  in Y-direction. 
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Fig. 6 Thermal stress𝑒𝑠 𝜍𝑥𝑦  in Y-direction. 

 

From figure 1, it is observed that temperature 𝑇 decreases as the time increases. The overall behavior of 

temperature is decreasing and it is symmetric about y= 1  in a thin rectangular plate with internal heat 

generation along Y-direction.          

From figure 2, it is observed that displacement 𝑢𝑥  decreases as the time increases. The overall behavior of 

temperature is decreasing and it is symmetric about y= 1  in a thin rectangular plate with internal heat 

generation along Y-direction.          

From figure 3, it is observed that the displacement 𝑢𝑦  is increasing for 0 ≤ 𝑦 ≤ 0.5,  1.5 ≤ 𝑦 ≤ 2 and 

decreasing for 0.5 ≤ 𝑦 ≤ 1.5. The overall behavior of displacement 𝑢𝑦  is decreasing along Y-direction and it is 

antisymmetric about y= 1 in a thin rectangular plate with internal heat generation along Y-direction.  

From figure 4 and 5, it is observed that thermal stress𝑒𝑠 𝜍𝑥𝑥 ,  𝜍𝑦𝑦  increases as the time increases. Maximum 

value of stress𝑒𝑠 𝜍𝑥𝑥  ,  𝜍𝑦𝑦  occure near heat source and it is tensile in nature in a thin rectangular plate with 

internal heat generation along Y-direction.  

From figure 6, it is observed that the thermal stress𝑒𝑠 𝜍𝑥𝑦  is decreasing for 0 ≤ 𝑥 ≤ 0.5, 1.5 ≤ 𝑥 ≤ 2 and 

increasing for 0.5 ≤ 𝑥 ≤ 1.5. The overall behavior of stress𝑒𝑠 𝜍𝑥𝑦  is increasing and it is antisymmetric about 

y= 1 in rectangular plate with internal heat generation along Y-direction.  

 

VI. CONCLUSION 
     We can conclude that temperature 𝑇, displacement 𝑢𝑥  and  𝑢𝑦  are decreasing with time in a thin 

rectangular plate with internal heat generation along Y-direction. The thermal stress𝑒𝑠 𝜍𝑥𝑥 ,  𝜍𝑦𝑦  are tensile in 

nature in a thin rectangular plate with internal heat generation along Y-direction. The thermal stress𝑒𝑠 𝜍𝑥𝑦  is 

increasing and it is antisymmetric about 𝑦 = 1 in a thin rectangular plate with internal heat generation along Y-

direction. The results obtained here are useful in engineering problems particularly in the determination of state 

of stress in a thin rectangular plate, base of furnace of boiler of a thermal power plant and gas power plant. 
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